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A development of the scattering amplitude in potential scattering which is based upon replacing a 
smooth potential by a sequence of potential steps is given. The SchrOdinger equation is solved exactly 
in each interval over which the potential is constant and by matching boundary conditions an expression 
relating the coefficients of two linearly independent solutions at small radius to those at large radius is 
found. From this the scattering amplitude is calculated. The limits of validity are found to be dependent 
upon the value of the expression 

(r /2J!!-ln(2m[E - v}. 
dr 112 ') 

Limiting cases of the amplitude are shown to be a modified WKB approximation and the Born approxi­
mation. A particular application to the Yukawa potential is discussed. The discussiQIl is restricted to 
attractive potentials. 

L INTRODUCTION 

The solution of equations similar to the Schro­
dinger equation by replacing the potential V(r) by 
a sequence of step functions has been the subject 
of several studies. 1 - 3 In particular, Swan has 
used this approach to develop expressions for the 
number of bound states of a potential in the Schro­
dinger equation. 3 In this paper, this assumption is 
used to develop a new approximate expression for 
the scattering amplitude for attractive spherically 
symmetric potentials. This form of the amplitude 
has the following important characteristics: The 
scattering matrix is unitary; the amplitude is an 
explicit nonlinear function of the potential; the full 
high energy limit is identical with the result 
obtained by calculating the Jost function. 4 

II. DEVELOPMENT OF SCATTERING 
AMPLITUDE 

We consider the radial Schrodinger equation with 
a spherically symmetric potential V(r) which is 
smooth enough to be written 

N 

V(r) =.E E(rn, r)V(rn), (1) 
n=l 

(2) 

and V(r n) is the value of the potential in the nth 
subinterval. "Smooth enough" is taken to mean 
that the potential has at least first derivatives. 
Initially we consider an interval a s r s b to be 
divided into N equal subintervals 6r. Eventually 
we allow a to approach zero and b to approach 
infinity while the size of the subinterval 
approaches zero. Thus, we solve the differential 
equation 

dZV; _ l(l + 1)1/1 + 2m(E - V(r »1/1 = 0 (3) 
dr2 r2 112 n 

in each subinterval and then match 1/1 and its first 
derivative at the boundaries of each interval. The 
solutions to Eq. (3) are 

1/In = Az(n)rh[D(knr) + Bz(n)rhp)(knr), (4) 

where hf1) and hf2) are spherical Hankel functions 
of the first and second kinds, respectively. These 
particular forms for the two linearly independent 
solutions of Eq. (4) are chosen for the boundary 
conditions of a scattering problem since they are 
asymptotically spherical waves. In addition, the 
wave number kn is given by 

Satisfying the boundary conditions at r n relates 
Az(n) and Bz(n) to Az(n + 1) and Bz(n + 1). Con­
tinuing at each boundary eventually leads to an 
expreSSion for Az(a) and Bz(a) in terms of Az(b) 
and BI (b). This is 

(5) 

( Az(a») = ~ uZ(n)(Az(b») = Ml(a, b) (Az (b»), 
Bz (a) n=1 Bz(b) Bz{b) 

where Ul(n) is a matrix whose elements are 

Uh(n) = r~6-1(n) {hf1) (kn+1rn)hf2)/(knrn) 

kn+ 1 (2) ( ) (1)'( )~ - ~hl knrn h[ kn+1rn ~ , 

Ub(n) = r~6 -l(n) 1h[2)/(knr n)h[2) (kn+1rn) 

_ k~:l h[2)(knrn)h[2)/(kn+lrn)f, 

Uh = r~6-1(n)~kk:1 hfl)(knr,)hfl)/(kn +1rn) 

- hfl)/(knrn)h[1)(kn+1rn)f, 

Ub = r~6-1(n)~kk+1 hf1)(knrn)h[2)/(kn+1rn) 

- hfl)I(kn r n>~f2)(kn +1 r n)f ' 

and 

6(n) = r~[hP)(knrn)hp)l(knrn) 

- h (1)/(k r )h (2)(k r )] - - 2i/k2 
Inn Inn - n· 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

The prime denotes differentiation with respect to 
kr. Now, as the number of intervals N is in­
creased, it is possible to expand these matrix 
elements in powers of 6r. The details of this 
expansion are given in the Appendix. The products 
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in Eq. (6) can then be evaluated to lowest order, 
and the matrix elements of the product are, in the 
limit as Lr approaches zero, 

Mb = (Mb)* 

= 1--
2
i rb [rff2dk h(1)'M2) _ k2r 3dk (h(1)'M2)' 

'a dr (I dr t I 

- h·P)h[l)") ] dr, (12) 

Mb = (Mh)* 

=£ fb [_ kr2dk h (2 )h C2)' + k2r3 dk {(h (2)') 2 
2 a dr I I dr r 

- hpj hP)"} ]dr, (13) 

where the argument of the spherical Hankel func­
tions is the variable wave number 

[
2m Jl/2 kr = 1i2(E - V) r. (14) 

In many physical problems, we are interested in 
extending the range from 0 to <Xl. Equations (12)­
(13) provide approximate relations between the 
coefficients AI(O) and B 1(0) and Al (<Xl ) and BI(<Xl) if 
the potential vanishes at infinity faster than l/r, 
and if it is cut off at some minimum radius E so 
that V(r) vanishes for r < E. This last condition 
may be relaxed if (dV /dr)/V is finite at r = O. 

Since the wavefunction is to be regular at the 
origin, we require 

and, from this condition, we obtain 

Ml2 - MI 
A (00) == 2 12B (00). 

I M'11 - MI I 
21 

(15) 

(16) 

The scattering matrix can now be calculated using 
the result of Eq. (16). The wavefunction in the 
asymptotic region is 

(2l + 1) 
1/1 = 6il PI (cose) 

I 2 

X Bl (00) 22 12 rhfll + rh[2) 
[
MI - MI J 
Mh-Mh 

= BL]i L Pz (cose) - 1 rhf1) 
(2l + 1) [Mb - Mb ] 

I 2 Mh -Mh 
(17) 

where B is a normalization constant and 1/1 in is 
the incident plane wave. We have equated BZ<OO) to 
B for alIl. 

Thus, if the scattered wave is written 

./, ~f( )(2l+1)p( e) ikY 
Of'seatt = L.J I E 2 'k I cos e , 

1=0 Z 
(18) 

then 
Mb - Mb - Mb + Mh 

h~)= . 
Mh-Mh 

(19) 

Now it is a simple matter to demonstrate the 
unitary property of the S matrix, using Eqs. (12), 
(13), and the definition5 

Mb - ,V1b 
SI(E) = 1 + fz{E) = I I . (20) 

Mll - M21 

Then we have 
S* (Mb)* - (Mb)* 

I (E) == (Mh)* - (Mh)* 

Turning our attention to the partial wave amplitude 
fl(E), we find 

- 2iNz(E) 
fl(E) = 1 + iNI{E) + RI{E)' (22) 

where 

NI(E) = "m2 j''''' drkr3dVUI+1(kr)jl_1(kr) - H(kr)], 
fl € dr 

(23) 

Rz(E) = =-!!!:. fIX) r2dr dV U,(kr)ni(kr) 
n2 € dr 

+ kr{jz(kr)nl'(kr) - ji(kr)n i(kr)}], (24) 

and j I and n l are spherical Bessel and Neumann 
functions, respectively. We refer to Eqs. (22)-(24) 
as the integral approximation to the scattering 
amplitude. 

With the expressions for NI and R z given in Eqs. 
(23)-(24), it is a simple matter to determine their 
behavior near r = O. Specifically, if r2 V is finite 
at the origin, we see by inspection of Eq. (23) that 
the integral for N ~ exists (keeping in mind the 
requirement that IV I < l/r as r --'> 00). The be­
havior of R I is determined by the leading term in 
the expansion of the spherical Bessel functions in 
Eq. (24) and is 

R z = (l + 1/2)ln[(E - V(O»/E]. (25) 

Hence, R z is finite if V(O) is finite. This is a 
strong restriction except at high energies. Thus, 
we have assumed, for finite E, that VCr) has the 
inner cutoff mentioned earlier. 

Although N z and R, are too complex to evaluate 
analytically even for simple potentials, a numeri­
cal evaluation seems straightforward and is being 
undertaken. Even without explicit evaluation, one 
important characteristic of the approximation, in 
addition to its unitarity, is that it contains known, 
nonlinear functions of the potential strength. In 
this respect, it is similar to the eikonal and WKB 
approximations, and its relation to a modification 
of the latter will be given below. However, Eqs. 
(22)- (24) also lead to the Born approximation in a 
high energy limit, so that their validity is not re­
stricted to a semiclassical region of interest. We 
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consider this in somewhat more detail in the next 
section. 

Before considering the limiting forms of Eqs. 
(22) - (24), it is useful to determine the condition of 
validity. This condition may be obtained by form­
ing the solutions 1/Iz(r) as given in Eq. (4) with Az(r) 
and Bz(r) evaluated by calculating the matrix 
M(r, co). Inserting this solution in Eq. (4) gives the 
condition (see Appendix for detail) 

. Idk I r dr/k «1. (26) 

This may be satisfied if the first derivative of the 
potential is small or if k is large. It is interesting 
to note that the assumption that V is small com­
pared with E is unnecessary. 

m. HIGH ENERGY LIMITS 

There are two distinct limits of the integral 
approximation-one associated with having k large 
compared to r(dk/dr),and the other being found for 
E large compared to V. The first, which resembles 
the WKB apprOXimation, is best seen by examining 
the wavefunctions for large kr, i.e., 

iZ+1krAz(r)hf!)(kr) 

f';; [Mil (r, a)Az(a) + Mb(r, a)Bz(a)]e ikr , (27) 

where a is some arbitrary radius at which the 
wavefunction is assumed to be known. The first 
term on the right of Eq. (27) represents the con­
tribution to the outgoing wave at r from the out­
going wave at a-it is a measure of transmission­
while the second term, arising from the incoming 
wave at a, describes the contribution of reflection 
to the outgoing wave. If we ignore the latter, i.e., 
equate Bz(a) to zero, an approximation similar to 
the WKB approximation results. If we replace the 
spherical Hankel functions by their asymptotic 
forms, we have 

krAz(r)kf!)(kr) 

f';; i-Z-1Az(a)eikr [1 + .lila (-i~+ 2r'!!:!!"')drJ 
2 r kdr' dr' 

= i-Z-1Az(a)eikr[1 + !lnk(a)/k(r) 

- if kdr' + iak(a) - irk(r)] 

f';; i-Z-1Az(a)eikr exp [tlnk(a)/k(r) 

+ it kdr' + iak(a) - :rk(r)] 

expij kdr' 
= A (a)i-Z-1eik(a)a a (28) 

Z [k(r)/k(a)]1/2' 

where an integration by parts was performed on 
the second integrand. The entire expression in 

brackets has the form (1 + a) and has been re­
placed by exp(}l. This will be valid for small (}I. 

Similar results can be obtained for krBz(r)h[2>(kr). 

This expression for the wavefunction has the 
appearance of a one-dimensional WKB approxi­
mation. It differs from the usual WKB approxi­
mation to the radial wavefunction, since the func­
tion k(r) does not contain the angular momentum 
term - l(l + 1)r-2 • It is possible to obtain the 
complete WKB approximation from the integral 
approximation to the radial wave equation by 
including from the outset the term - l (l + l)r-2 

ink(r). In this case, the solutions in each interval 
rn :::; r:::; rn+l are chosen to be exp ± iK'r, with 

K' = [2m(E _ V(r» _ l(l + 1)J l/~ (29) 
n2 r2 

At this point, we should comment that the WKB 
approximation and the modified WKB approxi­
mation represented by Eq. (28) are identical in one 
dimension (i.e., Cartesian coordinates). 

We now examine the second high energy limit of 
the integral approximation. This may be obtained 
from Eqs. (23)-(24) by performing integrations by 
parts for Nz and R z and then equating V to zero in 
all k. The expressions are then 

2mK 1,"" . Nz(K) = -- r2drV(r}]~(Kr), n2 0 
(30) 

where iz and nz are spherical Bessel and Neumann 
functions respectively, and 

(32) 

Using these expressions in Eq. (22), a form for the 
partial wave amplitude is obtained which is identi­
cal to that obtained by calculating the high energy 
limit of the Jost function and, from that, the scat­
tering amplitude. If the den9minator in Eq. (22) is 
replaced by unity and Eq. (30) is used to calculate 
the numerator ,!z(E) is identical with the Born 
approximation. 

The expression Eq. (31) for Rz(K) is evidently less 
singular than the original form given in Eq. (24). 
The reason for this is that the leading term of Eq. 
(24) is proportional to In(1 - V(O)/E), and vanishes 
in the high energy approximation. In Eq. (31), there 
is a term arising from the integration by parts 
which has been attributed to the leading term of 
the integral and has been omitted. The basis for 
this identification is that all succeeding terms 
beyond the first in Eq. (24) and all terms in Eq. 
(31) contain physical parameters, while the leading 
term in Eq. (24) and the integrated term omitted 
from Eq. (31) have purely numerical coefficients. 
The expression in Eq. (31) is well defined pro­
vided Vr2 is bounded at the origin. 
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IV. SCATTERING FROM AYUKAWA 
POTENTIAL 

As a specific example of potential scattering, con­
sider an attractive Yukawa potential 

\ (- ve-,..r)/r, r > €, 
V= 10, r < €. 

(33) 

The full integral approximation must be evaluated 
numerically but tl)ere are some interesting 
features exhibited by the high energy limit. From 
Eqs. (30)-(31), the s-wave amplitude is 

As mentioned earlier, the numerator is identical 
with the Born approximation, but the denominator 
can be significant, as it can be zero. In particular, 
if this amplitude is used to calculate low energy, 
singlet proton-neutron scattering, experiment 
requires a coupling constant v/1Ie R:i O. 14, if /J. is 
the inverse Compton wavelength of the pion. The 
strength obtained by a scattering length calculation 
is v/lle ~ 0.08, while the Born approximation 
give s VB /11 C R:i 11. The origin of the large dis­
crepancy between the Born approximation and the 
high energy limit of the integral approximation 
arises because, for v/lie R:i O. 14, the denominator 
of Eq. (34) has a zero on the imaginary K axis at 
about - 0.03 /1. This enhances the low energy 
amplitude and consequently reduces the coupling 
constant necessary to match a given value of the 
cross section compared with the Born approxi­
mation. 

V. CONCLUSIONS 

The principal results of this work are contained 
in Eqs. (22)-(24), where the integral approxi­
mation to the scattering amplitude is given. If the 
condition for the validity of this approximation 
[Eq. (26)] is poorly satisfied, a second interation 
can be used to calculate the amplitude. The steps 
in the iterative process are straightforward: From 
Eqs. (12)-(13), the matrix Ml is calculated for 
arbitrary r and used to form the first iterations 
for the wavefunctions. These replace the spherical 
Hankel functions in the final expressions for the 
scattering amplitude, Eqs. (22)-(28). 

The significant characteristics of any order 
iteration are: The amplitude satisfies unitarity; 
each order contains explicit, nonlinear functions 
of the potential strength; and the validity of the 
approximation is not dependent upon the ratio of 
potential strength to energy, but is instead deter­
mined by the value of r(dk/dr)/k. 
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APPENDIX 

In this section we include some mathematlcal 
details of the expansion of the matrix product 
appearing in Eq. (6). The expansion and sub­
sequent approximation of this product leads to the 
expressions for the matrix elements Mij given in 
Eqs. (12) and (13). Also, details of the determina­
tion of the limiting condition found in Eq. (26) are 
included here. 

From inspection of the matrix elements in Eqs. 
(7)-(10), it is evident that if V is a smooth 
potential kn +1> then all terms containing it can be 
expanded about rn' Thus, the steps leading from 
Eqs. (7)-(11) to Eqs. (12)-(13) are the following: 
Expand kn+l about rn keeping terms of order zero 
and unity in the interval 6.r, then expand all Bessel 
functions about the argument kn r" , retaining terms 
of order zero and unity in 6.r. The result for the 
matrix U(n) will be a sum of matrices with dia­
gonal elements of order zero and unity in 6,r and 
off-diagonal elements of order unity in this 
quantity. The product of the matrices U(n) will be 
the unit matrix plus a matrix whose elements are 
a sum of terms of order 6.r. This last matrix 
will, in the limit as 6.r approaches zero, have 
elements which are the integrals appearing in Eqs. 
(12)-(13). 

Specifically, we have 

(A1) 

where dk/dr is to be evaluated at rn' With this 
result the Hankel functions can be expanded, e.g., 

hfll(kn+ l r n) R:i hf1l[kn r n + 6.r(dk/dr)n r n] 

R:i hill (knrn) + 6.r(dk/dr)nrnhfl)'(knrn)' (A2) 

Performing the expansions as indicated for each 
term in Ul1 and using Eq. (11), we obtain 

U11 (n) = 1 + r~6.-l(n){hil)'(knrn)hP)'(knrn)(dk/dr)n 

x r n6.r-(dk/dr)n(6.r/kn)hp)(kn r n)hfl)'(lln r n) 

- (dk/dr)n r nh?) (knr n)h[1)11 (knr n)6.r} 

= 1 + W ll (n)6.r. (A3) 

The assumption throughout is that W 11 (n)6.r is 
small compared to unity. For scattering from 
attractive potentials, this assumption is satisfied 
subject to the limitations on the potential dis­
cussed following Eqs. (14) and (32). Repulsive 
potentials and bound states (E < 0) must be dis­
cussed separately and will be considered in a sub­
sequent publication. 
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Repeating the expansion outlined above for each of 
the matrix elements displayed in Eqs. (8)- (10) 
gives an approximate expression for U(n), 

U(n) "" 1 + W(n)6r, (A4) 

where 1 represents the unit matrix and W(n)Lr is 
a matrix whose elements are all small. Finally, 
the product of matrices in Eq. (6) is approximated 
by 

N N N 
f1 U(n) "" f1 (1 + W(n)Lr) "" 1 + ~ W(n)Lr, (A5) 

n' 0 ncO n=O 

where, as previously, products of terms containing 
6r have been neglected. As N becomes large and 
r approaches zero, the sums in the matrix ele­
ments approximate integrals and the expressions 
given in Eqs. (12)-(13) are obtained. 

We now turn to a discussion of the limits of 
validity of the integral approximation as expressed 
in Eq. (26). The method of obtaining this result is 
straightforward. The solution of the SchrOdinger 
equation in the integral approximation is, from Eq. 
(4), 

R = r-11/1 = Az(r)h[l)(kr) + Bz(r)h[2)(kr) = Au + Bv, 
(A6) 

where the index l has been dropped and the argu­
ments suppressed in the last step. R is the radial 
wavefunction approximant. From Eq. (6) and Eqs. 
(12)-(13), A(r) and B(r) can be written 

A(r) = Mll(r,b)A(b) + M 12 (r,b)B(b), (A7) 

B(r) = M 21 (r,b)A(b) + M 22 (r,b)B(b), (A8) 

where b is some arbitrary point at which R is 
assumed to be known. A(b) and B(b) are coeffici­
ents determined by the boundary conditions on R 
and may be considered arbitrary until these con­
ditions are stated explicitly. 

The limits of validity are obtained by inserting the 
solution for R given in Eq. (A6) in the radial 
Schrodinger equation. Since this is an approxi­
mation, there will be a remainder term. The con­
dition that the remainder be small will determine 
the limits of validity of the approximation. Thus, 
we have 

[d2/dr2 + (2/r)d/dr + k2 - l(l + 1)/r2]R 

== [d2/dr2 + (2/r)d/dr + k2 - l(l + 1)/r2] 

x [A(r)u + B(r)v] "" O. (A9) 

Using Eqs. (A7) and (A8) and the expressions in 
Eqs. (12) and (13) for Mll and M21 and perform­
ing the operations indicated in Eq. (A9), we obtain 

A(b}{M 11 d2u/dr2 + 2 (du/dr)dM 11/dr + ud2 

x M 11/dr2 + (2/r)Mlldu/dr + (2u/r)dM11/dr 

+ [k2 - l(l + l)r-2] Mllu + M 21d2v/dr2 

+ 2(dM21 /dr)dv/dr + vd2M 21 /dr2 + (2/r) 

x M21dv/dr + (2v/r)dM21 /dr + [k2 - l(l + 1) 

x r-2 ]vM21} "" O. (AI0) 

The coefficient of B(b) is the complex conjugate of 
that of A(b). Since A and B are considered arbi­
trary, each coefficient must vanish separately. 

The sense of the approximation is that the devia­
tions of R from the functions u and v is to be 
small. Consequently, in the terms in Eq. (AI0) 
which do not contain derivatives of Mll or M2l> 
we write 

Mll "" 1, (All) 

M21 "" O. (AI2) 

With this simplification the condition for the 
validity of the approximation is 

k-2[(4dk/dr + rd2k/dr2)u' + {2krdk/dr 

+ r 2(dk/dr)2}u" + 2(du/dr)dMll /dr 

+ ud2M 11 /dr2 + (2dv/dr)dM21 /dr 

+ vd2M 21 /dr2 + (2u/r)dMll /dr 

+ (2v/r)dM21/dr] "" O. (AI3) 

The factor k-2 has been included to make the co­
efficient dimensionless. In Eq. (AI3) the terms 
which do not contain M 11' M21 or their derivatives 
appear because u satisfies Bessel's equation of 
order l in the variable kr. Performing the differ­
entiations and using the result that the Wronskian 
of u and v is 

uv' - u;v == - 2i/(kr)2, (AI4) 

we obtain (recalling that prime denotes differ­
entiation with respect to kr) 

u"(rk-1dk/dr)2 + k-2(dk/dr)u' "" O. (AI5) 

Equation (AI5) is the condition for the validity of 
the approximation. 

Finally, Eq. (AI5) may be evaluated in the limit of 
large kr, where u" approaches - u and u' approa­
ches iu. Thus, to lowest order in l/kr, Eq. (AI5) 
reduces to 

irk-1dk/drl« 1. (AI6) 

The condition expressed in Eq. (A16) can be satis­
fied by potentials with small gradients or by 
potentials which are small compared with the in­
cident kinetic energy. In the former circumstance 
this is similar to the condition for the validity of 
the WKB approximation, while in the latter it is 
analogous to the requirement for the validity of 
the Born approximation. 
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By describing ulm) as the symmetry group of a curved phase space, namely, by describing ulm) as the 
group of holonomy of a Hamiltonian space endowed with a Riemannian metric, it is Shown that the Lie 
algebra of such a group is prior to any explicit Hamiltonian assumption. 

INTRODUCTION 

The purpoS€ of this paper is to discuss a treatment 
of the unitary group U(m) as the symmetry group 
of phase space in the absence of any Hamiltonian 
information. This is done by obtaining the group 
U(m) as a symmetry group of a curved phase 
space, i.e., the group of holonomy of phase space, 
which implies that the Hamiltonian space is 
characterized by a Riemann connection. This is in 
analogy to the holonomy group 0(3,1) of the four­
dimensional space-time of general relativity. 

In this context, we shall start in Sec. 1 with the 
usual "flat-space" description of the group U(m) 
and show that the description of this group as the 
symmetry group of a 2m -dimensional flat Hamil­
tonian space is possible, provided we consider 
those canonical transformations which preserve 
the angle between the dynamical variables, i.e., 
provided the Hamiltonian space is endowed with 
an orthogonal metric, andrfjrovided we also re­
strict the Hamiltonian (or the generating function) 
so as to be at most quadratic in the dynamical 
variables. 

In Sec. 2, we shall show that another point of view 
is possible which does not depend on the ad hoc 
introduction of the quadratic Hamiltonian for its 
Lie algebra. This is done by deriving the group 
U(m) as the symmetry group of a 2m -dimensional 
curved phase space, i.e., the group of holonomy of 
a Hamiltonian space endowed with a Riemann 
metric. In this case the Lie algebra of the group 
is seen to arise quite naturally from the a-do­
main of a set of m x m curvature matrices Rexe = 
R<t.BiJdx i 1\ dx} [Of the linear Hermitian tangent 
space of the curved phase space M 2m (xi)], just as 
the Lie algebra of the flat phase space is spanned 
by the a-dcma~? of the initially assumed Hamil­
~onian ~atrix H<t.B of the quadratic Hamiltonian H = 
H<t.Bz<t.z~ (z<t. = x~ + iP<t.) of the Hermitian flat phase 
space M

2m
(z<t., ZCi). 

1. GEOMETRY OF PHASE SPACE-U(m) AS THE 
SYMMETRY GROUP OF FLAT PHASE SPACE 

With a view to describing the internal symmetry 
group U(m) as a symmetry group of a 2m -dimen­
sional classical phase space M 2 m' we shall first 
briefly describe the geometry of the space and in 
particular its finite group of canonical transfor­
mations, i.e., the symplectic group SP(m) as U(m) 
happens to be a subgroup of this group. 

Following Lee,! we shall begin with a 2m-dimen­
sional manifold M2m covered with a system of co­
ordinate neighborhoods xi(i,j, k, ••• = 1, ... ,2m), 
and we shall introduce a ij as a skew symmetric 
nonsingular covariant tensor in M2m , whose com­
ponents are to be analytic function of the x's. In 
terms of exterior calculus, there is associated 
with a ii the exterior differential form of degree 
two, i.e., 

Q = -.~a .. dx i /\ dx i , 
- 'J 

which is called the fundamental form of M2m• 

Application of exterior derivative to n yields 

dQ = ~KiJkdxi /\ dxi /\ dX", 

where 

aa·· aa." aa t · K .. " = _'1 + _J_ + __ , 
'J 2Xk axi dxi 

(1. 1) 

(1. 3) 

is called the "curvature tensor," although it has 
quite a different structure from the Riemann cur­
vature tensor which arises from the Riemann 
metriC, i.e., the symmetric metric Gij" M 2m is 
flat when K ijk = 0, i.e., when dQ = 0, so that by the 
converse of Poincarll's lemma, Q itself is the ex­
terior derivative of a Pfaffian form 11 == 11;dx;, such 
that 

(1.4) 
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By describing ulm) as the symmetry group of a curved phase space, namely, by describing ulm) as the 
group of holonomy of a Hamiltonian space endowed with a Riemannian metric, it is Shown that the Lie 
algebra of such a group is prior to any explicit Hamiltonian assumption. 

INTRODUCTION 

The purpoS€ of this paper is to discuss a treatment 
of the unitary group U(m) as the symmetry group 
of phase space in the absence of any Hamiltonian 
information. This is done by obtaining the group 
U(m) as a symmetry group of a curved phase 
space, i.e., the group of holonomy of phase space, 
which implies that the Hamiltonian space is 
characterized by a Riemann connection. This is in 
analogy to the holonomy group 0(3,1) of the four­
dimensional space-time of general relativity. 

In this context, we shall start in Sec. 1 with the 
usual "flat-space" description of the group U(m) 
and show that the description of this group as the 
symmetry group of a 2m -dimensional flat Hamil­
tonian space is possible, provided we consider 
those canonical transformations which preserve 
the angle between the dynamical variables, i.e., 
provided the Hamiltonian space is endowed with 
an orthogonal metric, andrfjrovided we also re­
strict the Hamiltonian (or the generating function) 
so as to be at most quadratic in the dynamical 
variables. 

In Sec. 2, we shall show that another point of view 
is possible which does not depend on the ad hoc 
introduction of the quadratic Hamiltonian for its 
Lie algebra. This is done by deriving the group 
U(m) as the symmetry group of a 2m -dimensional 
curved phase space, i.e., the group of holonomy of 
a Hamiltonian space endowed with a Riemann 
metric. In this case the Lie algebra of the group 
is seen to arise quite naturally from the a-do­
main of a set of m x m curvature matrices Rexe = 
R<t.BiJdx i 1\ dx} [Of the linear Hermitian tangent 
space of the curved phase space M 2m (xi)], just as 
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by the a-dcma~? of the initially assumed Hamil­
~onian ~atrix H<t.B of the quadratic Hamiltonian H = 
H<t.Bz<t.z~ (z<t. = x~ + iP<t.) of the Hermitian flat phase 
space M
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sional classical phase space M 2 m' we shall first 
briefly describe the geometry of the space and in 
particular its finite group of canonical transfor­
mations, i.e., the symplectic group SP(m) as U(m) 
happens to be a subgroup of this group. 

Following Lee,! we shall begin with a 2m-dimen­
sional manifold M2m covered with a system of co­
ordinate neighborhoods xi(i,j, k, ••• = 1, ... ,2m), 
and we shall introduce a ij as a skew symmetric 
nonsingular covariant tensor in M2m , whose com­
ponents are to be analytic function of the x's. In 
terms of exterior calculus, there is associated 
with a ii the exterior differential form of degree 
two, i.e., 

Q = -.~a .. dx i /\ dx i , 
- 'J 

which is called the fundamental form of M2m• 

Application of exterior derivative to n yields 

dQ = ~KiJkdxi /\ dxi /\ dX", 

where 

aa·· aa." aa t · K .. " = _'1 + _J_ + __ , 
'J 2Xk axi dxi 

(1. 1) 

(1. 3) 

is called the "curvature tensor," although it has 
quite a different structure from the Riemann cur­
vature tensor which arises from the Riemann 
metriC, i.e., the symmetric metric Gij" M 2m is 
flat when K ijk = 0, i.e., when dQ = 0, so that by the 
converse of Poincarll's lemma, Q itself is the ex­
terior derivative of a Pfaffian form 11 == 11;dx;, such 
that 

(1.4) 
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where a ii is given by 

a .. =-',-_J. 
(

C11' a11') 
') axi axi 

(1. 5) 

By a change of coordinates, this Pfaffian form can 
be put in its well-known canonical form, i.e., on 
setting 

Xi = (X~) 
X CX, ' 

(1. 6) 
O! = m + (11, 2m = 6, 

we find that in the new coordinate system the fun­
damental tensor assumes the symplectic form 

_ (0 0 (11(3)_ 
au - -oa{3 0 - - aj" 

where 
a" = a ii , 1) 

(1.7) 

A locally flat M 2m is in particular a Hamiltonian 
manifold; for, if we consider a system of curves in 
M2 m defined by a system of ordinary differential 
equations of the form 

dXi .. aH 0 
([t - a!) ax} = , (1. 8) 

where H is a given function of Xi and t. This last 
equation, on account of (1. 7), may be written in the 
form 

(1. 9) 

which gives the pair of the well-known Hamilton­
ian equations with x a and Pa as canonically conju­
gate dynamical variables. 

Consider a dynamical system with Hamiltonian H. 
In time Ot, we have 

oPa = - ot(aH/ax a), 
(1. 10) 

so that the motion from the position at time t = 0 
to that at time 0 t is an infinitesimal canonical 
transformation, such that 

x'a = x a + 6t(aH/apa), P~ = Pa - ot(aH/ax a), 
(1. 11) 

where xa,Pa stand for the coordinates and momenta 
at time t = 0, while primed quantities refer to time 
of. The most general infinitesimal eanonical 
transformation is, however, given by 

x'a = x a + l5E(aF/apa), P~ = Pa - oE(aF/ax a), 
(1. 12) 

where OE is an infinitesimal parameter and F is a 
function of (xa,Pa). 

It can be shown that the canonical transformations 
form an infinite Lie group if F is a one-valued 
analytic function2 of (xa,Pa). 

The change in a function e(xa,Pa) as a result of an 

infinitesimal canonical transformation is then 
given by 

oe = OE{e, Fl, (1. 13) 

where { , } is the Poisson bracket. 

An "invariance group" of a dynamical system is 
defined as any subgroup of the canonical transfor­
mations, which leave the Hamiltonian invariant; 
that is, transformations such that 

oH = ot{H, F} = O. (1. 14) 

In such cases, one considers only those systems 
whose Hamiltonian is time-independent. The in­
variance dynamical group is then generated by the 
one-valued constants of motion. 

Now the group of canonical transformations is, so 
to speak, the "symmetry group" of classical 
mechanics as a whole, before anyone explicit sys­
tem is considered. To describe what is meant by 
"classical mechanics" in physics, one must focus 
attention on the subalgebra of F. For example, in 
Newtonian mechanics, one is usually given one 
observable (the "energy" or "Hamiltonian") in a 
distinguished role,3 and several other observables, 
which have relatively simple commutation rela­
tions with H playing the role of the linear and 
angular momenta. Note that the observables, i.e., 
the F's (or the H's)4 that are at most quadratic in 
the x a and Pa' together, form a Lie algebra, i.e., 
those of the form 5 

(1. 15) 

where F i' F ij are constant coefficients with the 
following matrix representation 

(1. 16) 

Those with Fi = 0, however, generate the real sym­
plectic group SP(2m). They will also generate its 
unitary subgroup U(m) provided the angle between 
the dynamical variables is preserved. 

Let us first consider the symplectic group. H we 
substitute F = F ijx i xi in the infinitesimal canoni­
cal transformation (1.12), whiCh may also be ex­
pressed in terms of a single coordinate xi, i.e., as 

X'i = Xi + ox i 

= xi + lj€aii(aF/axi), 
we get 

X'i = (O} + EaikF kj)xi 

= (0) + EF)xi 

= y~xj, 

(1. 17) 

(1. 18) 

where for notational reasons we have replaced OE 
by E and where Y) = (0) + €F}) is a 2m x 2m con­
stant matrix with 
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(1. 19) on account of the relations (1. 22). Hence if we 
introduce a constant matrix 

Consequently, if there exists a linear motion given 
by dx'i :::: yjdxi , such that the bilinear form n :::: 
aijdx l /I dxJ is left invariant (as required by the 
group of canonical transformations), we must have 

1 (if - if) s::::-
-/2 1 I' 

(1. 30) 

we can easily verify that the following relations 
(1. 20) hold: 

where yt denotes the transpose of the matrix I' :::: 
(1'), 

If we write 

then (1.20) implies 

A:::: (1';), c :::: (yl), 

B :::: (y~), D :::: (yl), 

AtC - CtA:::: 0, 

DtB - BtD = 0, 

AtD-CtB ::::f, 

The following identity follows easily: 

-1 :::: (A B)-l :::: (Dt - Bt). 
I' C D _ Ct At 

(1. 21) 

(1. 22) 

(1. 23) 

The above matrices define the so-called symplec­
tic group. (See for example Weyl6). 

If further 'Y is unitary, 

or 

-1 (A + iB 0) S yS:::: • 
o A-iB 

(1. 31) 

The last equation shows that the m x m matrix 
(A + iE) is complex unitary, i.e., 

U:::: A + iB 

satisfies [by (1.29)] 

(U*)tU:::: UtU :::: I. 

(1. 32) 

(1.33) 

It must be noted that the reduction of the group of 
canonical transformations SP(2m) to its unitary 
subgroup U(m), presupposes the introduction of an 
orthogonal metriC, i.e., a constant symmetric 
metric into the Hamiltonian space. For if 

O .. ::::(li CXB 0 ) 
ZJ 0 Ii 

cxB 

(1. 34) 

is the metric tensor which preserves the angle be­
tween the dynamical variables, then under an arbi­
trary coordinate transformation x' i :::: f(x) , not only 
the volume element but also the line element, i.e., 
both 

(1. 24) n :::: aijdx i /I dx} 
(1. 35) 

one finds, from (1. 24), 

A::::D, B::::-C. (1. 25) 

Hence, of course, we also verify that the follOwing 
relations: 

or 

Fi. = (Mg - Ng), 
J N't M't 

will hold. 

(1. 26) 

\
MCX - MB 

where B - cx • (1. 27) 
) N't :::: - N~ 

The general form of the real unitary matrix is 
therefore of the form 

which satisfies 

AtB -BtA:::: 0, 

AtA + BtB :::: I, 

(1.28) 

(1. 29) 

and ds 2 :::: 0 iix idxi 

remain invariant; fron-. this fact, we deduce that 

axk axl 
a:

J
. :::: akZ----

• ax'i ax'j' 

axk axl 
0ij:::: 0 "1--,. --,. . (1. 36) 

ax t ax J 

It is easily verified that the transformations 

X'i :::: y~xi, y~yik :::: o~" 

.;~ :::: Y}, (ayVax k) :::: 0, 

with I' given by the matrix 

1':::: (; -~) 
satisfying 

AtB -BtA:::: 0, 

AtA + BtB :::1, 

can be considered as the most general transforma­
tions satisfying Eq. (1.36). Needless to say, the 
subgroup of the general linear group GL(2m,R) 
which leaves invariant aij is, by definition, the sym­
plectic group SP(2m), whilst that leaving invariant 
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o ij is, by definition, the orthogonal group O(2m). 
But the subgroup of the general linear group which 
leaves invariant both a ij and 0ij is the intersection 
of the two groups SP(2m) and O(2m), [i.e., U(m) = 
SP(2m) n O(2m)] and is known as the real repre­
sentation of the unitary group. However, since for 
particle physics it is the complex representation of 
the group U(m) which plays a fundamental role, we 
shall proceed to discuss the complex representa­
tion of the group. 

Such a representation is obtained by setting 

zet = xet + iPet' 

* zet = x et - iPet , 
(1. 37) 

so that the real phase space ¥ 2 m is now equivalent 
to the complex phase space M 2 m' In terms of the 
new variables, the equations of motion equivalent 
to (1. 8) assume the complex form 

dz i ~ .. aF 0 --aIJ -.= , 
dE aZJ 

where 
dz et aF 

= - io etB -* 
dE az B 

. aF 
=-1-, 

az~ 

* dz et = idetB aF 
dE az B 

. aF =1-, 
aZ et 

is their explicit representation, since 

~ .. (0 -iO etB) a tJ -
- io eta 0 ' 

(1.38) 

(1. 39a) 

(1. 39b) 

(1. 40) 

In Eq. (1. 39), the generating function F has to be 
regarded as a function of zet, zi'i satisfying the 
reality condition 

* * * * * F(zet, zet) = [F(zet, zet)] = F (zet, zet). (1. 41) 

For the specific case of the quadratic F under 
conside*ration, namely, F = F i} x i xi, the function 
F(zet, zet) assumes the form 

~ * 
F = F etBzetzB, (1. 42) 

where 

f etB = Meta - iN etB = f; ~ (1. 43) 

is a set of m 2 linearly independent Hermitian 
matrices. When the above speCial function (1. 42) 
is inserted into the equations of motion (1. 39a), we 
obtain 

(1. 44) 

which is the equation of motion for m coupled 
harmonic oscillators. 

For an infinitesimal transformation, we have 

z'et=zet+ ozet 

= zet- iE(a)~~)Bza 

= (og- iE(a)ffc~)B)zB 

= UgzB, (1. 45) 

which defines the complex representation of the 
real unitary transformations, Le., the transforma­
tions defined by X'i = y}Xi with F(a)(g-indices 
suppressed) as a set of m 2 Hermitian matrices 
spanning the Lie algebra of the complex unitary 
group as they satisfy the following commutation 
relations 

(1. 46) 

2. THE GROUP U(m) AS THE SYMMETRY GROUP 
OF THE CURVED PHASE SPACE 

We shall now replace the orthogonal metric of the 
phase space M 2 m by a Riemannian metric and thus 
show that the Lie algebra of the group U(m) is no 
longer dependent on an ad hoc stipulation of the 
quadratic generating function. For in our case, 
the Lie algebra of the group U(m) (which is the 
group of holonomy of M 2 m is spanned by the Ci a 
domain of the anti-Hermitian curvature tensor 
Rg ii of the tangent-bundle of the base manifold 
M 2 m. The group U(m) will thus arise as the sym­
metry group of the curved phase space . 

We thus begin with a curved phase manifold M 2m, 

namely, a Hamiltonian manifold endowed with a 
Riemannian metric given by the square of the line 
element 

(2.1) 

The Riemannian metric gives rise to the Christof­
fel connection 

(2.2) 

which we shall assume to be nonintegrable, i.e., 
nonflat. If we denote by v k the operation of the 
covariant derivative of the metric a ij of M 2 m with 
respect to the symmetric connection rjk' we have 

aa .. 
vkaii = ax~ - q,plj - qkali (2.3) 

from which 

(2.4) 

where once again 

ca.· aa· k aak· 
K .. k = --!1. + .::..::.1.! + --' = O. 

'J axk ax i cxi 
(2.5) 
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A phase manifold with the above metrical proper­
ties is known as an almost Kahlerian manifold. 7 

The nonintegrability of the Riemann connection of 
M2m will give rise to the Riemann curvature ten­
sor 

which will, however, prevent us from obtaining a 
group of unitary transformations on such a space 
since this would require a coordinate system in 
which G ii = ° ij everywhere on a finite domain and 
hence R Jkl = O. To remedy this situation, we in­
troduce at each point P of M 2 m a "tetrad" of 2m 
independent vectors 

and their duals 

where the duality is defined by either of the equiva­
lent relations: 

with 

e1eJ,. = O{, 

A,B,C, 

eie~ = 0, 
IL ' 
e!e~ =o~, 
IL' .. 

e1e1 = o~, 

= 1, ••. ,2m, 

as their equivalent representation. 

(2.7) 

(2.8) 

The 2m independent vectors et, and their duals, 
then serve to define 

(2.9) 

a AB = (0 oaall) 
- °all 

(2.10) 
are the orthogonal and symplectic metric tensors 
of the linear tangent space T 2 m attached to each 
point P of M 2m• 

If we consider another "tetrad" at the same point 
P and put7 

e' ~ = y~ek, 
then 

O~B = yXr~OCD' 

(2.11) 

(2. 12) 

should have again the form (2.11) from which fact 
we conclude that the matrix y should be of the form 

(2.13) 

satisfying 

AtB-BtA=O, 

AtA + BtB =1. 
(2.14) 

This means that y is a real representation of the 
unitary transformation. 

The complex representation of the above group is 
obtained, as before, by setting 

. 1 (. .' ) v' =- e' -leL a ,f2 a el 
(2.15) 

and applying similarity transformation to y, i.e., 

S-lyS = (: ;J), (2. 16) 

where 

* * vi1J~ = O~ 
a! a' 

and 

U = A + iB 

* viva = 0 
IX i ' (2.17) 

(2.18) 

and where the latter matrix is unitary since it 
obeys the unitapity conditions 

utu =1 (2. 19) 

on account of the relations (2.14). The real unitary 
transformations (2.11) are thus equivalent to 

(2.20) 

It now remains to show that the Lie algebra of the 
above group is spanned by the g-domain of the 
curvature of R g ij of the complex tangent-bundle. 
For this purpose we must apply covariant deriva­
tion on the "tetrad" 11~. Thus, we obtain 

(2.21) 

where w~k is the connection in the tangent-bundle 
obeying the following anti-Hermiticity conditions 

* wll + ZI'~ = O. 
elk trk 

(2.22) 

The last relation is a consequence of the fact that 

- a8 AB - - --
\lkOAB = -- + WXkOCB - w~kOCA = 0, (2.23) 

axk 
where 

W~k = *. _ (Wgk 0 ) 

o W~k (2.24) 

As covariant derivatives do not commute, in 
general, we have 

(2.25) 
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where 

is the curvature tensor of the tangent-bundle 
satisfying 

* R8 + R,* = O. (2.27) 
akl 8 kl 

On the other hand, we have by Ricci's identity8 

(2.28) 

where R ~ kl is the Riemann curvature tensor of 
M 2m • 

Hence 

(2.29) 

If we now take a complex tangent vector epa = 
v7(a/ax i ) around an infinitesimal loop from a point 
P of the base space back to itself, we shall arrive 
at a new tangent vector ep'a related to the old one 
by the infinitesimal transformation 

ep'a = epa + 0 ep(( 

= epa_ ~Rgklep8dxk II dx l, 
(2.30) 

where dx k II dx l is the oriented surface enclosed 
by the loop. The above transformation is, in fact, 
a unitary transformation, i.e., 

ep'a = (0 g - ~R gk ldx k II dxl)ep 8 

= Ugep8 
(2.31) 

on account of the anti-Hermiticity of the curvature 
(2.27). The set of all such transformations con­
stitutes the holonomy group9 of M 2m> where the ~­
domain of the curvature R g k 1 spans the Lie alge­
bra of this group. Thus there exists a decomposi­
tion of the curvature 

(2.32) 

such that Fia) are the generators of the group U(m), 
obeying the bracket operation 

[~a)' ~b)] = lj~~~(bic' (2.33) 

where g-indices have been suppressed. 

Substituting the expansion of the curvature in the 
infinitesimal transformation (2.31), we obtain 

(2.34) 

1 H.C.Lee,Am.J.Math.65, 433 (1943). See also N.Mukunda 
and E. G. Sudarshan, J. Math. Phys. 9, 411 (1968). 

2 E. P. Eisenhart, Continuous Groups of Transformations (Dover, 
New York, 1961), p. 252. 

3 In Newtonian Mechanics one usually considers Hamiltonians 
H(x,P) of the form H = !p2 + Vex), where Vex) is the potential. 

where 

€(a) = ~B\aidxk II dx l (2.35) 

is the infinitesimal element of the holonomy group 
U(m). The transformation (2.34) has the form of 
the infinitesimal transformation 

(2.36) 

of the flat phase space considered earlier. Indeed, 
the infinitesimal increment (with €(a) replaced by 
O€(a», 

oep a = - iO€(a)F('7.)BepB (2.37) 

leads to the equations of motion 

(2.38) 

which are of the same form as the equations of a 
coupled harmonic oscillator 

(2. 39) 

of the flat phase space. Moreover, by introducing 
the generating function 

(2.40) 

we can see that the equations of motion (2.38) 
assume the form 

depa . of 
----l--
dE - aepJ' (2.41) 

which is the same as that of the equations of motion 

dz a . aF ----1-
dE - aZJ (2.42) 

of flat phase space. 

The above derivation shows that the generating 
function (2.40) in the curved phase space can play 
the role of the quadratic generating function of the 
flat phase space. In this approach the generating 
function is not introduced as an initial assumption 
but has been shown to be a manifestation of the 
underlying geometry. This approach has the addi­
tional merit of enabling one to give a geometric 
description of the gauge fields as fields arising 
from the Christoffel connection of the curved phase 
space. In this case the holonomy group is an inter­
nal holonomy group of the space-time as it is 
generated through a displacement of a vector 
around a loop in the event space, rather than the 
curved phase space. The details of this viewpoint 
have been expounded elsewhere. 10 

4 In general, if H is a Hamiltonian of a specific system, one 
may consider the "symmetries ~ of H in the broad sense as 
the set of F's such that {F, H} = O. Then one-parameter 
groups generated by F can be put to work to find the group 
generated by H. 
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5 T.he generating function F (or H) has the power series expan­
sl?n F = F 1 + F 2 + ... , where F k is a homogenous polyno­
mIal of degree I, in the independent variables 

and where in particular we have 
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6 H. Weyl, The Classical Groups and Ihelv in 1'0 viani Represen­
tations (princeton U. P., Princeton, N.J., 1939). 

7 K. Yano,Dijjerenlial Geometry all Complex and Almosl Com­
plex SPaces (pergamon, New York, 1965). 
E. P. Eisenhart, Am. Math. Soc. Coll. Pub. 8,12 (1927). 
J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954), 
2nd ed., p. 375. 

10 S. Heskia, Nuovo Cimento 3A, 625 (1971). 
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We demonstrate on a gas model that, if three-body events are neglected the nonequilibrium correlations 
extend over a distance proportional to the relaxation time of the one-body distribution function. For 
homogeneou~ pert~rbations this correlation length is the mean free path, the relaxation time being the 
me~n free flight hme. ~ the hydrodynami~alli.mit both the relaxation time of nonhomogeneous pertur­
batIOns and the correlation length become mflmte. This resolves the apparent contradistinction between 
the recent claim of a finite correlation length for nonequilibrium (but homogeneous) gases and the 
occurrence of correlations with an infinite range leading to divergences in the virial expansion of trans­
port coefficients which precisely describe hydrodynamical perturbations. 

1. INTRODUCTION 

The question of the range of the correlations in 
nonequilibrium gases plays a crucial role in the 
problem of the vi rial expansion of transport coef­
ficients'! In fact, the divergences occurring in 
this expansion are closely connected to the correla­
tions with an inifinite range appearing at the Boltz­
mann approximation,2 namely, when three-body 
events are not accounted for. This last point, which 
is more or less implicit in the previous reference, 2 
will be wholly confirmed here (Sec. 5). Henceforth, 
the recent discovery3 of correlation functions with 
a finite range in a modeled kinetic theory of gases 
may appear as being in contradistinction with the 
results found in the search of a virial expansion 
for the collision operator. 

In fact the nonequilibrium correlations with an 
infinite range appear when one assumes, after 
Bogoliubov,4 a "synchronization" between the one­
and two-body distribution functions, the two-body 
distribution functions being calculated by consider­
ing the one-body distribution function as stationary, 
although a nonequilibrium distribution function is 
certainly non stationary in the absence of any con­
stant external source of disturbance, as usually 
assumed. And it is not surprising that the corre­
lation with an infinite range may be removed by 
dropping this synchronization assumption, and by 
solving simultaneously the equations relating the 
one- and two-body distribution functions in the low 
denSity limit. This has been done 5 for particular 
models, and correlations with a finite range have 
actually appeared. 

However, it may be emphasized that, in these 
workS, 3, 5 the range of the nonequilibrium correla­
tions appears to be roughly proportional to the 
relaxation time of the one-body distribution func-

tion, when three-body events are neglected. This 
can be understood as follows: When one neglects 
three-body events and makes the stosszahlansatz, 
two particles which collide become correlated 
after the collision in a nonequilibrium gas and re­
main indefinitely correlated after this collision 
if the effect of the other particles is neglected. In 
this way6 binary collisions constitutes in a non­
equilibrium system a "source" of correlations 
located at Irl - r21 ~ ro(ro = range of the inter­
molecular forces). If three-body collisions are not 
accounted for, there is no "sink" for these non­
equilibrium correlations which, once they have 
been created at a relative distance r o, propagate 
freely among the rectilinear free motion. That ex­
plains why, in this approximation (with no three­
body events), the undamped peak of correlation 
corresponds to a relative distance increaSing as 
I v 1 - v 21 t, the spatial width of this peak being of 
order IVl - V2lfy, ty being the relaxation time of 
the system: In fact, the "source" of correlation 
has a lifetime fy, since it disappears when the 
equilibrium state is reached. Calling "correlation 
length" the spatial width of the peak of maximum 
correlation, this correlation length is proportional 
to the relaxation time of the system. Hence, the 
existence of correlations with an infinite range is 
connected with the infinite relaxation times which 
may appear in nonequilibrium phenomena. When 
the nonequilibrium state is homogeneous, namely, 
when the one-body distribution function does not 
depend on the pOSition, the gas reaches an equili­
brium state with a finite time rate, of order of the 
mean free flight time, so that the assumption of 
synchronization is incorrect for correlation range 
of order or larger than the mean free path. On the 
contrary, when one studies the relaxation of a per­
turbed one-body distribution function which depends 
on the pOSition, e.g., as e ,"k.r, one finds in the hy-
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We demonstrate on a gas model that, if three-body events are neglected the nonequilibrium correlations 
extend over a distance proportional to the relaxation time of the one-body distribution function. For 
homogeneou~ pert~rbations this correlation length is the mean free path, the relaxation time being the 
me~n free flight hme. ~ the hydrodynami~alli.mit both the relaxation time of nonhomogeneous pertur­
batIOns and the correlation length become mflmte. This resolves the apparent contradistinction between 
the recent claim of a finite correlation length for nonequilibrium (but homogeneous) gases and the 
occurrence of correlations with an infinite range leading to divergences in the virial expansion of trans­
port coefficients which precisely describe hydrodynamical perturbations. 

1. INTRODUCTION 

The question of the range of the correlations in 
nonequilibrium gases plays a crucial role in the 
problem of the vi rial expansion of transport coef­
ficients'! In fact, the divergences occurring in 
this expansion are closely connected to the correla­
tions with an inifinite range appearing at the Boltz­
mann approximation,2 namely, when three-body 
events are not accounted for. This last point, which 
is more or less implicit in the previous reference, 2 
will be wholly confirmed here (Sec. 5). Henceforth, 
the recent discovery3 of correlation functions with 
a finite range in a modeled kinetic theory of gases 
may appear as being in contradistinction with the 
results found in the search of a virial expansion 
for the collision operator. 

In fact the nonequilibrium correlations with an 
infinite range appear when one assumes, after 
Bogoliubov,4 a "synchronization" between the one­
and two-body distribution functions, the two-body 
distribution functions being calculated by consider­
ing the one-body distribution function as stationary, 
although a nonequilibrium distribution function is 
certainly non stationary in the absence of any con­
stant external source of disturbance, as usually 
assumed. And it is not surprising that the corre­
lation with an infinite range may be removed by 
dropping this synchronization assumption, and by 
solving simultaneously the equations relating the 
one- and two-body distribution functions in the low 
denSity limit. This has been done 5 for particular 
models, and correlations with a finite range have 
actually appeared. 

However, it may be emphasized that, in these 
workS, 3, 5 the range of the nonequilibrium correla­
tions appears to be roughly proportional to the 
relaxation time of the one-body distribution func-

tion, when three-body events are neglected. This 
can be understood as follows: When one neglects 
three-body events and makes the stosszahlansatz, 
two particles which collide become correlated 
after the collision in a nonequilibrium gas and re­
main indefinitely correlated after this collision 
if the effect of the other particles is neglected. In 
this way6 binary collisions constitutes in a non­
equilibrium system a "source" of correlations 
located at Irl - r21 ~ ro(ro = range of the inter­
molecular forces). If three-body collisions are not 
accounted for, there is no "sink" for these non­
equilibrium correlations which, once they have 
been created at a relative distance r o, propagate 
freely among the rectilinear free motion. That ex­
plains why, in this approximation (with no three­
body events), the undamped peak of correlation 
corresponds to a relative distance increaSing as 
I v 1 - v 21 t, the spatial width of this peak being of 
order IVl - V2lfy, ty being the relaxation time of 
the system: In fact, the "source" of correlation 
has a lifetime fy, since it disappears when the 
equilibrium state is reached. Calling "correlation 
length" the spatial width of the peak of maximum 
correlation, this correlation length is proportional 
to the relaxation time of the system. Hence, the 
existence of correlations with an infinite range is 
connected with the infinite relaxation times which 
may appear in nonequilibrium phenomena. When 
the nonequilibrium state is homogeneous, namely, 
when the one-body distribution function does not 
depend on the pOSition, the gas reaches an equili­
brium state with a finite time rate, of order of the 
mean free flight time, so that the assumption of 
synchronization is incorrect for correlation range 
of order or larger than the mean free path. On the 
contrary, when one studies the relaxation of a per­
turbed one-body distribution function which depends 
on the pOSition, e.g., as e ,"k.r, one finds in the hy-
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drodynamical limit (k --7 0) some relaxation pro­
cesses whose time rate goes to infinity as k- 2. 

And in this hydrodynamical limit, the assumption 
of synchronization can be considered as valid, 
since the one-body distribution function is station­
ary with an accuracy as great as desired. This re­
mark is of a crucial importance for the study of 
the transport coefficients, since it can be easily 
seen 7 that one is dealing with a nonequilibrium hy­
drodynamical state when one tries to obtain these 
transport coefficients by means of the Chapman­
Enskog method. Hence the synchronization as­
sumption is convenient for this case. 

The aim of this paper is twofold: first, the pre­
ceding statements about the range of correlations 
at the Boltzmann order are verified on a gas 
model both for a homogeneous and a hydro­
dynamic nonequilibrium state; it is shown further 
that the divergences of the virial expansion of the 
collision operator may be considered as originat­
ing from the correlations with an infinite range 
appearing at the Boltzmann order. 

Two features of the studied model render it very 
suitable for this study: 

(1) The interaction law is of the "hard-core" 
type, so that, at the Boltzmann approximation, the 
collision operator is exactly Markovian and no 
"synchronization" assumption is needed to derive 
the collision operator in the low density limit; 

(2) The correlation function may be readily de­
duced from the one-body distribution function. 
Further, in order to minimize difficulties usually 
encountered by solving the complete Boltzmann 
equation, we have chosen one of the simplest model 
of gas; the Lorentz gas of light particles colliding 
with fixed hard spheres. This model has been the 
subject of detailed investigations8 ; the transport 
equation may be solved for perturbation varying in 
space as e ik.r, and this solutiol! joins the usual dif­
fusion solution decaying as e-k2Dt in the hydro­
dynamic limit k --7 o. The Boltzmann equation of 
this model will be given in Sec. 2,and it will be ex­
plained how to deduce the correlation function from 
the one-body distribution functions when three­
body events are neglected. 

In Sec. 3, it will be shown that, for homogeneous 
perturbations, the correlation length is actually 
finite of the order of mean free path. 

In Sec. 4, the Boltzmann equation is solved for a 
perturbed one-body distribution function varying in 
space as eil<.r ,and it will be shown that, in the 
limit k --7 0, the perturbation decreases at t -> 00 as 
e -Dk

2
t, yielding nonequilibrium correlation with an 

infinite range. 

In Sec. 5, we shall relate the divergences appearing 
in the virial expansion of the collision operator 
and the infinite range of the Boltzmann order cor­
relations, which actually exists in nonhydrody­
namic nonequilibrium states, as shown in Sec. 4. 
For that purpose we shall use a recent derivation2 

of the Ring collision operator, this collision opera­
tor being the sum of the most diverging terms 
appearing at each order in the virial expans ion of 
the collision operator. In particular, we shall be 
able to express in a closed form this collision 
operator from the Boltzmann order correlation 
function. Studying further the density expansion 
of this collision operator, we shall find a diver­
gence at the order n3 which is removed when an 
upper bound for the range of the Boltzmann order 
correlations is arbitrarily introduced. 

In the conclusion, we examine briefly the problem 
of the actual existence of these infinite-range . 
correlations, and the question whether the intro­
duction of three- and many-body events do really 
cut the nonequilibrium correlation at a micro­
scopic distance. 

2. KINETIC THEORY OF A LORENTZ GAS OF 
HARD SPHERES 

In this section, it will be shown that for a Lorentz 
gas of hard spheres, the one-body distribution func­
tion (or distribution function of a li.ght particle) is 
given by the solution of a self-consistent Markovian 
equation; furthermore, the correlation function will 
be given as an explicit function of the distribution 
function of a light particle. 

Let us consider a system of light particles moving 
in an array of N stationary and identical hard 
spheres of radius roo The positions of the hard 
spheres are distributed at random, and there is no 
mutual interaction between the spheres. Let Ri 
and R j be the pOSitions of the centers of two hard 
spheres (we do not exclude the possibility of an 
"overlapping" situation with 1Ri - R) I < 2ro). 
Furthermore, we assume that there 1S no mutual 
interaction between the light particles, which are 
of zero extension. Let R 1, ... ,RN be the positions 
of the hard spheres, and r and v the pOSition and 
the velocity of a light particle. The Liouville 
equation for this system of (N + 1) particles, de­
duced by slightly modifying the Liouville equation 
for a system of identical hard spheres9 is 

(
a aN) - + v·- + L:; Ki D = 0, 

at ar i=l 
(2.1) 

where D is the Gibbs distribution function in phase 
space of the light particle and the hard spheres, D 
being a function of r, v; R1, ... ,RN and t, Ki is a 
singular operator which acts on D as 

KiD(r, v; Rv ... , RNI t) 

= (u o v)6(r - Ri + rou)D(r, v; R1, ... , RNI t) 

- (u·v)6(r - Ri - You)D(r, v*; R1, ... , RNI t). 

(2.2) 
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In (2.2): 

r-R. 
u== t 

Ir-Rjl' 

v* == - V /1 _ 2~2)+ 2bv (1 _ b~)1/2, 
\. ro ro ro 

(2.3) 

b being the impact parameter: 

U·V 
b == rou - -v. 

v2 
(2.4) 

Since (2.1) is a Liouville equation, D is norma­
lized at any time by 

jdrjdvjdR1, ... ,jdRND(t= 0) = 1. 

We shall furthermore suppose that D is a sym­
metrical function of R 1 , ••• , RN • In order to 
avoid nonphysical situations in which a light par­
ticle would lie at time t = 0 inside a hard sphere, 
we suppose that at t = 0 any light particle lies 
outside any hard sphere, that is 

D(r, Vj R 1 ,· .. ,RN It == 0) = 0, (2.5) 

if there exists a label i(1 ~ i ~ N) such as 

Ir - Ril < roo 

Solving the Liouville Eq. (2.1) by the method of 
trajectories, we find at once that at any time f ~ 0, 
the exclusion condition (2.6) remains fulfilled. 
Let us now define the j-body distribution function 
I j as 

Ij(r, Vj RlJ ... , Rj_11 t) 

:::: (Ng)J-1 (JV rv.! 1) jdRj +lJ · •• , jdRND, 
- J + ! (2.6) 

n being the volume of the box containing the 
system. 

The equations of the BBGKY hierarchy yield for the 
lowest orders: 

(~ + V.~)/1 (r, v I t) = nv jdb{f2(r, v*j r + rou If) 
at or 

-/2(r,vjr-roult)}, (2.7) 

FIG. 1. 

(~+ V.~+ K1)f2(r,VjR1 It) 
at or 

= nvjdb{j3(r, V*; R1, r + rou I t) 

- her, Vj R1, r - roul tn, (2.8) 

where the integration on the right-hand side of 
(2.7) and (2.8) extends over the impact parameter 
b, a vector limited to a circle of radius r 0 in the 
plane perpendicular to Vj n is the number density 
of hard spheres (n = N/n), u is the function of v 
and b defined in 

and v* is the function of b and v defined in Eq. 
(2.3). 

The system of Eqs. (2. 7) and (2.8) is open, since 
the function 13 cannot yet be calculated from 11 
andlz· 
However, in the low density limit, one may derive 
(see Appendix A) from (2.7) and (2.8) a Boltzmann 
equation for /1 which is Markovian. Let us point 
out that this can be done without recourse to some 
synchronization assumption, and by assuming that 
at t = 0, the only correlations present in the gas 
stem from the exclusion condition (2.5). This 
Boltzmann kinetic equation reads for t ~ 0: 

(~ + V.~)/1(r, vi t) 
at ar 

= nvjab[It(r,v*lt) -It(r,vlt)]. (2.9) 

Furthermore, in the same approximation, the 
correlation function g(r, Vj R I t) defined by 

g(r, Vj R I f) = 12 (r, Vj RI t) - /1 (r, v I f), (2. lOa) 

may be deduced from /1 in a rather simple way 
(see Appendix A). This correlation function at the 
Boltzmann order gB is a linear functional of / 1 , the 
form of which depends on the domain of phase 
space (r, Vj R) in which gB takes its value. This 
functional can be described as follows: 

(i) Let us consider the domain ~1 (shaded region 
in Fig. 1) defined by 

V·U 2: 0 
and 

(2. lOb) 

(2.10c) 

u being any vector of the sphere of unit radius. 

To any point of 4 1 , there correspond two vectors 
u and b and a time T such as 

v·(r - R) 
b= r-R- 2 v, 

V 

1 0U == b + !. (r~ - b 2)1/2, 
V 

b 2 ~ r~ , (2.11) 

(2. 12) 
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T:=: ."e(r - R) 
v2 

u e ." 

-2 ro' 
V 

In "1 the value of gB reads: 

gB(r, Vj R \ t) = fl (r - YT, v* \ t - T) 

-h(r-vT,vlt-T). 

(2. 13) 

(2.14) 

(ii) In the domain "2 defined by I r - R I < r o,g is 
determined by the exclusion condition which yields 
at any order in the density 

g(r, ViR\t):= - f 1 (r, vlt). (2. 15) 

(iii) In the domain "3' which is the complement of .1 U "2 in phase space (r, v; R): 

(2.16) 

To summarize, we have in the low density limit, a 
single Eq. (2.9) for h which is both self-consistent 
and Marko/liar!. The form of this equation depends 
on the value of f1 and of its first derivatives at 
only one specified time. This equation has been 
derived without any recourse to a "time-scaling." 
Because of the simple properties of this model, 
we shall be able to derive, in Sec 3, the exact ex­
pressions for I1 andgB for both homogeneous per­
turbations (independent of r) and inhomogeneous 
perturbations (dependent of r). 

3. HOMOGENEOUS PERTURBATIONS IN THE 
LORENTZ GAS OF BARD SPHERES 

We have demonstrated in Sec 2 that for this model, 
f1 is determined by the solution of Eq. (2.9) and 
that once h is known, the value of gB can be cal­
culated from (2.14), (2. 15), and (2.16). 

As it is well known, the classical scattering by a 
hard sphere is isotropic,lo and (2.9) may be 
written as 

(~ + v e ~ + n1Tr~v\h (r, v I t) 
at or 'J 

:=: ~nvr~ jdvh(r, vi f). (3.1) 

On the right-hand side of (3.1), the integral ex­
tends over the surface of the unit sphere, since 

v= vivo 

To simplify (3.1), one may notice that in the 
course of time, the modulus of the velocity of a 
light particle is constant, thus one may restrict 
oneself to a system in which this modulus has 
only one value, say vO' In this case,jl(r, vi t) may 
be written as 

h(r,.,,1 f):=: (1/V5)0(V - vO)!I(r, vlt). (3.2) 

Putting now v :=: 1Tnr6vo, Eq. (3.1) yields 

(a a)~ v J ~ -+ Vove_+ vf1(r,vlf):=:- dv!t(r,vlf). 
of or 41T (3.3) 

Let us consider an homo~eneous nonequilibrium 
state, namely, a functionf1 which does not depend 
on r. The solution of (3.3) is elementary for this 
case, and reads: 

i1 (vlt) 

= [i1 (vi f = 0) - (1/41T) jdvi1 (vi t :=: O)]e-·t 

+ (1/41T)jdv/1 (vi f = 0), (3.4) 

The corresponding value of gB has various forms, 
depending on the domain of phase space in which 
gB takes its value; 

(3. 5a) 

in "2' gB= - (1/v5)0(V - vo)h(Vlf). (3.5b) 

The range of the correlations is obviously r 0 in 
the domains .2 and .3' 
In .1, the value of g is obtained from (2.20) and 
(3.4) and reads 

gB= [J1(v*lt= 0) -!t(vl!= 0)] 

[ ( 
(ra - b 2)1/2 

X exp v t + 
Vo 

ve(r-R) ] 
(3.6) 

Vo 

Let us recall that from the definition of "1 
(r 2 - b 2 )1/2 veer - R) 

O:st+ 0 :St. (3.7) 

For given values of b and v, the function on the 
right-hand side of (3.6) has an undamped peak 
when 

ve(r - R) := vof - (r5 - b 2 )1/2 

or, equivalently, when t = T. 

This maximum of g is given by 

The spatial width of this peak is vov-1 for large 
values of t, as it can be checked at once from 
(3.6) . 

One recovers the behavior of gB which has been 
already found: gB has an undamped maximum, with 
a spatial width of the order of the mean free path, 
and this peak is located at a separation distance 
increasing as vot. 

However it is clear from (2.14) and (3.6), that the 
width of the maximum of gB strongly depends on 
the relaxation time off1 • This time is v-I for 
homogeneous perturbations, but for a perturbation 
which depends on r, another relaxation time 
appears, which is as large as desired, and the 
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above conclusions about the range of the correla­
tions must be seriously revised. 

4. INHOMOGENEOUS PERTURBATIONS IN THE 
GAS MODEL 

This section is devoted to the study of 11 and gB 
in the case of a perturbation of It varying in space 
like e ilt.r. We shall assume again that the mOdulus 
of the velocity of the light pa~ticles takes only one 
value, vo' Since the function i1 (r, v I t) defined in 
(3.2) will depend on r like e ik.r, one defines 
ikWlt) by 

(4.1) 

Furthermore, let us put Il = k· vi k and call <fJ the 
angle of v in the plane perpendicular to k. The 
function ilt(v I t) depends on <fJ and Il, and may be 
split as 

Jk(vlt) = 1/I(1l; t) + ~(<fJ, Ilj t), (4.2) 
where 2 

ljI(llj t) = (1/21T)Jo 7r d<fJ/k(v!t). 

This splitting allows us to deduce from Eq. (3. 3) 
two uncoupled equations for <I> and 1/1, the solution 
of the first one being straightforward. These 
equations read: 

(a~ + iK/1- + V)~(V;f):;::;; 0, (4.3) 

(~ + iKJ.! + v) I/I(J.!; t) = ~ t/dJ.!I/I(llj f), (4.4) at 2 

where K = kvo, and where the integral J dv' . +1 
occurring in (3.3) has been written JliT d4> J-1 
dfJ.·· " 

From (4.4) 

<I> (v; f) = e-(u+iK~)l<l>(v; t =::: 0). (4.5) 

Z plane 

-V+LK 

o 
-)1+'-"" 

;::::=~=;;::::=~;f 

-V-iK 

FIG. 2. 

This solution has the main feature encountered in 
the study of homogeneous perturbations: It is 
damped as e- vt , and the range of the corresponding 
correlation function is the mean free path. 

But the Situation is quite different for what con­
cerns I/I(J.!; f). Laplace transformed Eq. (4.4) reads 

(z + v + iKJ.!)I/I(J.!;z) = iv 1-;1 d/ltJ;(J.!;z) + 1/10(/1-), 

where ljI 0(J.!) = I/I(J.!; t = 0) and 

1/I(J.!;z) = J; dfeztljl(J.!; f). 

(4.6) 

The choice of l/Io(J.!) is submitted to some restric­
tions, as shown in the Appendix B. 

Let us define p(z) by 

p(z) = J~1 d/1-I/I(lljZ). 

From ('1. 6) 

A¢o(Z) 
p(z)=---

1 - ~vA(z) 

(4.7) 

(4.8) 

where A ~o is the linear functional of 1/10 defined by 

A (z) = t11 d/.J.'ljIo(/.J.') , (4.9) 
~o Z + v + iKJ.!' 

and where 

A(z) = A _ (z) = 1- In(Z + v + iK). 
l/J0-1 if( Z + v - iK 

(4.10) 

Equations (4.9) and (4.10) define two functions of 
z, A, and A l/J ,with a cut in the Z plane; this cut be­
ing the segffient defined by Z =::: - (v + iKi-' 0)' - 1 s 
J.!o real s + 1. 

Inverting the Laplace transformation, we have 
from (4.6) 

I/I(J.!; t) =::: e -(U+iK/,)tI/lO(/.J.) + I/I'(J.!; f), 
with 

.,,'( . t) - .z: f+;oo ~ zt p(z) 
't' /.J., - _. e . 

2 !oo 2i1T Z + V + iKJ.! 

(4.11) 

(4.12) 

In order to calculate I/I'(/.J.; t) from (4.12), one per­
forms the following contour integral: 

(4.13) 

The contour (e) excludes the cut of the function 
p(z), and includes the imaginary axis (Fig. 2). 
From (4.8) the poles of p(z) are either the poles of 
A¢o (z) or the roots of the equation 

1 - iv i\(z) = o. (4. 14) 

It is shown in Appendix B that the poles of A~o(Z) 
are certainly located on the cutj thus they do not 
contribute to 1/1 ,and the only poles of the integrant 
of (4.15) locat/d inside (e) are the roots of (4.16). 
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From (4.10), A(z} is real for real values of z, thus 
(4.14) may have root for z real only. From (4.10), 

2 K A(x} = - arctan -- for x real. (4.15) 
K x + v 

Thus - rr /K ~ A(x} ~ + 7T /K (x real) and (4.14) has 
one root, and only one, 

x 0 = - v + K tanK / v , (4.16) 

for K ~ ~ V1T; if K >~vrr, Eq. (4. 14) has no root. 

Since xo(K = tvrr) =- v,at K =- ~111T the root Xo is 
located on the cut; we shall not study this particu­
lar case and proceed from now on with K < t1lrr. In 
this domain of values of K 

2 2 '/ lJI' (11" t) = ~ csc l\.. 11 eXot A (xo). 
P' v (x o + 11 + iKllo) fa 

(4.17) 

Since x 0 (K = 0) = 0, this contribution to lJI corres­
ponds to a weakly damped mode in the hydrodynamic 
limit (K , 0). This mode is simply the usual diffu­
sion mode, and it will lead ultimately to corre­
lations with an infinite length, as explained above. 

However, before proceeding, we must deduce 
lJI' (/l; t) from the contour integrallJl'. This can be 
done by cutting out from lJI; the contribution of the 
cut. We shall not give the details of calculation 
and only furnish the result 

(4.18) 

where lJI ~ (/l; t) is the contribution of the cut to lJI~ 
which is given by 

lJI~(tJ.; t) = - fe-(V+iKMit[p_(tJ.) + P+(/l)] 

- ; e-vtP J~11~.L e-iKM't [p_(tJ.'} - P+(/l')], 
'If /l' - /l (4.19) 

where P means "Cauchy principal part. " 

The two functions P (tJ.) occurring in (4.19) are two 
functions of a real i'ariable - 1 ~ /l ~ + 1 defined 
from p(z) by 

P±(/l) = lim p( - (v + iK/l) ± E). 
t-O+ 

(4.20) 

These functions P can be explicited without dif­
ficulty, but these €xpreSsions are unimportant for 
what follows. 

From (4.19) it is obvious that lJI~(tJ.; t) is damped 
as e- vt for large values of t, so that any contribu­
tion to!k(vlt) is damped like rut, except for that 
contribution ariSing from the pole Xo which is 
damped as eV[xo ~ 0 from (4.16)]. 

Now we are able to calculate the correlation func­
tion g which exists in this inhomogeneous pertur­
bation. As it has been viewed in Sec. 3, the charac­
teristic range of the correlation is the mean free 
path when the one-body distribution function is 
damped like e- vt • This result remains true for the 

contribution to! J v I t) damped like e - vt, as one may 
ensure from Eqs. (2.14)-(2.16) which define gB as 
a function of h. Thus the only difference in the 
correlation length which may exist, between the 
homogeneous perturbations and the inhomogeneous 
one, proceeds from the part of gs linear in the con­
tribution lJIp damped like eXat • Let gll,p be that con­
tribution togs proportional to lJI;. From (2.15) and 
(2.16) the range of gB p is ro in the domains of 
values of (r, v; R) A2 and A3' IIi the domain A1 of 
this phase space,gB is given by (2.14) and, from 
(3.2) and (4. 1), 

- !.j.vl t - T)], (4.21) 

where v* = v*/vo and where T is defined in (2.13). 

The contribution to! J v I t) damped like eX ot is cal­
culated from Eqs. (4. 2), (4.12), (4. 17}, and (4.18), 
and yields 

. (~I) K2csc2(K/1I)exat (2'1f J+1 dtJ.'Jk(vlt = 0) 
Jk V t = Jo drp_1 

2(xo + v + iK/l) Xo + v + ik' 

+ (terms damped like e- vt ). (4.22) 

Inserting into (4.21) the first term on the right­
hand side of (4.22), and taking the limit K -> 0, one 
obtains for gE,P 

g (r v' R I t) ~ iKe _(K2 /3 v)(t-r)e ik. (r-vT) 
B,p " K-->O V 

X (tJ. - fl*)Vo 21)(v - vol JdV!k(V It = 0), (4.23) 

where tJ.* = k-v* /kvo. 

Now, by inspection of (4.23) and from the definition 
(2.13) of T, it can be easily seen that the correla­
tion function g B P has an undamped oscillating maxi­
mum for a separation distance along v such as t = 
T; the spatial width of this maximum being 311Vo/k2 
and its amplitude of order K near K = O. 

Calling again the width of the maximum of gB the 
"correlation length, " one concludes that in the 
limit K -> 0, correlations appear with an infinite 
range. That is precisely what has been announced 
in the introduction: In the hydrodynamicallimit 
there exist relaxation processes with a time rate 
of order k- 2 , and during these relaxation processes 
correlations appear with a very long range, if 
three-body colliSions are neglected. 

5. LONG-RANGE CORRELATIONS AND 
DIVERGENCES OF THE KINETIC THEORY 

In this section we shall show that the divergences 
occurring in the virial expansion of the collision 
operator are closely connected to the correlations 
with an infinite range which appear at the Boltz­
mann order in a nonequilibrium gas. In fact, we 
have seen that we are allowed to suppose that!l 
takes a constant nonequilibrium value when we are 
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dealing in a hydrodynamic nonequilibrium state for 
which the relaxation time and the scale of inhomo­
geneity are as large as desired. Considering the 
value ofgB given in Eq. (2.14), it is obvious from 
the definition of T that if!l does not depend on 
space and time, (actuallY!l depends on rand t, but 
as sluwly as desired in the hydrodynamic lim!t) 
then gB has a nonzero value in the region ~l which 
extends up to-infinity in the hydrodynamic limit. 

We shall now examine the consequences of the 
existence of this long-range correlation on the 
virial expansion of the two-body correlation,· and of 
the collision term in the kinetic equation for fl' 
More precisely we shall show that, if we introduce 
an arbitrary cut for the range of the correlation 
function gB' we remove the first divergence which 
appear in the virial expansion of the collision term. 
This proof will need an explicit connection between 
gB and the virial expansion of the collision opera­
tor. By means of a method which has been re­
cently explained,2 we are able to express the 
"Ring collision term" from gB; this Ring collision 
term including precisely the most divergent terms 
which appear at each order in the virial expansion 
of the collision term. We shall only give a brief 
outline of this method with a view to its application 
in the present model. 

First of all, the right-hand side of the second 
equation of the BBGKY hierarchy, written in (2.8), 
is replaced by a sort of collision term leading to 
a self-consistent system relatingf2 and!l' In the 
present model, this equation for f2 is obtained by 
putting into the right-hand side of (2.8) the follow­
ing value for Is: 

h(r, v; Rl , R2 ) = !1 (r, v)<Pt (R1 )<Pt (R2 ) 

+ g(r, v; Rl ) <P(R2 ) + g(r, v; R2 )<Pl (R2 ), (5.1) 

g being the above-defined correlation function, and 
<PI (R.) the one-body distribution function for hard 
sphefes. Due to the normalizations chosen here 
and to the homogeneity of tre array of hard 
spheres: 

(5.2) 

Dealing as in Appendix A, we may deduce the fol­
lowing set of differential equations and of boundary 
conditions relatingg andfl : 

(.1. + ")jl(Vlt) - ~ jdvjl(vlt) 
at 4. 

= :.Jdv[g(v*;roult)-i(V; -roult)]" (5.3a) 

(~ + vov· ~ + ")i(v, lJ I t) = ~ Jdvg(V, III t), (5. 3b) 
at all 4. 

and 
g(V, r ou) = il (V*) + i(v, *r au) (5.3c) 

for 
lui = 1 and v·u 2: O. 

In order to write (5.3), we have supposed that the 

velocity of the light particle has a well-defined 
value vo, so that fl and g depend on v only through 
v= vivo. Furthermore we have written (5. 3a) and 
(5. 3b) as if the system were homogeneous, so that 
Jl does not depend on r, andi only depends on v 
and on the mutual distance Il between the light 
particle and the center of the fixed scatterer. How­
ever, we have in mind a nonequilibrium hydro­
dynamic Situation, in which /1 depends very slowly 
on rand t: But to simplify the formalism we have 
dropped this dependence of i l on r. Let us examine 
briefly the connection between this assumption and 
the existence of a transport theory deduced from 
(5.3) . 

By assuming thath takes a stationary nonequili­
brium value, we shall derive from (5. 3b) a syn­
chroneous value fo~g, which is the asymptotic 
solution of (5. 3b),jl being held constant. 

Inserting this synchroneous value of g into (5. 3a) 
we shall obtain a Markovian colliSion operator 
which reads 

(5.4) 

S being a linear }unction of It which only depends 
on the value of It at time t. When we want to study 
an inhomogeneous hydrodynamic statc; we cannot 
rule out the dependence on rand (5.4) becomes - -afl afl -

-+ vov· - = S[vllJl(t,r»), 
at ar 

(5.5) 

S being in (5.5) the same functional as in (5.4). The 
recourse to this synchronous functional is legiti­
mate, since i!.l the hydrodynamic limit the (r, t) de­
pendence of f 1 is as slow as desired, and since the 
nonlocal effects which could be accounted for 
through a nonlocal collision operator have a finite, 
microscopic scale of length and time. Further­
more, the existence of this local functional is 
needed, if one wants to derive from the kinetic 
equation a transport theory in the usual sense, 
which would lead to local transport coefficients in 
the hydrodynamic limit. However, as it has been 
recently shown2 there are strong indications 
in favor of the nonexistence of this local collision 
operator in two-dimensional mono-atomic gases. 

We have studied in Sec. 4 the low denSity limit of S, 
namely the Boltzmann collision operator. Further­
more, even in the approximation corresponding to 
the system (5. 3a), we are not able to derive an 
expliCit collision operator. In fact we only need the 
colliSion operator which includes the most diverg­
ing terms of the density expansion, or Ring colli­
sion operator. 

Since [from (2.16)] iB is equal to zero in the region 
.&3 of phase space, and since the right-hand Side of 
(5.3a) involves precisely the value of gin 6.3' the 
corresponding contribution of iB is equal to zero. 
But the Ring correlation function iT is not a priori 
equal to zero in 6. 3 and yields a nonvanishing con­
tribution when inserted into (5.3a). 
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Let us solve now (5.6). For that purpose we use 
the Fourier transform of iB which reads from 
(2.14)-(2.16) 

iB~' ii) = f8,VEA
l 
dpe-ik·tl{jl(V*) - it (iJ)} 

- fI81~rodf3e-ik.8 i1 (V). (5.6) 

The domain ~l occurring in (5.6) depends on t: 
However, as we are looking for a Markovian kinetic 
operator, we need the value of the correlation func­
tion for t = av'/l itself being considered as station­
ary. As it merges clearly from (2.13) and (2.14), 
this asymptotic value ofgB is constant in the infinite 
domain ~1 for a given value of ii and b: Hence the 
Fourier transform of this function must be con­
side red in the sense of the distributions, and is 
singular at k = O. This singularity will playa 
major role in the occurrence of the divergences 
of the virial expansion; this singularity may be 
artificially removed as follows: Let us assume that 

if T(P, v) 2: e, then iB(P, ii) = 0, (5.7) 

e being some fixed, positive time. 

It may be easily seen from (2.11) and (2. 12)(recall 
that fJ = r - R) that the assumption (5. 7) yields a 
correlation function iB(P, 0 which vanishes for 
1f31 2: voe + roo Define as iB tJ (p, ii) the correla­
tion function at the Boltzmann order which is equal 
to the asymptotic value of iB deduced from (2.14)­
(2.16) except, that for iB the domain ~3 is restric­
ted by the arbitrary condition (5.7); the true asymp­
totic value of iB being obviously iB e=oo. From (5.6) 
the Fourier transform of is,e is gi.'ven by 

iB e~' ii) 
, -ik.ve 1 e -

= - Vo 0 fdbe-ik.ur°[t1(V*) -/1(V)]· 
zk·v (5.8) 

In order to go from (5.6) to (5.8), we have neglec­
ted the last term on the right-hand side of (5.6) 
which is well behaved at k = 0 and does not yield 
any trouble in the terms of order n 2 and n 3 of the 
density expansion of the Ring collision term; in 
fact, we shall deal with divergences of the term of 
order n3 in this expansion. 

Solving now (5.3) in Fourier transform, with the 
initial value i R ({3, ii It = 0) = 0, we obtain for the 
asymptotic value of iR,e ,iB,e being held constant: 

- (k ii) = II 1 + II /2A(k) -.!.. (dii - (k, 0 
gR,fJ' II + ik.v 1 - 1I/2A(k) 411JI gB,S 

II 1 A(k I - ) 
II + zk·v 1 _ V/2A(k) gB,e 

+ II -(k-) 
v + ik.v gB,e ,v. (5.9) 

To derive (509) we have used the method outlined 
at the beginning of Sec. 4, and we have put 

'\(k) = A(z = 0), (5. lOa) 

A(z) being defined in (4.10) and 

A (k 1- ) = 2-.-J diiiB,u(k, 0. 
gB,u 2 Ok -11 II + z ·vVo 

(5. lOb) 

The Ring collision term is obtained by inserting 
into the right-hand side of (5. 2a) the value of 
iB e deduced from (5.9). Further it can be seen 
that, since iB e(k, i) is the Fourier transform of a 
function whicb is null in ~3' then viB e (k, 0/ 
(II + lk·v) is the Fourier transform of a function 
which is null too in ~3. Hence the last term on 
the right-hand Side of (5.9) does not contribute to 
the Ring collision term, as being null in ~3, and 
this Ring collision term reads: 

5 n j ) - 2 f dk 1 [(1 + II (k») 1 R,e v 1 - II (211)3 1 _ !1I,\(k) 2"A 411 

x fdvgB,e(k, v) - ~A(k IgB,a ~ 

x JdiJeik.uro( 1 _ 1 ). 
v + ik·v* v + ik·v 

(5.11) 

Starting from this expression of the Ring collision 
term, which accounts for the arbitrary cut limiting 
the range of the correlation function gB e' we shall 
examine the following statements: The 'integral 
over k defining 5R e converges at k = 0 for any 
finite value of e, ind for e = 00 the same result 
holds for the term of order n 2 in the density ex­
pansions of 5 R 0 and 5 R e=oo: But the term of order 
n 3 in this density expan'sion yields a diverging 
integral for 5 R 0=00 while this divergence does not 
appear when e 'remains finite. 

A. Definition and Density Expansion of 5 R, e="" 

The expression of 5R ,e=00 is obtained by putting in­
to (5.9) the value of gB,e=OO deduced from (5.6): 

gB,e=oo(k, V) = 211vo1i(k.v)jdbe-ik.broril(V*) - f 1(iJ)]. 

(5. 12) 

Since near k = O,~ tJ=oo(k, V) ~ k-1 and since from 
(4.15) and (5. lOa), 1- ~IIA(k) ~ k- 2 , as k -) 0, it 
may be readily seen that the whole integrand on 
the right-hand Side of (5.11) is of order k-2 near 
k = 0, when e = 00; and the integral converges at 
k = 0 when multiplied by the volume element ex­
pressed in spherical coordinates k 2dk. 

Let us consider now the lowest-order term in the 
virial expansion of S R e=oc. It is calculated by ex­
panding the integrand 'in powers of n for any finite 
value of k (recall that v a:n) and reads: 

S ( -1/-) 2 2J dk (d- ik.nro 
R,tFoo V 1 ~o 11V (211)3 J ' ve 

x (ok l 
* - Ok! }4

1 
Jd£gB,tJ=oo(k, V). (5.13) 

l·V l·V 11 
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This collision term is again defined by an integral 
which converges at k = 0, since the integrand is of 
order k- 2 at k = O. 

There are many terms of order n 3 in the virial ex­
pansion of SR {)' and we shall consider only one 
term among them, since our object is not an ex­
haustive study of the divergences of the virial ex­
pansion of S 11, {)' For example, from the density ex­
pansion of 

1 1 
---='------:-
v + ilt"v* V + ik·v 

a term rather similar to the contribution of order 
n 2 arises, except that the factor 

Ck.
1
V* - ik.

1
V) 

occurring in the right-hand side of (5.13) is to be 
replaced by 

and the corresponding integrant is of order k = 0 
[k- 2 due to (k·v)-2 multiplied by k- 1 due to iB {)=oo 

(k, V)], and the integral diverges logarithmicaliy 
near k = O. 

B. Definition and Density Expansion of S R,d at 
Finite 0 

The integrand defining SR e depends linearly on 
gB,a.AIt may be seen further from (5.82 andJ5.12) 
that gB,a=oo (v,k) ~ k- 1 as k--" O,whilegB,e(v,k) re­
mains finite at k = O. More preciselY,iB,e(v, k = 0) 
cc e. Henceforth, if the integrand of S R,e= 00 or a 
term in its density expansion has been found to be 
of order k- ct near k = 0, the corresponding quan­
tity in SR a is of order k- ct +1 near k = O. In this 
way, one merely deduces that the integrand of S R e 
is of order k- 1 near k = 0, that its lowest-order' 
term in the virial expansion, of order n 2, behaves 
as k -1 near k = 0, and that its term of order n 3 be­
haves as k- 2 near k = 0 yielding a convergent con­
tribution of order n 3 in the virial expansion S R,,3' 

while the contribution of the same order in n 
diverges for SR,O=OO' 

Now the connection between the long-range be­
havior of gB and the divergences of the virial ex­
pansion of SR,e=oo has been established. 

6. CONCLUSION 

We have shown that, in a nonequilibrium gas, the 
occurrence of long-range correlations is not due 
to some incorrect assumption about the "syn­
chronization" between f 1 and g, and that these long­
range correlations exist in the hydrodynamic per­
turbations (k --" 0). We have shown further that the 
divergences appearing in the virial expansion of 

the collision operator are closely connected with 
the correlation with an infinite range appearing at 
the Boltzmann order. The Ring collision operator 
[its particular form valid for this model is given in 
(5.11)] has been constructed in order to eliminate 
these divergences. In fact, it accounts for the 
"most dangerous divergences." 

In two (and three) dimensions this renormalized 
virial expansion is free of divergences2,1l for the 
perfect Lorentz gas, at least for the lowest orders 
in n. The infinite correlation length appearing in 
the powers virial expansion are cut at the mean 
free path by the introduction of these three-body 
effects, even when the synchronization between h 
and g is assumed. But the situation is much more 
complicated for two-dimensional gases with one 
species of particles, and it has been shown2, 6 that 
by accounting for three-body events as explained 
above, one finds a renormalized density expansion 
with divergences. 

Hence, in this last case the synchronization as­
sumption between gR and h must be removed. But 
it must be pointed out that, even in this case, the 
relaxation time for h can be taken as long as de­
sired in the hydrodynamic limit. 

APPENDIX A 

We shall derive in this appendix the Boltzmann 
equation for f1 and the corresponding value of the 
correlation function gB' For that purpose we shall 
replace in (2. 8),h by its low denSity value ffD 
which yields: 

fkD (r, v; Ru r - YOU I t) = f1 (r, v I t)<fJ(R1)¢(r - You), 

(A1) 

u being an unit vector such as v·u :s 0, and ¢(R) 
being the one-body distribution function of the 
hard spheres. Due to the normalization used 
here, and to the homogeneity of the system of hard 
spheres: 

¢(R) = 1. (A2) 

The condition (A1) expresses that, in the low den­
sity limit, the binary correlations arise from the 
direct interaction between particles only, and that 
any effect of the surrounding particles on this 
correlation is of a lowest order in n: in fact it may 
be shown2 that, under this assumption for /3,f2 is 
correctly described in the low density limit. 

Inserting the value (A1) of h into (2.8) and replac­
ing the Singular term K J 2 by a boundary con­
dition, we obtain 

(~ + v.~ \f2 = nv J db{r1 (r, v* I t) ~ f1 (r, v I tHA3a) 
at ar} 

for Ir-RI > Yo, 

f 2 (r,v;r+ YOU It) =/z(r,v*;r+ roult) (A3b) 

for lui = 1 and v·u ~ 0, 
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12(r, v; RI t) == 0 

for I r - R I < r o' 

(A3c) 

Condition (A3b) is obtained by integrating (2.8) 
over a small volume element across the surface 
I r - R I = r 0' and (A3c) stems from the exclusion 
condition (2.5). Conditions (A3b) and (A3c) are 
valid even outside the low density limit. 

Now the problem is how to derive from (2.7) and 
(A3) the Boltzmann equation for 11 and compute 
the corresponding value for 12 , For that purpose 
we shall make the stosszahlansatz. In fact, we 
shall only need an "initial" stosszahlansatz, taking 
as an initial condition for /2' 

h(r,vjRlt= 0)= 0 for Ir-RI < r o' (A4a) 

f 2 (r,v;Rlt= O)=/l(r,vlt== 0) 

for ir - RI > r o, (A4b) 

f 2 (r, v; r - roult = 0) = /l(r, v It == 0) 

for u 2 == 1, (A4c) 

and v·u sO and 

12 (r, v; r - r Ou It == 0) == /1 (r, V* I t = 0) 

for u 2 == 1, (A4d) 

and v·u >0. 

To proceed, we shall suppose that, a priori, (A4c) 
which is valid at t == 0 remains true at any time 
t> O. Partially solving the system relating /1 and 
h, we shall prove a posteriori that this condition 
(A4c) remains fulfilled at any time t> O. 

Defining now the correlation function g by 

g(r, Vj RI t) == h(r, v; RI t) - h (r, v; RI t), (A5) 

one shows at once from (A3a) and from the stoss­
zahlansatz for /2 that g is given at the Boltzmann 
order by the solution of 

(~ + V·~\gB(r, v; RI t) == 0, (A6) 
at or} 

provided that Ir - RI >ro. The correlation func­
tion g B is equally defined by an initial condition de­
duced from (A4a) and (A4b) , plus a boundary con­
dition deduced from the stosszahlansatz, namely, 
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from the assumption that (A4c) is valid at any 
time t ::::: O. Integrating now (A6) by the method of 
the trajectories, one shows that, the stosszahlan­
satz (A4c) is actually true at any time t ::::: 0, and 
that in the regions of phase space (r, v; R) called 
1. 1 '1. 2 , and 63,g is actually given by (2.14)­
(2.16). 

Further, since (A4c) is true at any time t::::: 0, (2. 9) 
follows at once from (2.7). 

APPENDIX B 

In this appendix, it is shown that A "0 (z) is finite for 
any value of z located outside the cut z = - (1/ + 
iKiJ.)(-1 s iJ. real s + 1). 

For that purpose one notices that the perturba­
tionh of the one-body distribution function must 
check: 

(Bl) 

/1 0 being the equilibrium value of the distribution 
function of the light particles, a constant here. The 
condition (Bl) expresses siIFply lhe fact that the 
whole distribution function /1 + h,o must be posi­
tive definite, as usual for a probability distri­
bution. 

In Sec. 4, for simplicity, one has used a perturba­
tion eik •r instead of coskor. In order to obtain 
from the results of this section the true physical 
quantities, one must add at any place the complex 
conjugate, an imaginary distribution function being 
meaningless. Thus the function fk(vi t) defined in 
(4.1) must be real, and verifies, from (4.1), by 
replacing e ik • r by (e ik • r + e-ik • r ): 

(B2) 

Integrating (B2) over the angle <p and taking t = 0, 

And the function A~o(z) defined by 

A (z) == J~/ diJ.' lJio (iJ.,) 
~o z + II + iKiJ.' 

(B3) 

is obviously finite for any value of z outside the 
cut. 
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Equations which define a "consistent" set of "boundary" conditions, and hence a field, for a given set 
of differential equations are derived from a variational principle. The equivalence of functionals 
defined over an entire domain and functionals defined over only a subdomain, but with a surface term 
'added to account for the contribution of the excluded subdomain, is exploited. The appropriate surface 
term is found to satisfy the Hamilton-Jacobi equation. The formalism is specialized to neutron diffu­
sion theory, and it is demonstrated that Stark's double sweep method follows as a natural consequence of 
this field theoretic formulation. The relation of this formalism to Pontryagin' s Maximum Principle and 
Bellman's Dynamic Programming is demonstrated for problems which can be characterized by mini­
mum variational principles. 

1. INTRODUCTION 

Many problems in mathematical physics are speci­
fied by a set of differential equations defined on an 
interval 0 ~ x ~ L and an associated set of boun­
dary conditions at x = 0 and x = L. It is well 
known that if one is interested in the solution only 
over some subinterval 0 ~ x ~ z < L, and if the 
"boundary" conditions can be specified at x = z, it 
suffices to solve the equations only within the 
interval 0 ~ x ~ z. The use of symmetry consi­
derations to provide "boundary" conditions at a 
midplane is a familiar example. 

If consistent "boundary" conditions could be speci­
fied at each point in the interval 0 ~ x ~ L, func­
tions which satisfied these "boundary" conditions 
would, by definition, satisfy the original set of 
differential equations and the original boundary 
conditions at x = 0 and X = L. Such consistent 
"boundary" conditions may be thought of as a field 
for the original set of differential equations. l 

The purposes of this paper are to derive a con­
sistent set of "boundary" conditions (Le., field 
equations) from a variational argument and to 
introduce a field theoretic formulation for neutron 
diffusion theory. It is demonstrated that Stark's2 
method for solving the neutron diffusion equations, 
which is widely used in one-dimensional problems, 
is a natural consequence of this field theoretic 
formulation. 3 

2. VARIATIONAL FIELD THEORY 

It is well known from the calculus of variations l 

that a variational functional can be associated with 
a set of differential equations and associated 
boundary conditions. For example, the functional 

J[yl = .~L dx F[x,y(x),y'(x)] (1 ) 

defined on the set of functions Yj (x) (y == ~:=l Yj in 

the argument), which have continuous first deriva­
tives 4 in 0 ~ x ~ L and satisfy prescribed con­
ditions at x = 0 and x = L, is stationary (i.e., 
OJ = 0) about the functions Yj (x) which satisfy 

o ~ x ~ L, j = 1, •.. ,N, 

and the prescribed conditions at x = 0 and x = L. 
(Prime indicates the total derivative with respect 
to the independent variable, x in this case.) 

If the appropriate boundary conditions can be 
specified at some point x = z < L, the same func­
tions y. (x) can be determined by solving Eqs. (2) 
on the Jinterval 0 ~ x ~ z, subject to the prescrib­
ed conditions at x = 0 and x = z. The determina­
tion of these boundary conditions is accomplished 
by seeking a functional 

J[y] = f dx F[x,y(x),y'(x)] -C[z,y(z)], (3) 
o 

which is equivalent to the functional J in the sense 
that J is also stationary about the functions y.(x) 
which satisfy Eqs. (2) on the interval 0 ~ x ~J L 
and the prescribed conditions at x = 0 and x = L. 
Thus, we seek to replace a variational functional 
defined on the interval 0 ~ x ~ L with a functional 
defined on the interval 0 ~ x ~ z, which has a 
surface term to account for the contribution of the 
complementary interval z < x ~ L. 

The surface term C is determined from the re­
quirement that I5J = 0 for the functions Yj(x) which 
satisfy Eqs. (2). The general formula for the 
variation of J is 5 

I5J= --- -~ z!{ ['OF d (;OF)] 
10 ~ oYj dx ayj Oyjdx 

+~ --- By N (OF Oc) I 
J=l oJ'; oYj J x=z 

( ~ N , f1F OC) I + } - ~ y - - - I5x • 
J=1 JOY; ax X=z 

The requirement oj = 0 is satisfied if 

and 

of ac 
O},I - oy.' 

J J 

j = 1, ••• , N 

(lC N, of _ 
- - F + ~ y. -, - o. 
az j =1 J ilYj 

Using Eqs. (5), Eq. (6) becomes 

(4) 

(5) 

(6) 

of d ('OF) - 0 
oYj - dx oY; - , 

(2) ilC[z;i~'(z)l -F[z,y(z),}'(z)] 
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(7) 

where y' is assumed to be given in terms of'y and 
aG/aYj ~y Eqs. (5). Defining ] 

H (z, y(z), ;)G~~(~~Z)]) == -F[z,y(z), Y'(z)] 

+ ~ '(z) ilG[z, y(z)] 
L.J Y] il'" 
] =1 .!] 

Eq. (7) becomes 

aG + H = 0 
oz ' 

which is the Hamilton-Jacobi equation. 6 

(8) 

(9) 

If Eqs. (5) and (6) are satisfied, the second and 
third terms in Eq. (4) vanish. It is now shown that 
Eqs. (5) and (7) being satisfied is sufficient to 
ensure that Eqs. (2) are satisfied, and hence that 
f.J = o. By virtue of Eqs. (5) 

d ((IF) 
dx (1Yj 

d (ilG) a2G N a2 G 
= dx a;;- == ax?". + ~ o".oy Y; 

.I] .!] t=1 .It ] 

= a:
j 
G~ + ~ yf ;)~), j = 1, ••. , N. 

Using Eq. (7), this reduces to 

_ - = -, j = 1, •.. ,N, d ('0F) aF 
dx ry; aYj 

which are Eqs. (2). 

A boundary condition for G follows from the re­
quirement that J and J are equivalent for all z, 
o c:S z c:S L, and particularly for z = L: 

G[L,y(L)] = O. (10) 

Thus, functions 51 which satisfy Eqs. (5) and (7) or 
(9) also satisfy Eqs. (2). In this sense, Eqs. (5) are 
referred to as the field equations corresponding 
to the variational functional of Eq. (1). Equations 
(5) suggest that G has the form of a field potential. 

The equivalence of J and J at z == 0 implies 

-C[O, Y (0)] = J[y] = t dx F[x, y(x), y' (x)]. 
o 

Consequently, the stationary value of the variation­
al functional of Eq. (1) can be obtained by solving 
Eqs. (5) and (7) for G[O, y (0)]. 

3. MONOENERGETIC NEUTRON DIFFUSION 
THEORY 

The general results of the preceeding section can 
readily be specialized to one-dimensional mono­
energetic neutron diffusion theory, In this case, 
the function F, which is sometimes referred to as 

the Lagrangian density function, is 

where D, ~a' II, ~f' and S are the diffusion coeffici­
ent, absorption cross section, neutron yield per 
fission, fission cross section, and source, respec­
tively. cP is the neutron flux. 

For F given by Eq. (11), Eqs. (2) reduce to the 
familiar neutron diffusion equation 

and the field equations, Eqs. (5), reduce to 

2D</>' == ~~. 

The Hamilton-Jacobi equation, Eq. (7) or (9), 
becomes 

oC + _1_ (aC)2 _ (~ _ v~'f) A2 + 2,f,S = 0 
az 4D acp a 'i' ,/" 

where 

G = C(z, </». 

Boundary conditions of the general form 

boD</>'(O) = CoCP(O) + do, 

(12) 

(13) 

(14) 

(15) 

(16) 

are normally associated with the problem, and Eq. 
(10) becomes 

G[L,CP(L)] =0. (17) 

If we seek a solution to Eq. (14) of the form 

C(z, </» = - a(z)cf + 2f3(z)</> + y(z), (18) 

Stark's method2 for solving Eq. (12) follows im­
mediately. Substituting Eq. (18) into Eq. (14) re­
suits in 

-</>2 a' + ai;2 _ 2~CP + ~ - (~a - lI~f)cp2 

+ 2CPS + 2</>f3' + y' = O. 

This equation is satisfied for arbitrary </> if 

a'(z) - [a2(z)/D] = - (~(X - v~A 

(3'(z) - a(z){3(z)/D = - S, 

y'(z) + (32 (z)/D == O. 

Using Eq. (18), Eq. (13) becomes 

Dcp'(z) = - a(z)</>(z) + (3(z). 

(19) 

(20) 

(21) 

(22) 

Comparing Eq. (22) with the boundary condition of 
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Eq. (15), for bo ~ 0, we obtain "initial" conditions 
for 01 and (:3: 

(23) 

From Eq. (22) and the boundary condition of Eq. 
(16), we obtain a "final" condition for ¢: 

and using Eq. (18) in the boundary condition of 
Eq. (17), we obtain a "final" condition for y: 

y(L) = 01 (L )¢ 2 (L) - 2{3 (L )¢ (L ). 

(24) 

(25) 

Thus, Eqs. (19) and (20) are solved by sweeping 
from z = 0 to z = L, using the "initial" conditions 
of Eq. (23). Then Eqs. (21) and (22) are solved by 
sweeping from z = L to z = 0, using the "final" 
conditions of Eqs. (24) and (25). 

Note that if only the flux is sought, it is not neces­
sary to solve for y. In this case, the procedure is 
identical to the method attributed to Stark,2 and 
usually postulated on an ad hoc basis for solving 
Eq. (12).7 It is interesting that this powerful and 
widely used method is suggested almost immedi­
ately by the field theoretic formulation. 

A simple example serves to illustrate some of the 
concepts which have been discussed. Consider a 
uniform critical slab nuclear reactor of half­
thickness L with the plane of symmetry at z = O. 
For this case, bo = C1 = 1, Co = do = lit = d1 = 0, 
and the "initial" and "final" conditions of Eqs. (23) 
-(25) become 01(0) = (3(0) = y(L) = ¢(L) = O. It is 
easy to demonstrate that Eqs. (19)-(22) are satis­
fied by 

rrz 
¢(z) = cos2L ' 

rrD rrz 
01 (z) = 2L tanu;-, 

(3(z) = y(z) = 0, 

and hence, from Eq. (18), 

(
rrD) . rrz G(z) = - 4L SIny' 

(26) 

(27) 

(28) 

(29) 

As mentioned previously, G(z) is interpreted as a 
"surface" term which accounts for the contribu­
tion to the functional J from the interval z < x 
"" L. Using Eqs. (26) and (11), with S = 0, it is 
readily shown that J = O. On the other hand 

J= (dx [D(2~) 2 sin2 ;Z + (&a - lI&f) cos2 ;z] 
+ rrD . rrz 

4L SIlly. 

Making use of the criticality condition 

direct integration yields 

J rrD. rrz rr D . rrz 
= - 4L SIDz) + 4L SlDy:= O. 

Alternatively, it is noted that 

rrD . rrz 
= 4L smT = -G(z). 

Thus, G(z) is, in fact, the contribution to the func­
tional J from the interval z < x "" L. 

The stationary value of the variational functional 
of Eq. (1), with F given by Eq. (11) and S = 0, is 
zero. From Eq. (29), it is seen that G[O, ¢ (0)] = 0, 
in agreement with the conclusion of the previous 
section. 

4. MULTIGROUP NEUTRON DIFFUSION 
THEORY 

An appropriate bilinear variational functional for 
the one-dimensional multigroup neutron diffusion 
equations may be constructed from the Lagrangian 
density function 

F = ~ (¢T Dg¢~ + ¢;Ag¢g - ¢g* Xg ¥ Fg,¢g, 

- ¢t??, Kgg,d;g, - ¢g*Sg - Sg*¢g} (30) 

where D, A, X' F, and K are the diffusion coefficient, 
removal cross section, fission spectrum, fission 
cross section times the fission neutron yield, and 
the scattering transference cross section, res­
pectively, in the multigroup representation. ¢* 
and S* are the adjoint flux and source, respectively. 

The field equations, Eqs. (5), become 

Dr/>' = J!.Q .g = 1, •.• , no. of groups, (31) 
g g o¢*' 

g 

Dg¢;' = :~, g = 1, ••. , no. of groups, (32) 

and the Hamilton-Jacobi equation, Eq. (7) or (9), 
becomes 

°c~ + L; [~ (:~* :~) -cfJ;AgcfJg + ¢;xgL; Fg,cfJg, g g V'I'g 'l'g gl 

+ d;;~ Kgg,cfJgI + cfJ;Sg + Sg*cfJgJ = 0, (33) 

where 

G = G(z,~¢;,~cfJg). 
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Equations (31) associate the current with the func­
tional derivative of G with respect to the adjoint 
flux, while Eqs. (32) associate the adjoint current 
with the functional derivative of G with respect to 
the flux. 

Analogous to the procedure of the previous section, 
we seek a bilinear solution to Eq. (33) of the form 

G = ~ [-<p;F,GYgg/(z)<pg, + (3iz )cp; + yg(z)CPg + ~Vz)J' 
(34) 

Substituting Eq. (34) into Eq. (33) results in a single 
scalar equation which is, anticipating subsequent 
development, written in matrix notation: 

[1fJ*l'a'lfJ + IfJ*TaD-l alfJ - 1fJ*1AIfJ + IfJ*TXFTIfJ + 1fJ¥K4> 1 
+ [1fJ¥(J' + IfJ*TaD-l(J + cp*TS] 

+ [l"Tcp + y1})- l acp + s*Tcpl + [I1U' + ITel = 0, (35) 

where cp*, C/>, (J, Y, X' F, and 0 are column vectors 
whose elements are the corresponding group com­
ponents, 6 is a column vector whose elements are 
the group components {3gyg/Dg, and I is a column 
vector with all elements unity. a, D, A, and K are 
square matrices whose elements are the corres­
ponding group components. Equation (35) is satis­
fied for arbitrary cp * and cp if the following matrix 
equations are satisfied by a, /3, Y, and 0: 

a' - aD-la = - [A - xFT - K], 

(3' - aD-l/3 =~, 

l"T -l'1})-l a = S*, 

0' + 8 = 0. 

(36) 

(37) 

(38) 

(39) 

The similarity between Eqs. (36)- (39) and Eqs. (19) 
-(21) suggests that the former may be considered 
as a multigroup extension of Stark's method. s 

Assuming that a general set of homogeneous 
boundary conditions 

(40) 

(41) 

are associated with the flux, it can be demonstrat­
ed that the appropriate boundary conditions for the 
adjoint flux are 

cg'e 
DelfJ;'(O) = ~ bOg! CP;,(O), 

o 
Ce'e 

DgCPg*' (L) ="6 -+- CPg*,(L), 
e' bl 

(42) 

g = 1, ... , no. of groups. (43) 

For G given by Eq. (34), the field equations (31) 
and (32) become 

DCP~(z) = ~ GYgg,(z)<pg,(z) + IVz), (44) 

DCPr (z) = "6 GY g' g(z )<P;' (z) + Y g(z), 
g' 

g = 1, ... , no. of groups. (45) 

Comparing Eqs. (44) and (45) with Eqs. (40)-(43), 
and using the boundary condition of Eq. (10), we 
obtain the "initial" conditions 

(Vo) = Y i O) = 0, g, g' = 1, ... , no. of groups 

(46) 

and the "final'" conditions 

c/>(L) = A-l/3(L), (47) 

<p*(L) = (Ary-1y(L), (48) 

o g(L) = - (cp; (L) F, GYgg, (L )tPg, (L) + {3g(L )CP;(L ) 

+ yg(L )CPg(L)) , g = 1, ... , no. of groups. (49) 

The matrix A has elements 

A
gg

' == C?"/'b{ - GYgg,(L), 

g,g' = 1, ... , no. of groups. (50) 

Thus, Eqs. (36)-(38) are solved by sweeping from 
z = 0 to z = L, using the "initial" conditions of Eqs. 
(46). Then Eqs. (39), (44), and (45) are solved by 
sweeping from z = L to z = 0, using the "final" con­
ditions of Eqs. (47) and (48). 

The formalism of this section was applied to a two­
group reflected slab model with nuclear properties 
characteristic of a pressurized-water reactor. 
The model was subcritical, and a uniform source 
in the fast group was present in the core. The 
thermal-group fission cross section was used as 
a thermal-group adjoint source, so the stationary 
value of the functional corresponded to the ther­
mal-group fission rate. 

Neutron and adjoint fluxes for the problem are 
shown in Fig. 1, and G is shown in Fig. 2. (x = 0 
corresponds to the core midplane.) The magnitude 
of G decreases rapidly in the reflector, consistent 
with the decreasing contribution of the external 
parts of the reflector to the functionalJ. The value 
of G at x = 0 agrees with the value of the thermal­
group fission rate (the stationary value of the 
functional) to within the numerical accuracy of the 
calculation, in agreement with the conclusion of 
Sec. 2. 
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5. MAXIMUM PRINCIPLE AND DYNAMIC PRO­
GRAMMING 

A slight variant of the procedure that was employ­
ed in Sec. 2 can be used to derive the Maximum 
Principle9 of Pontryagin and the Dynamic Pro­
gramming10 algorithm of Bellman. 11 If the varia­
tional function of Eq. (1) represents a minimum 

principle, then oJ = 0 when evaluated for the func­
tions Yj(x) which satisfy Eqs. (2), and OJ> 0 when 
evaluated for any other functions. Making the 
same arguments as in Sec. 1, we seek an equivalent 
functional 

_ L 

J(y] =-G[z,y(z)] + r dxF(x,y(x),y'(x)]. (51) 
'z 



                                                                                                                                    

VARIATIONAL FIELD THEORY 2301 

Because J, hence J, is a minimum principle, we 
have 

OJ = J E - - -- -, oydx - L N laF d (aF)-1 
Z j 01 aYj dx a Yj ) 

-iF - t .y' (IF + ac) ox r ~ o. (52) 
\" j01 j ?y; ax .toz 

If we require that Eqs. (2) be satisfied, and that 

j = 1, ... ,N, (53) 

then, because ox> 0,12 

N 
f1C + F + ); y: ac ~ o. 
az };1 ) aYj 

(54) 

An argument similar to that given in Sec. 2 leads 
to the conclusion that when the equality obtains in 
Eq. (54), functions )'j' which satisfy Eqs. (53) and 
(54), also satisfy Eqs. (2). Thus, this development 
is completely equivalent to that of Sec. 2, and a 
field theory could equally well be based on Eqs. (53) 
and (54), when the equality obtains in the latter. 
Equation (10) would be replaced by C[O, y(O)] = 0 
in this case, and C[ L, Y (L) I would correspond to 
the stationary value of the functional. 

If we define 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 
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ac 
1./IN+1 (z) == - az' 

j 1, ... ,N, 

then Eq. (54) can be written 

o = max (ljIN+ 1 + 6. N ljI.jj' - F) . 
y' \ ) 01 ) 

(55) 

Equation (55) is the Maximum Principle of Pontry­
agin. 

An alternate way of writing Eq. (54) is 

_ dc[zd~'(z)l ~ F[z,}(z),j"(z)]. (56) 

Integrating Eq. (56) Over the subintervalz toz + ~z, 
and approximating F in this subinterval by its 
value at z, we obtain 

C[z,y(z)] 

~ C[z + ~z,Y(z + ~z)] + ~zF[z,y(z),y'(z)]. 

Because the equality obtains for the functions y. 
which satisfy Eqs. (2), this may be written J 

C[z,y(z)] = min {C[z + ~z,:f(z + ~z)] 
y' 

+ ~zF[z,y(z),y'(z)]}. (57) 

Equation (57) is the Dynamic Programming algo­
rithm. 
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The behavior of the Regge pole residues for the T matrix analyzed into partial waves is studied as a 
function of E for scattering from a Yukawa potential. Using a variational formulation of Fredholm 
theory, we explicitly show that the residues on the energy shell have no branch cuts in the left-hand 
E plane. 

We consider nonrelativistic scattering from a 
Yukawa potential. Using Fredholm theory, we con­
template solving the Lippmann-Schwinger equation 
for the T matrix expanded into partial waves. Ifwe 
go onto the energy shell and consider the behavior 
of the partial wave projections as a function of 
energy, we find branch cuts appearing in the left­
hand E plane. Superficially, these cuts seem to be 
present as well in the residue of the T matrix at 
a Regge pole. It is a well-known consequence of 
dispersion theory however, that at a Regge pole, 
the residue has a right- hand cut only. 1 In this 
paper an explicit demonstration of the extinction 
of these left-hand cuts is presented. We use a 
formulation of Fredholm theory in which the Fred­
holm resolvent kernel is expressed as a functional 
derivative of the Fredholm denominator. Since 
this denominator is determined by the traces of 
the iterated kernels, with the energy appearing only 
in the propagator, it clearly has no left-hand E­
plane branch cuts. This provides the motivation 
for anticipating that the functional derivative of 
this denominator at a Regge pole has no left- hand 
cuts also. 

We start fromthe Lippmann-Schwinger equation 
for the T matrix2 for scattering from a potential 
V, which we choose to be central: 

1 
T==V+V E H+· T • 

- 0 lE 

In the momentum representation this becomes (for 
incoming momentum k, outgoing momentum k') 

Tk.k,(E) == v(k - k') 

+ J d 2
q V(q - k) 1 T k,(E). 

(271)3 E - q2/2m + iE q. 

For a Yukawa potential 

We make a partial wave expansion 

Tk.k,(E) == 4" 6zm Yln*(k')Yr(k)1l (E, k, k') 

V(k' _ ) = g2 
q (,..,2 + q2 + k'2 - 2k • q) 

471g2", (/:12 + q2 + kl2) *(~, ~ 
== 2k'q £..JZmQZ 2qk' yzm k )l'im(q), 

where we have used the addition theorems for 
Legendre functions and spherical harmonics. This 
yields 

T"-(E k k') == £ Q (/:12 
+ k

2 
+ k'2) 

Z " 2k'k Z 2kk' 

471g2 100 q2 Qz«/l2 + q2 + 1;;2)/2qll) 
+--A dq-

(271)3 0 2kq (E - q2/2m + iE) 

X TNE, q, k /), (1) 

where we have inserted a parameter A, such that 
A == 1 gives us the correct equation, i.e., 

Tt(E, k, k') == 1l1 (E, k, k'). 

For any nonhomogeneous equation of the form 

1/I(k) == cp(k) + AJ dqN(k, q)1/I(q), (2) 

where the kernel satisfies certain well-known pro­
perties, the solution3 given by Fredholm theory 
may be written 

1/I(k) == cp(k) + AJdqD(k,q,A)cp(q) 
D(A) , (3) 

where 

D(A) == 1 + ~ Ai:D(i), :1)(;) 

;=1 

.c.}-.t I N (SV Sl) "'N(S1>S;)! 
== . 1 Ids l '" JdS; : 

1 . N(s;; sl) .•. N(sp Si) 

(4) 

is the Fredholm denominator, and D(k, q, A) is the 
Fredholm numerator which satisfies 

D(k, k', A) == N(k, k')D(A) + A JdqD(k, q, A)N(q, k'). 
(5) 

For the special class of nonhomogeneous equations 
for which 

cp(k) == N(k, k')/h(k'), 

we find by comparing Eq. (2) with Eq. (5), 

1/I(k) == D(k, k', A)/[h(k')D(A)]. 

Hence if we identify 

N(k, q) == 471g2 ~ Q I «/l2 + q2 + k 2)/2qk) 
(271)3 2kq E - q2/2m + i E 

and 
h(q) == (471q2/(271)3)(E - q2/2m + iE), 

we find 
Tt(E, k, k') == D(k, k', A)/[h(k')D(.\)]. 

The Regge poles are located at those values of 1 

(6) 

2302 
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(call one lo) for which D(A} has a zero at A = 1. 
For if D(l, AO} = 0 (where we explicitly write the 
I dependence), and4 

aD aD -ar"'"O, ~","O 

in some neighborhood of (A o, lo), we implicitly de­
termine a function AO(l) such that near 10 

and [near a simple zero of D(A)] 

If AOU O} = 1, we have 

D(l} = d(l} [(~Q/ ?~) I ] U - lo}, 
al aAo Z=l 

o 

i.e ,a Regge pole at I = to' The residues of the 
Regge poles [for a simple zero of D(A}, A = 1] 
are seen to be proportional to 

D(k, k', A}/[h(k'}], for A = 1. 

Using the standard expansion of the Fredholm 
numerator we have 

D(k, k', A) 

[ h(k')] 

= £ (1-12 + k
2 + k,2)+ A ... 

2kk' Qz 2kk' J. 
If we go onto the energy shell this become s (with 
k 2 = k'2 = 2mE) 

D(k,k',A} I 
[h(k')] on shell 

- ~ Q (1 +~) + A J "', - 4mE Z 4mE 

the first term of which has a branch point at E = 
- 1-12 /8m, which superficially seems to remain 
even at a Regge pole. To see explicitly how this 
branch cut is extinguished, we utilize a variational 
form of the Fredholm theory. 5 

The Fredholm resolvent kernel of Eq. (2) may also 
be expressed in the form 

1/I(k) = - ~ J d OD(A) !!!Jg) 
A q ON(q, k) D(A) , 

where 

(7) 

OD(A)/ON(q, k) 

is a functional derivative of the Fredholm de­
nominator D(A), with respect to the adjoint kernel 
N(q, k}. As usual, this functional derivative may be 
found by replacing N(q', k') by 

N(q', k') + 710(q' - q) O(k' - k} 

and then evaluating the first derivative with 
respect to the parameter 11 at 71 = 0. By com­
paring Eqs. (7) and (3), we can relate this kernel 
to the usual Fredholm numerator: 

D(k q A} = - D(A} B(k _ ) + ~ OD(A} . (8) 
, , A q A2 BN(q,k} 

Near a simple zero of the Fredholm denominator 

where AO depends implicitly on the kernel N(k, q}. 
Hence 

OD(A) 

oN(q, k} 

OAO od(Ao) 
---=---- d(A o) + (A - Ao) . (9) 
BN(q, k} BN(q, k} 

At A = AO the second term in (9) vanishes and by 
(8) we find 

D(k, q,Ao} 

[h(q}] 

d(Ao} BAo 
---

A~h(q} BN(q, k} 

If we approximate D(>") to the nth order in A, 
n 

D(A} f':d D n(A) = ~ (A}i!.D(i), 
i=1 

(10) 

(11) 

evaluate it at a zero of D(A), Dn(AO} f':d O,and apply 
B/BN(q, k) to this finite sum, we find (collecting 
terms) 

1 BA B(q - k} n-l 
- 0 d(Ao} = - AO ~ Ab!.D{i) 
h(q) BN(q, k} h(q} i=O 

( ) n-2 
- A5 N (k.}q ~ Ab!.D(j) (12) 

h q i=O 

where 

Nn(k,q) = foro ds 1N(k,sl)fo
oo 
dS~(Sl>S2)'" 

X foro dsn_1N(sn_2' sn-l)N(sn-l,'q) (13) 

is the nth iterated kernel. 

Since the series 

converges to D(AO) = 0, by taking enough terms we 
can make the coefficients of any given N/k, q) as 
small as desired. We will show that on the energy 
shell, Nj has no branch cuts in the left-hand E 
plane in the region 
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- (j)2",2/8 < E < O. 

Hence the sum of the iterated kernels has only a 
finite number of branch pOints located in the re­
gion (E, 0) for any finite E < O. Since the coe­
fficients of each of them may be made vanishingly 
small by taking enough terms in the expansion of 
D(~o), we find that in the limit all the branch cuts 
in the left-hand E plane are extinguished for the 
function 

1 6~0 D(k,q,~o) 
- d(~o) = - ~5 . 
h(q) 6N(q, k) h(q) 

Then from Eq. (13) we have 

(
47Tg2 .\ n-l 2 00 

= (27T)3) g fo dY1 

k,2 1 
x--- --

2y k' k,2· 
n-1 

Hence if I is such that ~o = 1, we have shown that 
the residue of 

TI(E, k, k') = D(k, k', ~o = l)/h(k')D(~o = 1) 

has no left-hand cuts on the energy shell. 

It remains only to show that the region of -analy­
ticity of the successive iterated kernels expands 
successively to the left. Let 

~
",2 + x2 + y2) 

Q(x,y) = Ql • 
2xy 

We introduce the following representation for the Legendre functions 6 : 

and hence find 

7Ti rJI+1/2(ti(2mE)1/2)HI~~/2 (ti+l (2mE)1/2)l:l(t i+1 - til J 
= - 2L+ J I+1/2(t i+1(2mE)1/2)HW1/2(ti(2mE)1/2)l:l(t; - t i+1) . 

Since we want to evaluate the iterated kernel on the energy shell for E < 0, we set k = k' = (2mE)1/2 
= ie, e > O. We can then change all the variables of integration eli = Si and find 
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Clearly, the only role the factor of IJ./ c can play is 
in damping out the integrals for large S i' Hence we 
may substitute into this expression the asymptotic 
forms 

By judicious manipulation of the theta functions, all 
the regions of integration may be made finite ex­
cept for the outermost say for S l' Since in each of 
the steps of the integration the growing exponen­
tial is dominated by the decreasing one, at worst 
each term contributes as much as 

Il+1/2(Sj)Kl+1/2(si+1)e(Si+l - s) ~ ~ 1, 

I/+1/2(SI)I I +1/2 (sn) ~ ~ e2S1 
, 

e-(fl/C)si _--) e-(Illc)sl , 

after all but one of the integrations are done. Hence 
the existence of the integral is assured if at least 

100 ds e- (nil / c-2)S I 
o 1 
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is finite, i.e., when nlJ./ C - 2 > 0 or alternatively 
when 

0> E = - c 2/2m > - n 21J.2/8m. 

Clearly, any finite number of derivatives may be 
taken with respect to the parameter IJ./ C without 
affecting the existence of the integral (since the 
exponential factor dominates the powers of sl 

which appear). Hence the nth iterated kernel on 
the energy shell is analytic on the negative real 
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This argument can be extended to show that the 
iterated kernel is analytic for 0 > ReE > - n 21J.2/ 
8m (a strip in the left-hand E plane). 
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Exact Equilibration of Harmonically Bound Oscillator Chains 
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The approach to equilibrium of a finite segment of an infinite chain of harmonically coupled, harmoni­
cally bound oscillators is treated exactly, both when the initial description of the rest of the chain is 
canonical and when it is Gaussian. The necessary mathematical properties of the bound oscillator func­
tions are developed and used to demonstrate exact equipartition of energy. The entropy of the finite 
segment, or system, is shown to evolve to a time-independent equilibrium state that is, in the limit of 
weak coupling, the correct one for a system of noninteracting harmonic oscillators. 

1. INTRODUCTION 

A finite segment of an infinite chain of coupled 
oscillators can be treated as a model of a system 
interacting with a heat bath. One of the most easily 
treated models of a thermodynamic system is one 
composed of weakly interacting individual elements, 
with the system interacting weakly with the heat 
bath. The usual chain of alternate springs and 
masses is inconvenient as such a model because 
we are unable to speak of individual-oscillator 
energies, but must instead assign energies to 
masses and to springs, or else to normal modes. 

A model more compatible with the thermodynamic 
idea of a system of weakly interacting particles, 
each with nearly its own energy, interacting through 
its boundaries with a weakly coupled heat bath 
may be formed as follows: Each mass m is strongly 
bound to its home position by a harmonic spring of 
constant K. The oscillators thus formed are set in 
a linear array, and the nearest neighbors are 
weakly coupled with harmonic springs of constant 
k. We consider an infinite linear chain of these 
weakly coupled, harmonically bound oscillators, 
with a finite segment of N oscillators regarded as 
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the system, and the rest of the chain as the heat 
bath. 

The Hamiltonian of the system is 

_ ~ (P~ !f 2 ~ _ 2\ 
H - n=~oo 2m + 2 xn + 2 (xn+ 1 Xn)"/' (1) 

and the solutions to the equations of motion have 
already been reported 1-3 to be 

00 

Xn(t) = "6 [Xn.,.(O)!y(t) + Pn• y(O)gT(t)/mn] (2a) 
y=--oo 

and 
Pn(t) = mxn(t), (2b) 

where these "bound-oscillator functions" are given 
by 

!T(t) = 1T- 1 J1T d1j; cosnjl cos[m(1 - 2y cos1j;)1I2] 
o (3) 

gr(t)/Q = .f~ !r(t')dt', (4) 

n2 = (K + 2k)/m, (5) 

w2 = kim, 
and 

y = (w/n)2 = k/(K + 2k). 

In the weak-coupling limit, with y« 1, we have 
used the approximate solutions 1 - 3 

!r(t) ~ JT(ynt) cos(Qt - rlT/2) 
and 

gr(t)::::; Jr(ynt) sin(nt - Y1T/2), 

with J
r 

the ordinary Bessel function. 

(6) 

(7) 

(8a) 

(8b) 

Statistical mechanics is introduced via our assum­
ed knowledge of the initial conditions appearing in 
Eqs. (2). As already shown,2 we can define an 
entropy 

where kB = Boltmann's constant, PN(t) is the re­
duced Liouville function, or probability density in 
the 2N -dimensional system -variable space, and 
h is a constant with the units of action, introduced 
for dimensional purposes but evidently equal to 
Plank's constant in a quantum-mechanical treat­
ment of the problem. We have been able to write 
PN (t) as 

PN(t) = (2lT)-N(detW)-1/2 exp[- X'W- 1X'/2], (10) 

where X' is a 2N-component column vector, the 
transpose of which is X' = (xl X2 ..• x HPJ. .•. PH)' 
with x,; = x~(t) = xn(t) - (xn(t», etc., and the 
covariance matrix W is given by 

w=(~G), 
G Q, 

(11) 

where M = (Mij ), etc., and 

M;,j = (xi (t)xj (t», 

and 
Qij = (p;(t)Pj(t», 

G ij = (xt(t)Pj(t» • 

(12a) 

(12b) 

(12c) 

When PN from Eq. (10) is used in Eq. (9), we obtain 
the simple expression for the entropy 

(13) 

where If = h/2lT. Thus the entropy is given entirely 
by the covariance matrix, the elements of which 
can be calculated directly from the initial probabi-
1ity density of the entire chain, by use of Eqs. (2). 
We have, for example, 

<x i (t)) = Ipox i (t) )!"" dXn (O)dpn (0), (14) 

where Eq. (2a) is used for Xi (t), and Po is the 
initial probability density, or Liouville function, 
for the entire chain. Then, since xi (t) = Xi (t) -
(x i (t», we can write 

00 

M jj = I PoX; (t)xj (t) n=I.!oc dXn (O)dPn (0), (15) 

and similarly for the other matrix elements of W. 

We may know the initial values of the system 
variables as accurately as measuring techniques 
permit, but typically the heat-bath initial condi­
tions are much less well known. As the system 
evolves, our knowledge of its variables deterio­
rates, not because the dynamical calculations are 
imprecise, but because the values of the variables 
become increasingly determined by heat-bath 
initial conditions. Our statistical description of 
the system, PN(l) of Eq. (10), evolves to a time­
independent one that can only be described as 
equilibrium. As we have already shown,1-3 
energy is equipartitioned, entropy evolves to its 
correct classical value, and the behavior of the 
system is generally in accord with expectations. 

In this paper we treat the problem exactly, using 
the functions defined by Eqs. (3) and (4), rather than 
the weak-coupling approximations of Eqs. (8). In 
Sec.2 we develop the necessary mathematical 
properties of the exact function, in Sec. 3 we treat 
the evolution of the system to equilibrium with 
a canonical initial distribution of heat-bath vari­
ables, and in Sec. 4 we treat a similar problem with 
a noncanonical initial heat bath. 

2. MATHEMATICAL PROPERTIES 

The function of Eq. (3) is rewritten as 

fn (z, y) = fn 

= IT- 1 fa IT d'O cosn 0 cos[ z( 1 - 2y cosO) 1/2] 

= (2lT)-1 f1T dO exp(inO) cos[z(l - 2y COS8)1/2], 
-IT 

(16) 
where we have used z in place of Ot and 0 <y< ~. 



                                                                                                                                    

EXACT EQUILIBRATION 2307 

In the development of mathematical properties of 
these functions, reference will frequently be made 
to convenient standard sources of material on 
transcendental functions. 4 ,5 In this waY,for exam­
ple (Ref. 5, Eq. 10. 1. 40, with t = Zy cose), we 
obtain the result 

cos[z(1 - 2y cose)1/2] 
0(} 

= Z 6 [(yz cose)n/n!lin_1(z), (17) 
ncO 

where j,,(z) = (1T/2z)1/2Jn+ 1/2 (z) is the spherical 
Bessel function of the first kind. The use of Eq. 
(17) and the identity 

" 
cos "e cosre = 2-n ~ (;) cos(r + n - 2k)e (18) 

k ~O 

in Eq. (16) leads to the expression 
0(} 

" (l-xz)Y+ 2 k • 
fy(z, y) = Z ';;0 ~!(r+krfJr+2k-1(Z). (19) 

Equation (8a) may be obtained, for y«l, by expand­
ing the square root in Eq. (16) and carrying out the 
resultant integration, or for large z, by using the 
first term of the asymptotic expansion of jn (z) 
(Ref. 4, Eq. 9.451; Ref. 5, Eq. 10. 1. 8, which is 
exact, or Eq. 9. 2. 1, or 9. 2. 5, which is equivalent to 
10.1.8). 

The Fourier inverse of Eq. (16) is 
00 

cos[z(1 - 2y cose)1/2] = ~ fn(z,y) exp(- ine) 
n=- 00 00 

= fo + 2 ~ fn(z, y) cosne, 
n=l (20) 

since fn = f-n• A power series expression, 
obtained from Eq. (19) and the expansion of the 
j 's, is 

00 (_ )ny2k+r(~z)2r+ 2n+4k 
fr (z, y) = -..;-; k'!20 k!n! (r + k)! r(r + n + 2k + }). 

(21) 
From either Eq. (19) or Eq. (21), we obtain the 
recursion relations, with f' = df /dz; 

f; = fr/z + (yz/2r){fr_1 - fr+ 1) 
and 

f: = - fy + y{fr-1 + f r+1), 

(22) 

(23) 

where Eq. (23) is equivalent to the equation of 
motion of the rth oscillator. Elimination of all 
terms except those in fr from the recursion re­
lations yields the fourth-order differential equa­
tion 

{[(zf~)' + (2z 2 - 4r2){fr/z)]' /z}, + (1 - 4y 2)fr = O. 
(24) 

For each r, four independent solutions should 
exist. These are (i) fr(z, T), as defined by Eq. (16); 
(ii) the functions obtained by replacing 
cos[z(1 - 2" cos¢)1/2] in Eq. (16) by sin[z(1 - 2" 
cos¢)1/2]; (iii) those obtained by replacing cosr¢ 
by sinr¢; and (iv) those obtained by making both 

of these substitutions. Other related functions can 
be obtained by changing y to -y, cos¢ to sin¢, and 
combining these changes with the other variations. 
Only the set numbered (i-iv) obey the recursion 
relations, Eqs. (22) and (23), and satisfy Eq. (24). 
Of these functions,fr(z, y) alone is even in z and 
r; the functions (ii) are odd in z, functions (iii) are 
odd in r, and functions (iv) are odd in both. 

The Laplace transform of Eq. (16) is 

1r (p, y) = J; e- PZfn (z, ,,)dz 

_ p[(P2 + b2)1/2 _ (P2 + a2)1/2]2r 

- [(P2 + a2)(p2 + b 2)]1/2(4y )r 
(25) 

where a = (1 - 2y)1I2 and b = (1 + 2y)1/2. This 
result is obtained most easily by first integrating 
with respect to z, and then using Ref. 4, No.3. 613-1 
in slightly modified form. From Eq. (25) and a 
well-known theorem on Laplace transforms, we 
obtain 

limfr(z, y) = limfJir(p, y) = 0, 
2;-+00 p-+ 6 ' 

(26) 

for all y s ~. The function g r (z, y), from Eq. (4), 
is 

z 
gr(z, y) = Jo fr(z', y)dz'; (27) 

its Laplace transform is g rep, y) = ir(p, y)/p, from 
which we find 

limg (z, y) = li.!Npgr(p,,,) = 0, 
z-+oo T p--v 

y < ~. (28) 

But when y = ~,the same technique yields 

limgr (z, ~) = 1//2, 
z~oo 

(29) 

a result that is to be expected from the behavior 
offr(z, ~). As may be seen from Eq. (16) or Eq. 
(25),fr(z,~) = J 2r (z-/2), from WEich it follows 
immediately thatgr(z,~) -----> 1;';2 as Z-HO. It is 
evident, both physically and mathematically, that 
the system with" < ~ (Le., K ~ 0) is intrinSically 
different from the simple chain with y = ~ or 
K = O. Since the simple chain has been treated in 
detail by us elsewhere, 2,6 we shall assume in 
this paper that the inequality y < i is strictly 
valid. 

The inverse Laplace transform, which may be 
used to obtain an asymptotic expression for 
fy(z, y), is given by 

1 c+ioo -
fr(z, y) = 21Ti ~_ too dpeZPfy(P, y), (30) 

where the path of integration is to the right of all 
Singularities of f~(P, y). Since these singularities 
are all square roots, at p = ± ia, ± ifiJ, the contour 
can be shifted infinitely far to the left except for 
the path around the four branch cuts, which extend 
infinitely to the left of the imaginary P axis, paral-
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leI to the real p axis, starting at the singular 
points. The only contributions to the integral of 
Eq. (30) come from the sections of path along the 
branch cuts. For large z, the only significant parts 
of the path correspond to Re p r::= O. Therefore the 
small-Re p expansion of the integrand along each 
of the branch cuts leads to an asymptotic expres­
sion for fy(zJ y), as 

to obtain 

00 7T o fn(z, y)fn+ m(z', y) = (21T)-1 L1T dcp exp(imcp) 
'fl=-oo 

x cos[z(1 - 2y COS¢)1/2] cos[z'(1 - 2y COS¢)1/2], 
(34) 

which may be rewritten by the use of trigonomet­
ric identities as 

00 
fr(z, y) ~ (21TyZ)-1I2[( - )r-./b cos(bz - ~1T) 

+ Va cos(az + ~1T )], (31) 6 fn(z, y)fn+m(z', y) 

where a = (1 - 2y)1/2 and b = (1 + 2y)1/2. The 
asymptotic expression (31) is somewhat more 
accurate than that of Eq. (8a), although for small 
y the expressions are essentially in agreement. 
The principal fault with Eq. (8a) lies in its failure 
to represent the phase accurately for large z, and 
not in its amplitude behavior. A recent paper by 
Agarwal7 treats the small-y approximation 
quantum mechanically. 

In Sec. 3, we shall need certain infinite sums of 
products of the functions fr and gr; these will be 
calculated here. The first of these is given by 

0() 

I; fnCz, y)fn+m(z', y) 
n:::- 00 

= (21T)-2 f1T de f1T dq, cos[ z(1 - 2y cose)1/2] -1T -1T 

x cos[z'(1 - 2y COScp)1/2] exp(imcp) 

0() 

x L:; exp[in(e + ¢)]. 
":--00 

(32) 

We simplify Eq. (32) by the use of the equivalence 

00 

'E exp(inx) = 21TO(X), (33) 
n:::-ao 

n:.::-oo 

= i [t m(z + z', y) + f m(z - z', y)]. (35) 

Similarly, we can show that 

00 1 
6 fn(z, y)dfn+m(z, y)/dz = 4" df",(2z, y)/dz, (36) 

11=:- ao 

00 1 
L:; fn(z, y)gn+m (z, y) = "2 gm (2z, y), (37) 

n==- 00 

and 
ao 
6 gn(z,y)gn+m(z,y) 

n-:-C() 

= [(1]/y) Iml /2(.1 - 21])] - F,,,(2z, y), (38) 

where y2 = 1](1 - 1]), 0 < 1] < i, and Fm is defined 
as 

F (z ) = (21T)-1 (1Tde cosme 
m ,y J 0 1 - 2y cos e 

x cos[z(1 - 2y cose)1/2]. (39) 

For present purposes, the function F m(z, y) is 
needed only for z--> (1), at which limit Pm (z , y)--> 0, 
and at z = 0, for which we have 

(n/y) Iml 
Fm(O, y) = 2(1 - 21])' 

Another type of useful sum is, for Ix I < 1, 

(40) 

t xnf+ (z, )=(~)f1T deexp(ime)cos[z(1-2ycose)1I2][exP(ie)-x], 
n= 1 n m Y 21T -rr 1 - 2x cose + x 2 

(41) 

which, for x = y/(1 - 11), can be written as 

~ (1 ~ 1]) nIn+ m(z, y) = 2yFm+ 1(z, y) - 21]Fm(z, y). 
n=l (42) 

Other similar or more complicated sums can be 
developed directly from the definitions of the 
functions involved by the techniques already shown. 
Some of these are available, upon request, as long 
as the supply lasts. s 

3. EQUILIBRATION WITH CANONICAL INITIAL 
CONDITIONS 

The entropy of Eq. (13) is obtained from the co­
variance matrix W of Eq. (11) by the use of Eq. (15) 

and its counterparts. Since our original treatment 
of the problem2,3 with non-zero-centered initial 
distributions of the system variables has shown 
that only the variances of these variables enter 
the calculation of W, we simplify the notational 
difficulties in this paper by choosing zero-center­
ed probability densities, both for system variables 
and for the heat bath. In this section, our choice of 
the initial probability density for the heat-bath 
variables is a slight generalization of the canoni­
cal one, in that we allow for different kinetic and 
potential temperatures, in the sense that the kinetic 
and potential energies of the heat bath are given 
different Boltzmann factors. We write for p({x}, 
{P}, t) at t = 0 
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x n' 

where n' denotes the product over all except the 
variables numbered 1-N, v in the last factor is 
+ 1 for n > N, -1 for n < 1, and the normalization 
denominator An is given by 

A == A == (27T/m{302a ) 1/2 r > 0 N+ r 1- r y" 
where 

a1 == 1 - y, 

and the higher a/s are given by the continued 
fraction 

(44) 

(45) 

(46) 

In all integrations involving the last factor of Eq. 
(43), we have started with the x coordinate just 
outside the system (xo or XN+ 1) and proceeded, 
through successive coordinates, away from the 
system variables. By the use of standard definite 
integrals, we establish the result, for r > 0 and 
s ? 0, that 

r+ s y 
(xN+r(O)XN+ r+ s(O) == (ym{302)-1 n~Y a Qr + s' (47) 

n 

where Q r is a series, resulting from successive 
integrations, defined by 

(48) 

which satisfies the recursion relation 

(49) 

An identical result is found for (X1_ y(0)X1_ r- s(O), 
r> 0, s ~ O. 

Although the potential energy of an oscillator is 
somewhat ambiguous for these coupled systems, 
we write the total potential energy of the heat bath 
(say r >N) as 

KooK 00 

PE == - :6 x2 + - :6 (x - X )2 
2 r=N+1 r 2 r=n y+1 r 

== (tm[P)[(l- y)xJ+1 - 2yXN+1xN+2 

+ X~+ 2 - 2yx N+2 X N+3 + ... ]; 

from this expression, we define the expectation 
value of the initial potential energy of the rth 
oscillator, r > N + 1, as 

(PE)O 

(50) 

== (m0 2/2)[(xno -y«Xr_lXy)O + (X r Xy+1)O)]' 
(51) 

exp[ -. (m{3D2/2){x~(1 - 2y) + y(xn+v - XJ2}] 

By use of Eq. (47) and the recursion relations, 
Eqs. (46) and (49), we directly obtain the result 

(43) 

1 
(PE) 0 == 2"" {3, (52) 

as should be expected. 

Also from Eq. (46) we derive an explicit expres­
sion for a

r 
as 

a == r 

y[1]Y - (1 - 1])r] - [1]r+ 1 - (1 - 1])r+ 1] 

,{1]r-1 - (1 - 1])r-1] - [1]r - (1 -1])r]' 
(53) 

where 1] appears in Eq. (38). Similarly, from Eq. 
(49) we obtai!). 

where a == lim ar == 1 - 1]. 
00 Y"""'oo 

By combining Eqs. (47), (53), and (54) we obtain 
after some manipulation a closed form for expres­
sion (47) 

(xN+ r(O)x N+ r + s (0» 

== ys(1-17)-srU+ 17 r- 1 (1-17)1-r] 

(3mo,2U(1 - 217) 
(55) 

where U::: (1 - y - 1])/(y -17). Correlation func­
tions and expectation values other than this one 
can be found at t == 0 by inspection from Eq. (43). 

We can now use Eq. (2) to find the covariance 
matrix at a later time. Using the evident con­
sequence of Eq. (43) that (xm(O)pm(O» == 0, we find 

(xn (t)xn + m (t) 

== :6 (xk(O)xy(O)!n_k(t)!n+m_r(t) 
k,r 

+ ~ (Pk(0)P r (0)gn_k(t)gn+m_y(t)/m 2o,2. (56) 
k,r 

By a complicated though elementary series of 
computations this can be expressed in a more 
readily manipulated form. 8 The result is of 
specialized interest only and is not written out 
here. 

The limiting case of large times is fairly simple, 
however, 

~2 ( 1 
(xn(l)xn+r(l)oo == m202 2(1 - 21)) 

+ __ -=-1 __ _ 
2{3mo,2( 1 - 21]) (57) 
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Similarly, 

<Xn (t)P (t)oo = 0, 
m 

(58) 

(59) 

The average potential energy and average kinetic 
energy are readily found and satisfy equipartition 
with a temperature given by 

RB T = (~2/2m) + 1/2{:l. (60) 

The entropy of the N-particle system can be com­
puted from Eq. (13). As a function of time the 
entropy approaches its equilibrium value, but it 
also exhibits oscillations. 9 These oscillations 
occur because the heat bath is affected by the 
system for a finite time and this in turn alters 
the way that the heat bath affects the system. 

As t ~ 00, the entropy S N approaches a simple 
expression. We find by a straightforward calcula­
tion that 

SN(oo) = MB + NkBln[kB T;nQ(l _1))1/2] 

+ (k B /2)ln(1 - 17)/(1 - 21)). (61) 

For large N, this approximately satisfies SN = 
NSvand if 'Y = 0 (uncoupled oscillators), this pro­
perty is exact. 

4. EQUILIBRA TION WITH NONCANONICAL 
INITIAL CONDITIONS 

Instead of starting from a set of initial conditions 
as in Eq. (43), where the masses and springs of 
the heat bath are assigned definite temperatures, 
we shall now assume an initial distribution that 
eliminates the awkward cross terms in the final 
exponent of that equation. We write 

N exp(-x2/2a2) N exp(-p;/262 ) 

Po({xt, {p}) = n9t a(21T)1/2 n91 6(21T)1/2 

exp(- p2 /2~2) exp(- x /2€2) 
x D' " D' ". (62) 

~(21T)1/2 E"(21T) 112 

The factors for the heat bath no longer have the 
form exp(- (:lH), and they are now sufficiently 
simple that all of the initial conditions for the 
covariance matrix can be read off easily. 

When these are time-developed we obtain,for 
example, 

00 
+ ,2 ~ g,._ kg,..y- k/m2f12. 

-00 
(63) 

The infinite sums in this expression have been 
calculated in Eqs. (35) and (38). 

In the limit as t~ 00, the finite sums vanish and 
the rest leaves us with 

t _ €2 + ~2 (1/) y 

(X" (t)x,,+y( »00 - 2 6r ,o 2m2Q2(1 _ 2 ) \y 
1/ (64) 

A similar calculation, using the second derivative 
of Eq. (35) with respect to z and z' (at z = z'), to­
gether with Eq. (23) yields 

(P,,(t)P,,+r(t)oo = t (m 2n2€2 + ~2)6y.o 

- ~ ym 2n2€2(B + B ). r,l r,- (65) 

Again, using Eqs. (36) and (37) we find for t~ 00, 

(66) 

As in previous calculations using a noncanonical 
distribution2,3, 6, we see a nearest-neighbor cor­
relation in momentum. 

The expression for the entropy of the N -particle 
system Eq. (13) does not yield a simple expres­
sion in this case. We can however find an 
approximate result for the case of weak coupling 
(")1« 1). With 

(67) 

we have 

(68) 

For definite, small values of N, the entropy has 
been calculated as a function of time9 with the 
result that SN(t) has the expected increasing ten­
dency with damped oscillations superimposed. The 
oscillations are less important as N is increased. 

5. CONCLUSION 

The harmonically bound chain of coupled oscilla­
tors is of interest principally as model of a 
system of weakly interacting particles approach­
ing equilibrium. Even in the case when coupling 
is not weak, however, the approach of a finite 
segment of the infinite chain to equilibrium can 
be treated exactly, with results that agree in most 
cases with our expectations. Potential and kinetic 
energies are exactly equipartitioned, when the in­
finite-time analog of Eq. (51) is used for the poten­
tial energy, even when the initial description of 
the heat bath is not canonical. 

Residual nearest-neighbor momentum correla­
tions are found, as in Eq. (65), when the initial 
description of the heat bath is not canonical, and 
nonextensive terms appear in the equilibrium 
entropy. Both of these phenomena have been 
discussed, especially in Ref. 6, and the discussion 
need not be repeated here. 
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An integral representation for the j-dimensional nonrelativistic Coulomb Green's function in momentum 
space and an expansion of this function in a series of Gegenbauer polynomials are obtained. It is shown 
that the momentum space representatives of the j-dimensional Coulomb Green's function and the related 
reduced Green's functions can be obtained by differentiation with respect to the momentum transfer of 
the corresponding functions in the one-dimensional U odd) or two-dimensional U even) case. Expres­
sions in closed form are then obtained for the momentum space representatives in the one-dimensional 
case of the full Coulomb Green's function and of the general nth excited state reduced Coulomb Green's 
function. 

I. INTRODUCTION 

Previous work1 ,2 on the j-dimensional nonrelati­
vistic Coulomb Green's function and related func­
tions has been concerned with their coordinate 
space representatives. Momentum space repre­
sentatives were treated in the three-dimensional 
case 3 ,4 and only for the full Green's function. 5 We 
will here investigate the momentum space repre­
sentatives of the Coulomb Green's function and 
related structures in the general j-dimensional 
case. 

We begin by indicating briefly the derivation of an 
integral representation [Eq. (8)] of the full j­
dimensional Coulomb Green's function in momen­
tum space, along the lines of the previous work of 
Hostler. 4 By the use of this new integral repre­
sentation we show that a relation derived earlier, 6 

connecting the coordinate space Coulomb Green's 
functions and reduced Green's functions in spaces 
of different dimensionality, has a momentum space 
counterpart [Eq. (10)] in which differentiation with 
respect to the momentum transfer raises the 
dimensionality of the momentum space structure 
from j to j + 2. 

The integral representation Eq. (8) is converted 
into an expansion of the j-dimensional momentum 
space Coulomb Green's function in a series of 
Gegenbauer polynomials (f = 2,3,4, ... ) or Tche­
bichef polynomials (f = 1) [See Eqs. (16) and (25), 
respectively], by expanding the integrand and inte­
grating term by term. This generalizes to the j-

dimensional case a previous three -dimensional 
result due to Schwinger.7 In the two-dimensional 
case the Gegenbauer expansion becomes a Legen­
dre series expansion [Eq. (27)]. 

In the one-dimensional case, the Tchebichef expan­
sion is found to lead to a closed-form expression 
for the general nth excited state momentum space 
reduced Coulomb Green's function [Eq. (71)]. This 
structure is remarkable in that it is without hyper­
geometric functions. By successive differentiation 
with respect to the momentum transfer, one can 
now generate all corresponding structures in a 
space of any higher odd dimensionality. 

n. INTEGRAL REPRESENTATION AND RE­
CURSION RELATION IN j-DIMENSIONAL 
SPACE 

The j-dimensional Coulomb Green's function in 
momentum space will be defined as the Fourier 
transform 

G (k k E) Jd f df ikl·rl-i~.r2 G ( E 
f 2' l' = r 2 r 1 e f r 2 ,r 1 , ) 

(1) 
of the coordinate space Green's function, defined 
as the solution of the differential equation 

[V~ + (2kll/r 2 ) + k 2 ]G j (r 2 ,r 1 ,E) = 6f(r2 - r 1), 

k = (2mE/1i2)1/2, Im(k) > 0 (2) 

subject to suitable regularity conditions at the ori­
gin and at infinity. Here v 2 denotes the Laplacian 
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sentatives were treated in the three-dimensional 
case 3 ,4 and only for the full Green's function. 5 We 
will here investigate the momentum space repre­
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We begin by indicating briefly the derivation of an 
integral representation [Eq. (8)] of the full j­
dimensional Coulomb Green's function in momen­
tum space, along the lines of the previous work of 
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counterpart [Eq. (10)] in which differentiation with 
respect to the momentum transfer raises the 
dimensionality of the momentum space structure 
from j to j + 2. 

The integral representation Eq. (8) is converted 
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geometric functions. By successive differentiation 
with respect to the momentum transfer, one can 
now generate all corresponding structures in a 
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The j-dimensional Coulomb Green's function in 
momentum space will be defined as the Fourier 
transform 
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gin and at infinity. Here v 2 denotes the Laplacian 
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operator of the I-dimensional space. The para­
meters k and II are regarded as independent com­
plex parameters, arbitrary except for the condition 
Im(k) > O. An integral representation of the 1-
dimensional Coulomb Green's function in momen­
tum space will be obtained here from 'the integral 
representation 8 

D /r 2 ,r 1 , E) 

1(/-3)/2(- ik(x 2 - y2)1/2(~ 2 -1) 1/2) _ 
--'-''---''-''-------------- x e Ikx~ 
(-- ~ ik(x2 - y2)1/2 (~2 - 1) 1/2)1/2<t-3) , 

x = r 2 + r1 , y = /r2 - r 1 /, 

1=1,2,3,4, ... (3b) 

of the I-dimensional coordinate space Green's 
function, by Fourier transforming the integrand, 
D 1 (r 2' r l' E). This calculation parallels closely 
that of earlier work on the three-dimensional case 
and will be reported here only briefly, to point out 
the new features that enter when one considers the 
general case of arbitrary dimensionality. 

We give details only for 1= 2,3,4, .... The one­
dimensional problem requires special attention 
(see remarks at the end of this section), but a 
separate calculation verifies that our final result 
[Eq. (8)] holds also in the one-dimensional case. 

As in the three-dimensional case, one begins with 
the integral representation 9 

1=2,3,4, ... , (4) 

of the Bessel function. One proceeds as in Ref. 4, 
but with the use of the new integral (assumed con­
vergent) 1 0 

J dlre-Ar-Bor 

=(41T)(j-l)/2r(~{f+l» 2A( )/ (5) 
(A2-BoB) j+l 2 

and the integrals obtained from Eq. (5) by differen­
tiation with respect to A or B, respectively. After 
performing the r 1 integration, one obtains a t 
integral of the form 

1 -c+ioo e a 

-2 - J - dt et(t - atA. = r(')' 7ft c-,oo " 

larc(t - a) / < 7f/2, c > Re(a), Re(A) > O. (6) 

A point of difference with the previous three­
dimensional calculation is encountered here. In the 
previous three-dimensional calculation, Eq. (6) was 
needed only for positive integral A and was readily 
established by means of the Cauchy residue theo­
rem. This method is still adequate in the general 
case of a space of any odd dimensionality; but if the 
dimensionality of the space is even, then Eq. (6) is 
needed for half-integral A and the method fails. 
However, Eq. (6) can be established quite generally 
in terms of a standard representation of the reci­
procal gamma function by translating the origin of 
the integration variable and deforming the integra­
tion contour. 11 The final integration over r 2 can 
be performed using the same integrals, based on 
Eq. (5), as the first r 1 integral. The result of this 
calculation is 

D/k2,k 1 ,E) =-(41T)/-1r(t{f+ 1»2k2 

x (k~-k2)(kt-k2)(f~2-1) +k2/k2-kl/2(~4 -1) 

[(k~ -k2)(kI _k2) -k2/k2-k1/2(~2-1)](j+3)/2' 

I = 1, 2, 3, ... , ( 7) 

where D t<k 2 ,k1' E) is the Fourier transform of 
D j(r 2 , r l' E), Eq. (.3b). A separate treatment of the 
one-dimensional case leads to the result that Eq. 
(7) holds also for f = 1. Thus as pointed out above, 
the following result obtained by using Eq. (7) in 
conjunction with Eq. (3a), holds also in the one­
dimensional case. This result is 

x e1Ti(iv- (/-1)/2) 7f 
simr[iv - ~ (f- 1)] 

. ~ /1+) d~(~ + l)iv+(j-3)/2 
21TZ +oo;arc (~~I)=O 

X (~ _ It iv +{j-3)/2 • 2 [P2(f~ 2 -1) + q2k 2( ~4 -1 )] 
[P2 _ q2k2(~2 _ 1)] (J+3)/2 ' 

1=1,2,3,4, ... , (8) 

in which 

This is the -desired integral representation of the 
I-dimensional nonrelativistic Coulomb Green's 
function in momentum space. It generalizes to j­
dimensional space the earlier three-dimensional 
result obtained in Ref. 4. It shares with this pre­
vious three-dimensional result the property of 
extracting the Z dependence of the Green's func­
tion. 12 It is this property of extracting the Z de­
pendence which makes the integral representation 
(8) attractive from the point of view of applica­
tions. Although the momentum space Green's 
function depends upon kl and k2 only through the 
two variables q and p2 and not three as allowed 
by j-dimensional rotational invariance, we prefer 
to write the functional dependence in the form 
G (k

2
,k 1 , q, E), in which the entire energy dependence 

d explicit. This will be helpful in the subsequent 
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calculations in which differentiations with respect 
to energy occur. Also, differentiation with respect 
to the energy will spoil the functional dependence 
upon only the two combinations q andP2, which for 
us will undo an apparent advantage in writing the 
Green's function as a function of only these two 
variables. 

It is now a straightforward matter to obtain the 
relationship 

which exists between the momentum space Cou­
lomb Green's functions in spaces of different 
dimensionality. One merely applies the operation 
- 21f3/q3q to both sides of Eq. (8). On the right­
hand side, one takes the derivative under the in­
tegral sign, whereby the integrand for G 1 is con­
verted into the integrand for G 1+2' That the re­
sult (10) also applies to the momentum space 
reduced Coulomb Green's functions, follows as in 
the previous work on the coordinate space repre­
sentatives. 13 We have here a prescription for ob­
taining all momentum space Coulomb Green's 
functions and reduced Green's functions in 1-
dimensional space by differentiating successively 
the corresponding functions in the one-dimensional 
(f odd) or two-dimensional (f even) case. Among 
the results to be obtained in the following will be 
the derivation of closed-form expressions for 
these structures in the one-dimensional case. 

Before proceeding, however, the one-dimensional 
problem will be considered in more detail. The 
one-dimensional Green's function of Meixner, ob­
tained by substituting 1 = 1 in Eq. (3a), is defined 
only on the semiinfinite line 0 < r < + oc;. In 
order to define a momentum space representative, 
we must in some way continue the domain of the 
function into the negative half-line and zero. 

We adopt the following prescription for this: In­
troduce Cartesian pOSition coordinates xl 2 in 
the one-dimension space, where - 00 < Xl' < + 00, 

and interpret the variables x and y of Eq.'&b) in 
the natural way as x == r 2 + r 1 and y == I x2 - Xli, 
where r 1,2 == IX1,21. One can now Fourier trans­
form and will find that the momentum space repre­
sentative is correctly given by Eq. (8) with 1 = 1. 
The mechanics of obtaining the Fourier transform 
are basically the same as in the case f = 2,3,4, 
... considered above. [The integral representa­
tion for I_1(z)/(tZ)-1 obtained by substituting 
1 = 1 in Eq. (4) does not converge, but by use of 
the relation 14 I_1(z) = I 1(z),one can express 
D 1 (r 2 ,r 1 ,E) of Eq.(3b) in terms of I 1(z)/(tz) for 
which we do have a convergent integral representa­
tion,Eq.(4) with1= 5.] 

A final remark about the one-dimensional Green's 
function will be made here for future reference. 
The free-particle limit of Meixner's Green's func­
tion takes the form 

(11) 

when the domain of his function is continued to en­
compass the whole real line, as described above. 
This Green's function is the difference of two ordi­
nary Green's functions over the whole real line, 
one corresponding to a delta func.tion source term 
at x 2 = x 1 of strength unity, and one corresponding 
to a delta function source term at x 2 = 0 of 
strength - expikr 1 • 

The full one-dimensional Coulomb Green's func­
tion, as defined above on the whole real line, like­
wise has two source terms as evidenced by the 
fact that it satisfies the Green's function equation 15 

in which there are two delta functions instead of 
only one. However, no decomposition analogous to 
Eq. (11) of the full Coulomb Green's function 
G 1 (x 2' Xl' E) into two Green's functions corres­
ponding' respectively, to the two source terms of 
Eq.(12) is known. One can check thatG~O) (x 2' x l' E) 
of Eq. (11) satisfies the free-particle limit of Eq. 
(12) .16 Also the extraneous delta function source 
term at the origin in Eq. (12) vanishes in the 
domainx 1,2> O,where G 1(X2,Xl,E) reduces to 
Meixner's original Green's function. 

m. EXPANSION IN GEGENBAUER/ 
TCHEBICHEF POLYNOMIALS 

By means of the change of variables 

t = (~ -l)(~ + 1)-1, (13) 

the integral representation (8) can be brought to 
the form 

G
1
(k

2
,kl'Q,E)= - H41f) {j-l)/2 (- 2ik)1 

p1+1 

x r (!{j + 1» en i(iv-(1-1)/2) ___ .::.1f-c-__ _ 

2 sin1f[iv - ~(f-l)] 
1 (0+) 

x-. I dtr ilJ +{j-3)/2 
21ft 1;arc(t) = 0 

x[-(f -1) + 2t2(f + 3) - (f -1)t4-4xt(1 + t 2 )] 

(1- 2tx + t2 )(/+3)/2 ' 

x=1+2k2q2p-2, 1=1,2,3,4, ... , (14) 

in which the generating function 17 

(1 - 2tx + t 2 )-V = I; tnc~(x), /) ;z! 0 ] (15) 
n=O 

of the Gegenbauer polynomials appears. One can 
expand the integrand of Eq. (14) in a series of 
Gegenbauer polynomials and integrate term by 
term. One then obtains the infinite series expan­
sion 
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Gf{kz, k1,q,E)= f; - (4rr) (J-l)/Z (- 2ik)f 
n=l pl'1 

[n + ~(/ - 3)]Z C(j-1J/2 (x) 
x r (l (f I}) n-1 

2 - .• + + 1 (I 3) , -1lI n "2 -

1=2,3,4,5,.... (16) 

As pointed out before, this result generalizes a 
previous three-dimensional result due to 
Schwinger. 7 The functional dependence upon the 
nuclear charge Z occurs in the expansion (16) only 
in the denominator [- ill + n + ~(/ - 3)]-1, the 
other factors being the same as in the free­
particle limit iv = 0. We have here in another 
form the property of extracting the Z dependence 
of the Green's function. In order to obtain Eq. 
(16), a number of reductions were necessary using 
the recurrence relations of the Gegenbauer poly­
nomials. Since these reductions are rather lengthy, 
we indicate here some of the intermediate steps. 
After expanding and integrating term by term, one 
finds the following combination of Gegenbauer 
polynomials: 

- (/ - l)C~_?)/z + 2(/ + 3)C~_+!)/z - (/ - 1)C!£;3)/Z 

- 4.x C(,!-'1)/2 - 4.x CV_+i)/2. (17) 

This is reduced to 

- 4(n - 1) C(j+1)/2 + 4(n + 1 - 2) C(J+1)/2 

pression (21) clearly breaks down if 1 = 1, hence 
the restriction of Eq. (16) to f = 2,3,4, .... In 
case 1 = 1, the expression (20) can be reduced to 

- 4(n - 1) Tn -1 (22) 

by means of the relation2o 

between the Gegenbauer polynomials and the 
Tchebichef polynomials, defined by the expansion21 

00 In 
- ~ In (1 - 2tx + t2 ) = 6 - Tn(x). (24) 

n=1 n 

The resulting expansion of the one-dimensional 
momentum space Coulomb Green's function is22 

4ik 00 n Tr/(x) 
G1(k 2 ,k 1 ,q,E) = - 6 -.-- (25) 

p2 n=1 - 1V + n 

This expansion is the momentum space form of 
the result 

00 

G1(x2,xl'E) = k (2n)-1ik(x2 _y2) 

eikx L;_1(- ik(x + y»L;-1(- ik(x - y» 
x _ iv + n (26) 

1 + 1 n-l 1 + 1 n-3 

- (I - 1) (C(J+3)/2 - 2C<i+3)/2 + C<i+3)/2) n-1 n-3 n-5 

by applying the two identities 18 

2V(xC~+1(x) - C~~!(x)] = (n + 1)C~+1(x), 

obtained earlier. 23 It is of interest to write out 
(18) the two-dimensional special case of Eq. (16) since 

in this case the series reduces to an expansion in 
Legendre polynomials24 

v"'O,-l, n=0,±1,±2, .... (19a) 
and 

2V[C~+1(x) -xC~~i(x)] = (n + 211)C~(X), 
v"'O,-l, n = 0,±1,±2, ... , (19b) 

to eliminate the two functionsxCW-+zW2 and XC~()/2, 
respectively. One now uses the identity 19 

v[C~a(x) -C~~i<x)] = (n + 1 + V)C~+1(x), 
v"'O,-l, n=O,±1,±2, ... , (19c) 

to reduce the differences C~~+f)/2 - C ~_+j)/2 and 
CW-+j)/2 - CV_+?)/2 occurring in (18). The expres­
sion (18) reduces then to simply 

which can be further reduced to 

[n + .!.(I - 3)]2 
_ 4 2 c{j-1)/2 

f - 1 n-l 
(21) 

by another application of Eq. (19c). We have here 
the basic structure occurring in the series expan­
sion (16). The last reduction leading to the ex-

00 8rrk2 (n - ~)2P n-1(x) 
G2(k 2 , k 1 , q, E) = 1) - . l' (27) 

n-1 p3 -zv+n-z 

Born terms can be separated out of these expan­
sions by repeated use of the identity25 

1 _l + iv 1 
- iv + a - a a - iv + a 

(28) 

Thus 
Gj (k 2,kl'q,E) = GjO) + gy), (29) 

where the free-particle limits are given by 

G(O) = - (41T)1/2 r (.!. f) ~ 
j k 2 _ k 2 2 qj-l' 

f = 2,3,4,5, ... 
2 (30) 

and 
G (0)= -21To(q) _ 2ik (31) 

1 k~ _ k 2 (k~ - k 2)(kl - k 2) 

Eq. (31) being the Fourier transform of Eq. (11).26 
The remainder terms g}1) are given by 

00 - iv(- 2 ik)1 
gjI) == 6 (41T)(j-l)/2 r (t (f - 1» 

n=l pl'1 
[n + ~(/ - 3)] C!£lLV2 (x) 
x. 1 ' 1=2,~,4,5, ... 

- tV + n + "2 (/ - 3) (32) 
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and 

() ~ 4illik Tn (x) SI = LJ ---~-­
n=l p2 - ill + n 

(33) 

Expressions (32) and (33) are proportional to iv 
and contain exactly the first- and all higher-order 
Born terms. By applying Eq. (28) to the expansions 
(32) and (33) one can isolate the first Born term, 
obtaining a decomposition of the form 

(34) 

in which Gil) is the first Born term, and the re­
mainder SP) now contains exactly the second- and 
all higher-order Born terms. The remainders 
SP) are easily computed and will not be written 

down here. However, we record here for reference 
the first Born terms (a derivation of these Born 
terms will be indicated below): 

GP) 
ill2ik (411)V-1lI2 r(i(J - 1» 

(k~ - k2}(k~ - k2) qf-1 ' 

! = 2,3,4, ... , (35) 

Gt(l) = ill (- Uk) In q2(_ 2ik)2 
(k~ - k2)(k~ - k2) (k~ - k2)(k~ - k2)' 

\arc(kt2 - k2 )\< 7T, \ arc(- ik) \ < ~7T. (36) 

This same separation of the Born terms expressed 
in Eqs. (29) and (34) can be achieved also by using 
the original integral representation (14).27 If we 
~ubstitute the form 

!!... (t V -3)/2 2t(t2 - 1) ) = tV-3)/2 - (J - 1) + 2t2(J + 3) - (f - 1)t4 - 4xt(l + t 2) (37) 
dt (1 - 2tx + t 2)V+1)/2 (1 - 2tx + t2)V+3)/2 

in Eq. (14) with! = 2,3,4, ... and integrate by 
parts, we find directly an expansion of the form 
(29) in which the surface term can be identified 
with the free-particle Green's function. 28 The 
other term, which is proportional to iv, is there­
fore S/l). This approach gives us directly the 
integral representation 

S (l) = ill (- Uk)! (41T) (f-l)/2 rU-(f + 1» 
f pf+1 2 

X e "iii: u-(j-1)/2] 1T 

sin1T[iv- ~(f-l)] 

1 J(O+) 1 - t2 
X - d t r iu + (/-3)/2 -:----='---~-:--._:_ 

27Ti l;arc(t)=O (1 - 2tx + t 2 )(j+1l/2' 

! = 2,3,4, 5, ... , (38) 

of the remainder term S/l). It should be stressed 

that Eq. (38) will not give the correct answer for 
the remainder term in the one-dimensional case. 
The identity (37) remains valid for! = 1, and so 
does the integration by parts, but this integration 
by parts does not separate out the one-dimensional 
free-particle Green's function Eq. (31). This is 
reflected in the fact that if we substitute! = 1 in 
Eq. (38), we obtain an expression which is still 
zero-order small in the parameter iv. The method 
can be applied also to the one-dimentional Green's 
function, but one must begin with the identity 

d ( t - x ) 2t - x(l + t 2 ) 
de t 1 - 2tx + t2 = (1 - 2tx + t2)2' 

(39) 

instead of Eq. (37). Using the same method as 
before (Ref. 28), the surface term from the inte­
gration by parts can be identified with the free­
particle Green's function, now equal to the func­
tion of Eq. (31). The remaining integral is then 

4 " "k 1 (0+) t g (l) = ~e!fiiu_1T ____ 1, dte-iIJ - x (40) 
1 p2 sin7Tiv 21Ti l;arc(t)=O 1- 2tx + t2 

Due to the vanishing of the contour integral at 
ill = 0, this expression is indeed first-order small 
in ilJ. 29 This process of separating out the Born 
terms by means of an integration by parts can be 
repeated. The identities needed for the last trans­
formation are 

d ( 2 t(f-1)/2) 

dt ! - 1 (1 - 2tx + t2 )(f-l)/2 

t<J-3)/2(1 - t 2) 
(1 _ 2tx + t 2)V+1l/2 ' ! = 2,3,4,5, ... , (41) 

and (for the one-dimensional problem) 

~ In(1 - 2tx + 12) = 2 t - x. (42) 
dt 1 - 2tx + t 2 

We have here the promised explanation of the 
from of Eqs. (35) or (36) for the first Born term. 
This Born term is the surface term which arises 
when one substitutes Eq. (41) or (42), respectively, 
into Eq. (38) or (40), and integrates by parts. The 
final integral obtained after this integration by 
parts provides an integral representation of the 
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remainder term 9/2) of Eq. (34). This remainder 
term is 

91(2) = (iv)2 (- 2ik)1(4lT)U-l)f2r(tu - 1» 
p1+1 

x eni(iv-(j-l )/2) ___ 1T ____ _ 
sinlT[iv- tU-1)J 

1 r (0+) x -), dtt -iv+(j-3)/2 
21Ti l;arc(t)=O 

X (1 - 2tx + t2 )-<J-l)/2, f = 2,3,4,6, .. " 

(43) 

or in the one-dimensional case 

g (2) = (iv)22ik e lTiiv _IT ___ l_ 
1 p2 sinlTiv 2lTi 

(0+) 
X r dt t -iv-l In(1-2tx + t 2 ). (44) 

J1 ;arc (t)=o 

The Gegenbauer or Tchebichef expansions of 9j (2) 

can be obtained directly from Eqs. (43) or (44) 
with no need of recurrence relations. The lengthy 
calculations with recurrence relations performed 
above are needed, however, to obtain the Gegen­
bauer or Tchebichef expansions (16) or (25) of the 
full Green's function including the zero-order and 
first-order Born terms. 

The closed-form expression 

s (1) - Uvikr (l_ iv){P if (1 1 - iv 2 - iv'p) 
1 - p2 21'" 

+ p-l 2 ifl (1,1 - iv, 2 - iv; p-l)} , (45) 

in which 

2 ifl (1,1 - iv, 2 - iV; z) 

= [l/r(2 - iv) hF 1 (1, 1 - iv, 2 - iv; z), (46) 

is easily derived from the integral representation 
(40) using the method of Ref. 4. Here p is defined 
as a root of the quadratic equation 

(47) 

and 2F 1 (1,1 - iv, 2 - iV; z) denotes the ordinary 
Gaussian hypergeometric function. 30 This func­
tion is divided by r(2 - iv) in Eq. (46) in order to 
exhibit the pole structure of the momentum space 
Green's function when regarded as a function of 
iv. This pole structure of the Green's function is 
contained in the gamma function factor r(l - iv) 
in Eq. (45), the other factors being analytic func­
tions of iv. 

IV. ONE-DIMENSIONAL EXCITED STATE 
GREEN'S FUNCTION IN MOMENTUM 
SPACE 

The one-dimensional ground state reduced Cou­
lomb Green's function in coordinate space has 

been treated elsewhere. 31 We will here obtain a 
closed-form expression [Eq. (71)J which expresses 
this function in momentum space and which 
applies more generally to an arbitrary excited 
state. In view of the remarks following Eq. (10), 
the corresponding three-dimensional functions can 
be obtained from this one-dimensional result by 
differentiation with respect to the momentum 
transfer. This investigation is based on the 
Tchebichef expansion (33) of 91(1), Since the theory 
of the reduced Green's function has been deve­
loped in the references cited above, the derivation 
of the new result will be brief. We here assume 
the relation 

iv = i/kav al = the first Bohr radius, (48) 

between the parameters k and iv. The calculation 
begins with the formula32 

Kl (k2 , k l , q; En) = d~ [(E - En )G 1 (k2, kv q; E)J !E=En, 

(49) 
relating the reduced Green's function K 1 and the 
full Green's function G l . The parameter iv is a 
function of the energy through Eq. (48) and the 
relation k = (2mE/1i2)1/2, 0 < arc(k) < IT [Cf. Eq. 
(2)J. It is convenient to rewrite Eq. (49) using iv 
as independent variable instead of E: 

Kl (k2 , k1, q; En) 

= Yz3d~ «iv - n)(i.V)+ n G1(k2, k1, q', E)\ 
tV \' lV 2n2 ') iv=n' 

n = 1,2,3,.... (50) 

(The energy eigenvalues En correspond to the 
values iv = n = 1,2,3, ... of the Coulomb para­
meter iv.) We now substitute for G1 (k2 , kl' q; E) 
in Eq. (50) the sum of Eqs. (31) and (33), and apply 
the operation 

OF(iv) == d~ [(iv- n)F(iv)J! (51) 
tV iv=n 

term by term. It is easy to see that the operation 
o leaves unaltered any function F(iv) which is 
analytic in the neighborhood of iv = n and simply 
evaluates it at iv = n: OF(iv) = F(n). This applies 
to the expression (31) and also to all except the 
nth term of Eq. (33). This nth term of Eq. (33) con­
tains the factor (iv - n)-l which removes the fac­
tor (iv - n)+l of 0 and leaves one with a Simple 
derivative of a function which is now regular, eva­
luated at iv = n. Thus 

4n3a~ nTI (~) 

(1 + fi)(1 + f~) - n + 1 

n 3 a3 d 
+ __ 1 _._. [(iv + n)(l -x)Tn(x)] I iv=n' 

q2 dtv 
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2aI( ill)2q2 
X = 1 - , (53) 

(1 + al(ill)2k~)(1 + aI(ill)2kV 

~ =' 1 _ 2q2 (54) 
(1 + I~)(1 + II) 

In the following we will derive an expression in 
closed form for the infinite part of the series in 
Eq.(52) (for the sum from 1= n + 1 to infinity) 
and will work out the derivative indicated in the 
last term. The derivative is evaluated by use of 
the identities 

2(1 - n II t~ - 1 
---=----
(1 + (1)(1 + f~) 

dx I 
dill iv =n n 

(55) 

and33 

(~x)Tn(X) == nCi-1(x), n = 1,2,3, .... (56) 

Thus 

n3 ay d , 
-- --, [(111 + n)(1 - x)Tn(x)] I iv=n 

q2 dIll 

5 + I2 + f2 - 3 f2 f2 
= 2n 3 ayT (!) 1 2 1 2 

n (1 + f1)2(1 + t~)2 
q2( f2 f2 - 1) 

+16n3a3nC1 (~) 12 (57) 
1 n-1 (1 + f1)3(1 + f~)3 

The key to obtaining the infinite part of the series 
in Eq. (52) in closed form is the identity34 

Tn(x)=~(pn+p-n), n=1,2,3,···, (58) 

in which p is defined by 

(59) 

{This is the same p as before [Eq. (47)], but is now 
evaluated for ill = n.} We note the inequality 

q2 
---'------ ::0 1, (60) 
(1 + f~)(1 + In 

which follows from 1 + 2 I1 I2 cosB + f~ II 2:: 0, B 
being the angle between f 1 and f 2' As a conse­
quence of (60) we have 

with 
o ::0 1/1 ::0 1T /2 • 

If we substitute the expansion (58) of the Tche­
bichef polynomial into the infinite part of the 
series in Eq. (52), this series becomes 

00 2n3a3 n(pZ + p-Z) 
1(1-) =' :B - 1 (63) 

l=n+1 (1 + fI)(1 + f~) - n + 1 

in which p has modulous unity. This series is 
visualized as the limit as h -) 1- of the series 

00 2n3a3 n(hlpl + hlp-I) 
l(h) =' :B _ 1 

l=n+1 (1 + fI)(1 + f~) -n + I 

Ihl<1, (64) 

which one is permitted to split up into a sum of 
two series. These individual series are just loga­
rithmic series of the type 

00 Zl 
In(1 - z) = - ~ T' I z I < 1.] (65) 

Thus, 

2n3ar 
l(h) = n(- h)n[e-2ni" In(1 + he-2i~) 

(1 + f 1)(1 + t~) 
+ e 2ni l/l In(1 + he 2i l/I) ] (66) 

and 

1(1-) 
4n3al(- 1)nn 

--"'----[- 1/1 sin(n21/1) + cos(n21/1) 
(1 + fI)(1 + f~) 

x In(2 cos1/1)]. (67) 

The calculations are completed by noting the 
following relations: 

cos21/1 =-);, sin21/1 = (1- );2)1/2, 

(- 1)n cos(n21/1) = Tn(n, 

(- 1)n sin(n21/1) = - (1 - );2)1/2Ci_1 ();), 

- cos-1 q (- 0 
1/2 

1/1 - (1 + Ii)(1 + f~) . 

(68) 

(69) 

(70) 

Equations (68) are just a rephrasing of Eq. (62). 
-1::0);::0 1, 

and can therefore write p in the form 

(61) The second of relations (69) can be obtained by 
differentiation of the first, with the use of Eq. (56). 
In Eq. (70) the acute angle must be taken, in con­
formity with Eq. (62). When these results and Eq. 

(62) (57) are inserted in Eq. (52) we find 
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in which the sum I < n is interpreted to mean 
zero if n = 1, otherwise to mean "Ey=-l- The nota­
tions in Eq. (71) have been defined above [Eqs. (52) 
and (54)]. We have here the desired closed-form 
expression for the general excited state reduced 
Coulomb Green's function in momentum space. 
This expression is without hypergeometric func­
tions and may be useful for applications. For the 
momentum space representative of the ground 
state reduced Coulomb Green's function, studied 
earlier in coordinate space, Eq. (71) gives 

1 R. J. White and F. H. Stillinger, Jr., J. Chern. Phys. 52, 5800 
(1970). 

2 L. Hostler, J. Math. Phys. 11,2966 (1970). 
3 J. Schwinger, J. Math. Phys. 5, 1606 (1964). 
4 L. Hostler, J. Math. Phys. 5, 1235 (1964). 
5 The term "full Green's function" refers to the ordinary 

Green's function as defined here in Eq. (2). This term is 
used when necessary to avoid ambiguity in order to distin­
guish between the Green's function of Eq. (2) and the" reduced 
Green's function," defined by 

This function, which plays an important role in Rayleigh­
SchrOdinger bound state perturbation theory, has been studied 
in the Coulomb case for n = 1 (ground state) by H. F. Hameka, 
J.Chem.Phys.47,2728 (1967};48,4810 (E) (1968); L. Hostler, 
Phys.Rev.178,126 (1969) and in Ref. 2. 

6 Reference 2, Eq. (8). 
7 Reference 3. The corresponding coordinate space result was 

obtained by Hostler [Ref. 2, Eq. (21)]. 
8 Reference 2, Eq. (5). 
9 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge U.P., London, 1962), 2nd ed., p. 177, Eq. (8), and 
the relation on p. 77 

Iv(z) = e-·ivI2Jv(ze·iI2), - 11 < arc (z) :s 111. 

10 This integral may be evaluated by first assuming A > 0 and 
B real, and then extending the result by analytic continuation. 
One introduces polar spherical coordinates in the f-dimen­
sional space, with the polar axis in the direction of B. Inte­
gration over the polar angle is evaluated using Watson's Eq. 
(9) (the fourth form), p. 79. The final integration over the 
radial coordinate uses Watson's Eq. (6), p. 386, and the con­
nection between Iv and J v (cf. Ref. 9). 

11 E. T. Whittaker and G. N. Watson, A Course of Modern 
Analysis (Cambridge U.P., Cambridge, England, 1927), 4th 
ed., p. 245. The condition Re(>.) > 0 is needed to permit one 
to deform the integration contour (cf. Jordan's lemma, p.1l5). 

12 The term" extracting the Z dependence" of the Green's 
function refers to the property of Eq. (8) of expressing the 
Coulomb Green's function as an integral whose integrand is 
the same function of k2 and kl as in the free-particle limit 
(cf. Ref. 4). 

13 Reference 2, Eq. (16). 
14 Reference 9, Eq. (8), p. 79. 
15 Equation (12) is obtained by explicitly differer,tiating the 

closed-form expression [Eq. (6), Ref. 2] for the one-dimen­
sional Green's function. The function W,v;I/2 is the Whit­
taker function as defined in H. Buchholz, The Confluent 

n = 1,2,3, .. " (71) 

- 9 - f2 - f2 + 7 f2 t2 
+412 1 2 12 

a q (1 + tyP(1 + f~)3 

4al 
+----=---

(1 + (1)(1 + f~) 

X (1 - 1;2)1/2 cos-1 
( 

q2 J 1/2 

(1 + ff){1 + f~) 

4a1 ! ( 4q2 ) 
+ -In f~) • (72) 

(1 + (1)(1 + f~) 2 (1 + f1)(1 + 

Hypergeometric Func/ion, translated by H. Lichtblau and K. 
Wetzel (Springer, New York, 1969), Sec. 2. 5. 

16 For this we need the relation 

WO;~I2(Z) = (Z/11)1/2K"/2(1z ) 

[Buchholz, Ref. 15, p. 24] Eq. (29a). 
17 Bateman, Higher Transcendental Funclions (McGraw-Hill, 

New York, 1953), Vol. II, p. 235 Eq. (16). 
18 Reference 17, Vol. I, p. 178 Eqs. (27) and (28). A great deal of 

labor is saved by defining C~(x) = 0, 1/ '" 0, n =- 1,- 2, 
- 3, ... , whereupon all the identities (19) hold for unrestrict­
ed positive or negative integral n or zero. 

19 Reference 17, p. 178, Eq. (36). 
20 Reference 17, p.184 Eqs. (3) and (6), can be combined to give 

T" l = C!.1 - xC!,n = 0,1,2,3, .... 

Equation (23) now results by use of the identity 

This last identity results if one multiplies Eq. (15) (with II = 1) 
through on both sides with the factor (1 - 2tx + t 2), and com­
pares coefficients of like powers of t on both sides of the 
resulting equation. 

21 Reference 17, p. 236, Eq. (23). 
22 If the calculation for the one-dimensional case and for the 

higher-dimensional cases are carried along together up to 
the point indicated by Eq. (20), one obtains directly the 
expansion 

~ Uk (n - I)(C;_1 - C;-3) 
G 1 = L.J , 

.=1 p2 - iv + n - 1 

in which the n = 1 term evidently drops out. If one looks at 
the free-particle limit, however, one obtains the indeterminant 
form % for this term. By treating the one-dimensional pro­
blem from the beginning as a separate case, one can arrive 
at Eq. (25) without encountering this ambiguity. 

23 Reference 2, Eq. (19). 
24 Reference 17, p. 179, Eq. (3). 
25 Cf. Ref. 3. 
26 It may be of interest to point out that Eq. (31) can also be 

obtained by summing Eq. (25) in the free-particle limit iv=O 
if we interpret the resulting series as the limit as h -> 1- of 
the series 

4ik f; h" T (x) 
p2 .=1 K 

4ikh x - h 
p2 1- 2hx + h2 
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[obtained by differentiating Eq. (24) with respect to the expan­
sion parameter). This sum can be rewritten as 

- 2ik + 2ik 1 - h2 

p2 p2 (1 - h)2 - 2h2k2q2p-2 ' 

in which the last term gives the O(q) part of Eq. (31), in the 
limit h -> 1-. 

27 This generalizes a calculation of Ref. 4. 
28 This is done by retaining an upper limit t < 1 in the surface 

term, and identifying the distribution obtained in the limit as 
t -> 1 -, along the lines of Ref. 26. 

29 The contour integral is an analytic function of iv, vanishing at 
iv = 0 [if ill = 0, there is no singularity of the integrand with-

JOURNAL OF MATHEMATICAL PHYSICS 

in the contour (see Appendix to Ref. 4)), and therefore has the 
general form iv<jl (i v), where <jl(iv) is likewise analytic in iv. 
One sees that Eq. (40) has the form 

iv' (l/simriv)' iv<jl(iv), 

which is first-order small in iv. 
30 Reference 11, Chap. XIV. 
31 Reference 2. For the treatment of the three-dimensional 

problem, see the work cited in Ref. 5. Also, see Ref. 5 for the 
definition of "reduced Green's function. " 

32 Reference 2, Eq. (15). 
33 Reference 17, p. 186, Eq. (26). 
34 Reference 17, p. 235, Eq. (20). 
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This, the second paper in a series on the motion and structure of a class of (elementary) singularities, 
extends the earlier work on "free" singularities to the interaction of these singularities with "back­
ground" gravitational and electromagnetic fields. The principle result is an unusual derivation of the 
Lorentz-Dirac equations of motion for a charged particle. The results do not depend on any ad hoc 
assumptions nor upon any renormalization, but follow uniquely from the Einstein-Maxwell equations 
applied to the elementary Singularities. A concomitant result is the time evolution of the structure of 
the singularity. 

1. INTRODUCTION 

This is the second part of a series of papers on a 
new approach to equations of motion in general 
relativity. As shown in the first paper, 1 this new 
approach is based on the structure and behavior 
of the family of null cones emanating from a 
Singular world line in space-time, where the 
singularity is a suitably defined singularity in the 
Weyl tensor. The advantage of this approach over 
other approaches to the problem of motion is that 
it gives an intrinsic description of the motion of a 
singularity in its own space-time and does not 
depend on the assumption of a regular background 
space. By applying Einstein's field equations in 
spin-coefficient formalism to the singular world 
line, we are able to derive equations of motion for 
the singularity in terms of the time dependence of 
the null cones. In addition, we obtain the concomi­
tant result that the singularity has an internal 
structure whose time development is also govern­
ed by the field equations. 

In the first paper we applied our approach to the 
Robinson-Trautman (RT) type II metrics and their 
charged counterparts, namely the Robinson­
Trautman-Maxwell (RTM) metrics. It was shown 
that these two special classes of solutions lead 
to equations of motion for "free singularities", 
i.e. singularities not interacting with incoming 
background fields. From the R TM solutions, in 
particular, we were able to obtain the Abraham 
radiation reaction force 2 in a rigorous fashion, 
with no ad hoc assumptions or mass renormaliza­
tion. 

Here we shall consider the more general case in 

which both incoming gravitational and electro­
magnetic fields are allowed to interact with the 
singularity. In Sec. 2, we give a brief review of 
the formalism. Sec.3 will deal with the motion 
and structure of a singularity in the presence of 
an incoming gravitational field in a general empty 
space (R/!lJ = 0). Then, in Sec. 4, we analyze the 
motion of a charged singularity in the Einstein­
Maxwell theory. It is here where we obtain our 
major result, namely, the derivation of the Lorentz­
Dirac equations of motion for a charged partic1e.2 

2. REVIEW OF THE FORMALISM 

A brief review of the formalism and of the basic 
assumptions will now be given. It will be assumed 
that the reader is familiar with the spin-coeffi­
cient formalism. 3 

Since our approach to motion is based on the 
properties of the null cones emanating from a 
singular world line, we begin by introducing null 
coordinates x O = u,x 1 = r, and xA,A = 2,3, such 
that ../2u is a "retarded time" parameter labeling 
a family of outgoing null hypersurfacesj r /../2 is 
a standard affine parameter measuring "distance" 
along the null geodesics lying in each u = const 
hypersurface, and x A are "angular coordinates" 
labeling the null geodesics. We then introduce a 
standard null tetrad system (Z~, n~, m~, m~) where 
l~ and n~ are real null vectors, m~ and its complex 
conjugate m~ are complex null vectors, and 

with all other scalar products vanishing. In the 
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[obtained by differentiating Eq. (24) with respect to the expan­
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29 The contour integral is an analytic function of iv, vanishing at 
iv = 0 [if ill = 0, there is no singularity of the integrand with-

JOURNAL OF MATHEMATICAL PHYSICS 

in the contour (see Appendix to Ref. 4)), and therefore has the 
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which is first-order small in iv. 
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Maxwell theory. It is here where we obtain our 
major result, namely, the derivation of the Lorentz­
Dirac equations of motion for a charged partic1e.2 

2. REVIEW OF THE FORMALISM 

A brief review of the formalism and of the basic 
assumptions will now be given. It will be assumed 
that the reader is familiar with the spin-coeffi­
cient formalism. 3 

Since our approach to motion is based on the 
properties of the null cones emanating from a 
singular world line, we begin by introducing null 
coordinates x O = u,x 1 = r, and xA,A = 2,3, such 
that ../2u is a "retarded time" parameter labeling 
a family of outgoing null hypersurfacesj r /../2 is 
a standard affine parameter measuring "distance" 
along the null geodesics lying in each u = const 
hypersurface, and x A are "angular coordinates" 
labeling the null geodesics. We then introduce a 
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l~ and n~ are real null vectors, m~ and its complex 
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with all other scalar products vanishing. In the 
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null coordinate system which we have adopted, we 
take III to be tangent to the null geodesics and 
parallelly propagate the rest of the tetrad along Zll • 
This leads to the following form for the tetrad 
vectors: 

(2.1) 
A = 2,3. 

This also leads to the following form for the con­
travariant metric tensor: 

gAl = X A _ (~~ + WfA), (2.2) 

gAB = _ (~~B + fA~B), A,B = 2,3. 

Now, the properties of each null hypersurface can 
be characterized by the two spin coefficients p and 
a defined by 

a = Zll :umllm lJ = (complex shear). 

The basic condition which we impose on this family 
of null hypersurfaces is that p and a have the 
following behavior: 4 

p = - r- l + O(r), a = O(r) (2.3) 

near r = O. Geometrically, this restriction means 
that in the neighborhood of the origin r = 0, the 
null hypersurfaces behave like cones. When con­
dition (2.3) is satisfied, and the Weyl tensor is 
singular at r = 0 (Le., it becomes infinite at r = 0), 
we call the singularity an elementary singularity. 
It is this type of singularity which we choose to 
represent matter. 

It can be shown easily from (2.3) that the 2-sur­
faces, u and r constant (Le., the cross sections 
of the "cones"), possess a metric given by 

gAB = - ty2 g~B + O(r 3), g~B = g~B (u,x
c

). 

(2.4) 

The limiting metric given by 

o - l' (2 ) gAB - 1m - - gAB 
r .... O r2 

(2.5) 

defines the limiting 2-surface, which we call the 
fundamental 2-surface (F2S). By using confor­
mally-flat coordinates, the F2S line element can 
be written most conveniently as 

A B -
dl 2 = g~B dx dx = p-2 d~ d ~ , (2.6) 

where ~ = x 2 + ix 3 and P = P(u,~, f). The quan­
tity P plays a fundamental role in our approach to 

motion. When there is an elementary singularity 
at r = 0, Einstein's field equations yield differen­
tial equations for the determination of P from 
which one can, in principle, derive all information 
about the motion and internal structure of the sin­
gularity . 

In flat space, where a similar null coordinate sys­
tem attached to an arbitrary timelike world line 
can be constructed, the F2S reduces to a unit 
sphere and P becomes l 

(2.7) 

where ill is the velocity of the timelike world line 
and 

bll = (1/2,/2) (1 + ~f, ~ + f, (~ - f)/i, ~f - 1). 

(2.8) 

It is shown in Ref. 1 that there is a unique equiva­
lence between the acceleration vector ~ll and the 
quantity Pol Po and between (fll + i ~2 ~ll) and 

(polP o + ~ p.), where ~2 '" ~ctx' It is also shown 
in that paper that P olP 0 and (p olP 0 + H2) are 
both expandable in Z = 1 spherical harmonics. 
This can therefore be used to give alternative 
expressions for equations of motion in flat space. 
For example, for motion with the Abraham radia­
tion reaction force, we have the equivalent expres­
sion 

(2.9) 

where the ,/2 is due to the fact that u is not the 
proper time. 

In the case of a general curved space with an ele­
mentary singularity at r = 0, we make the assump­
tion that the F2S is a distorted sphere, that is, we 
impose the regularity condition that 

P =P o (1 + I), (2. 10) 

where Po is the quantity defined by (2.7) and (2.8) 
and I is a regular function on the sphere, expand­
able in Z > 2 spherical harmonics, }Vith the addi­
tional property I> -1. We define PolP o to be the 
"acceleration" of the singularity, in analogy with 
the flat-space case, and take I to represent its 
internal degrees of freedom. 

In general, when space-time has an elementary 
singularity at r := 0, the field equations will yield 
an equation for PIP. Then by imposing the regu­
larity condition (2.10), we can, in principle, de­
con. pose this equation into spherical harmonics 
such that the Z = 1 part gives the equat~on of 
motion in terms of the "acceleration" P olP 0 and 
the I > 2 parts give the time dependence of the 
internal structure I. 

3. MOTION IN A GENERAL EMPTY SPACE 

In this section we will discuss the motion and 
structure of an elementary singularity in a gene-
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ral empty space (RiJv = 0). The integration of the 
field equations is done asymptotically in the neigh­
borhood of r = 0, in a manner analogous to that 
used in the far field (r ~ <Xl) analysis. 5 We start by 
considering the two coupled spin-coefficient equa­
tions 

~ = p2 + aa, ~~ = 2pa + lJ;0, (3.1) 

where lJ; 0' which represents the incoming gravita­
tational background field, is defined by lJ;o =-C "(T 
Il-'m"ZPm(T,CjJ"PO being the Weyl tensor. If condi! P 

tion (2.3), namely,p =_r-1 + OCr) and a =O(r), is 
now imposed on Eq. (3.1), it can be easily checked 
that lJ; ° must necessarily have the form lJ; ° :::= 0(1), 
i.e., lJ;0 must be a regular function of r around r 
= O. Thus, condition (2.3) excludes, for example, 
r- 5 and highe!"-order singularities whose presence 
in lJ;0, in linear theory, corresponds to the presence 
of intrinsic quadrupole and higher multipole mo­
ments. It can also be shown that condition (2.3) 
leads to the vanishing of the coefficient of the r- 4 

term in lJ;1 =-C jJ vp(TliJn"lPmrY, which means that 
the elementary singularity cannot have an intrinsic 
mass dipole moment and angular mome~.tum. 5 In 
other words, only elementary singularities of the 
nonrotating, mass-monopole type are allowed by 
condition (2.3). 

If we now assume an explicit form for lJ;0, namely 

(3.2) 

the "radial" spin-coefficient equations can be 
integrated asymptotically around r = 0 to find the 
r-dependence of the spin coefficients, metric 
variables, and tetrad components of the Weyl ten­
sor, up to the orders allowed by (3.2). Each step 
of the integration will yield a "constant" indepen­
dent of r, which will be denoted by a superscript O. 
Then, by substituting the results of the "radial" 
integration into the nonradial spin-coefficient 
equations and comparing powers of r, we can ob­
tain relationships among these "constants." The 
calculations, which are extremely tedious, are 
given elsewhere. 6 We shall merely give a sum­
mary of the results here. 

A. Tetvad components of ihe Weyl iensor: 

lJ; 2 = lJ; ~r- 3 + f2 5 2lJ; 8 + :h (521/1 a + 2t/I ~ 11/I812)r 

+ 0(r 2 ), (3.3c) 

+ OCr), (3. 3d) 

lh = [51/1g - (1/I~)2 iJl81r-2 + l/I~r-1 + 0(1). 
(3.3e) 

B. Spin coefficients: 

p = --1'-1 + .h 1lJ;81 2r 3 + k Re (lJ;8iJ1b)r 4 + 0(r 5 ), 

(3.4a) 

a = } lJ; 8r + i lJ; br2 + 0(r 3), (3.4b) 

QI = Qlo r- 1 - ~ aOiJ/8r - f2 c,0iJ/ar2 + 0(r 3 ), 

(3.4c) 

- fs tllJ;a)r 2 + 0(r 3), 

T = - ~ 5lJ;8r - fs 5lJ;br2 + 0(r 3), 

(3.4d) 

(3.4e) 

A = - ~ lJ;giJI8 + (~ IPlJ;8 - i lJ;giJIb)r +0(r2), 

(3. 4f) 

I-l = _lJ;gr-2 + l-l°r- 1 + 14 5 2lJ;8r + do 5 2lJ;'b 

-ifo lj,'gllJ;gI2)r2 + 0(r 3 ), (3.4g) 

y = -! lJ;~r-2 + yO + [i2 5 2lJ;8 - iIm(Ql 05lJ;8)]r 

+ [to 5 2lJ;'b + 10 lJ;gllJ;gI2 - -is Im(Ql05lJ;'b)]r 2 

+ 0(r 2 ), 

K = E = 1T = O. 

C. Metric l'aviables: 

w = l.. 5",8r2 + l.. 5,/,lr 3 + 0(r4) 
24 'I" 60 'I" ° , 

(3.4h) 

(3. 4i) 

(3. 4j) 

(3. 5a) 

u = -lJ;~r-1 + UO - (yO + :Yair - f2 Re «(5 2~8)r2 

-;k Re«(52~b + 2lJ;gllJ;gI2)r3 + 0(r 4), (3.5b) 

~A = ~OAr-1 + ~ lJ;8foAr + 12 lJ;'bfOAr2 + 0(r3), 

(3. 5c) 

+0(r3). (3. 5d) 

D. Line element: 

+ 2dudr + 0(r2) (dud~ + dudf) 

[ 
r2 ~_ 

- 2P2 + 0(r 4 )J d~d~ • (3.6) 
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E. Relationships ({mollg tlie "collstallts "; 

W O =A O =1/-£=O, T O =aO +f3o =O, 

~02 = i~03 = -P(u, (, f), P =]5, 

ap 
(lI0 = - -=, f30 = -ao, 

a( 

(3.7a) 

(3.7b) 

(3.7c) 

UO = /.10 =="il0 = -K, K== 5~ log P, (3.7d) 

ZO == P-l(X02 + iX03), 5Zo = - ~ 1/-'R1/-'g, 

(3.7e) 

yO=_~P/P +i-5Z0 -Im«(lI0ZO), (3.7f) 

vO = _~(yO + .yO) - ~ 1/-'g5~8, 

551/-'8 = -31/-'Nb, 

1/-g = -~Uo = 5K, 

1/-S = -5 vO + ~ 1/- R (55~8 - 4Kif8), 

51/-'R = 0, 1/-g = ~R, 

~R + 3(yO + .yO) 1/-'g = -51/-'~. 

(3.7g) 

(3.7h) 

(3.7i) 

(3.7j) 

(3.7k) 

(3.71) 

To analyze these results, we shall impose the 
regularity condition P = P 0(1 + I) and use the 
properties of the operator 5 (edth), which is de­
fined as 

1-s a (ps ) 
5TJ=2P ~ TJ (3.8) 

for any function TJ of spin weight s. It will again 
be assumed that the reader is familiar with this 
operator and the related class of spin-weighted 
functions. 7 

First, we note that (3. 7k) implies 

(3.9) 

where 50 is defined with respect to Po. This in 
turn implies that 1/-'R is an l = 0 spherical har­
monic, Le., 

1/-'~ = -M(u), (3.10) 

where J\!I(u) is related to the "mass" of the sin­
gularity. (For the Schwarzschild solution, 1/-'~ = 
-/2 km, where k is twice the gravitational con­
stant and m is the Schwarzschild mass.) NOW, con­
sider Eq. (3. 7e). Since 2 0 and 1/-'8 are, respectively, 
s = 1 and s = 2 quantities, we can write 

2 0 == (j V,1/-'8 = fj2R, (3.11) 

where V and R are both s = 0 quantities. Substi­
tuting (3. 10) and (3.11) into (3. 7e), we obtain 

(j2(V - ~ MR) = 0, (3.12) 

which implies that 

V = i MR +J, 

where J is an s = 0 quantity satisfying () 2J = O. 
By means of the coordinate freedom (' = g(u, (), 
it can be shown that J can be transformed away. 
Therefore, we have 

4 
V =="3 MR. (3.13) 

If we now substitute (3. 7f), (3. 7i), (3.10), and 
(3.13) into (3.71), we get 

M- 3M PIP = 55[K-M(R +R)]. (3.14) 

With the use of the regularity condition P = 
P o(1 + I) and the expression (3. 7d) for K, Eq. 
(3.14) becomes 

M - 3M Po/Po - 3M i/(1 + 1)25 05 0 [(1 + 1)2 

+ (1 +1) 5 05 0/-5 01'501-M2(R +R»). 

By carrying out the differentiation of the terms 
inside the bracket, we can write this equation fur­
ther as 

if - 3M Po/Po - 3M i/(1 + 1)3(5 05 0 5 0 5 01 

+ 2( 05 0/) - (1 + 1)2 5~/'551 

- M2(1 + 1)2 () 050 (R + R). 

(3.15) 

Formally, this equation can be decomposed into 
spherical harmonics such that the I = 0 part 
gives the time dependence of the "mass" M, the 
l =.1 part gives the equation of motion in terms 
of P olP 0' and the I > 2 parts give the time develop­
ment of the internal degrees of freedom I. How­
ever, due to its extreme nonlinearity, it is more 
enlightening to consider the linearized version of 
(3.15). 

Under the assumption that Po/Po, I, and Rare 
first-order quantities, the linearization of (3.15) 
yields 

M - 3M Po/Po - 3Mi = 5 05 0 5 050f + 25 05 01 

_M2 (j05o(R +R). (3.16) 

Note that since 1/;8 is expandable in spin-2 spheri­
cal harmonics starting with I == 2, R must be 
expandable in I ~ 2 spherical harmonics. Because 
of the linearity of (3.16), we can (without loss of 
generality) let R have a definite I value, Le., 
(j 05 oR = -l(l + I)R. Then the decomposition of 
(3.16) yields 

1= 0, M = 0, 

Z = 1, M Po/Po = 0, 

l ~ 2, i + 3M-1l(Z + I)[Z(Z + 1) - 2]1 

= ~M l(Z + l)(R +R). 

(3. 17a) 

(3. 17b) 

(3.17c) 
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Thus, from (3. 17a) and (3. 17b), we see that the 
singularity moves with a constant mass and zero 
acceleration, while from (3.17c) we get the solu­
tion 
1= e -u/uo 

x ( I o( ~, f) - 3 M l(l + 1) J (R + Ii) eu/uOdu) , 

where (3.18) 

(3.24) 

and in empty space RIlIlP 
(T may be replaced by the 

Weyl tensor Cill/PO. Hence, the equation for geodesic 
deviation can be rewritten in empty space as 

(3.25) 

(UO)-l = 3M- 1 l(l + 1) [l(l + 1) - 2]. (3.19) where CIlO is given by 

Equation (3.18) shows how the internal degrees of 
freedom are driven by the incoming gravitational 
field lfi8 or R. 

In the test-particle limit (M -7 0), we, of course, 
obtain fr.om (3. 17a), (3. 17b), and (3.18) the usual 
results P olP 0 = 0 and 1= 0, i.e., the .test particle 
moves along a geodesic in the regular background 
space. However, if we constrain I to be zero before 
going to the test-particle limit, we obtain an inter­
esting result: The world line of the particle is not 
only a geodesic but also part of a rigid geodesic 
congruence. To show this, we set I = 0 in (3.15) 
and decompose the resulting equation into spheri­
cal harmonics. Then we get 

l = 0, M = 0 or M = const, (3.20a) 

(3.20b) 

In the limit M -7 0, (3. 20b) implies that the world 
line r = 0 is a geodesic while (3. 20c) implies that 
R is pure imaginary, Le., 

R = ix, (3.21) 

where X is real. It follows from this that 

(3. 22) 

which shows that lfi8 is pure magnetic. As we shall 
now prove, the vanishing of the electric part of 
lfi8 implies that neighboring geodesics have zero 
relative acceleration with respect to the world 
line r = O. 

Given a time like geodesic congruence, the rela­
tive acceleration between any two neighbori.ng 
geodesics of the congruence, Ll and L2 say, is 
expressed by the equation of geodesic deviationS 

D2 Il __ TJ_ = Rill/POt t 
Du2 II p'fl(JI (3.23) 

where til is the tangent vector to the congruence 
of time like geodesics parametrized by the proper 
time u(tiltll = 1), Tjll is a vector orthogonal to til 
which connects points of Ll and L 2, D denotes 
absolute differentiation along til, and Ril "p IT is the 
Rieman tensor. The tangent vector tl' may be 
written in terms of the null tetrad vectors (lll, nil, 

mll,ml') as 

(3.26) 
and has the properties 

C~, = 0, C til - 0 .. I'" - • (3.27) 

It can be seen from these properties that C
ilil 

has 
only five independent real components. We choose 
these components to be the two complex scalars, 
Oland O2 and the real scalar 0 3 , defined by 

n - C II" .01 - - Il"m m , O 2 = -CIlJJ.lm ", 
_ -I"" 

0 3 - -Cl'lim m. (3.28) 

From the definitions of the tetrad components of 
the Weyl tensor, we can also express (3.28) as 

NOW, let I = 0 and M -70 so that the world line 
r = 0 becomes a timelike geodesic, which we can 
identify with L 1 , and lfi8 becomes pure magnetic, 
t¥8 = it) 5X' From (3. 7h) we find that in the limit 
M-70 

(3.30) 

which shows that X is an l = 2 spherical harmonic. 
Then, using this in (3. 3a)-(3. 3e), we get the follow­
ing values for lfi 0 to t¥ 4 on the world line r = 0: 

.L -!..:;(2.,.0-2· 
'I"2-12 u O'l"0- lX, 

.L 1 :;(4.1.0 ':;(2 
'1"4 = 24 uo'l"O 0:= ZuoX' 

(3. 31a) 

(3.31b) 

(3.31c) 

(3.31d) 

(3. 31e) 

[Note that the 0(1) term in t¥4 was explicitly 
evaluated by adding another term to t¥o' Le., tf,o 
= lfi8 + lfibr + t¥5r2 + 0(r 3 ).] 

Substituting (3. 31a)-(3. 31e) into (3.29), we obtain 

0 1 = O 2 = 0 3 0:= 0, (3. 32) 
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which means that C~ v = 0, or 

D2TJI' = O. 
[)u2 

Therefore, the vanishing of the electric part of 
1/;8 (under the constraint I = 0 and in the test­
particle limit M -) 0) implies that neighboring 
geodesics have ~ero geodesic deviation from the 
geodesic r = O. 

Finally, we consider how the incoming field 1/;8 
and the radiation field 1P~ are affected by the 
motion and structure of the singularity. The for­
mer is modified by the presence of the singularity 
through Eq. (3. 7h), which can be rewritten as 

(3.33) 

where use was made of the relation (55 - 55)TJ = 
2sKTJ. Thus the incoming field drives the internal 
degrees of freedom of the singularity and is in 
turn affected by the presence of the singularity. In 
the case of the radiation field, we can express 
(3. 7j) as 

I/I~ = 5 2 [i(5Z0 + 520 ) -PIP] + ~ 1/;~ 

x (551/;8 -6KJi;8) = 52[~M55(R +R) (3.34) 

- P olP 0 - il(1 + I)] + M(2KJi;8 - MJi;b)· 

In the linear approximation, this becomes 

(3.35) 

where the first term represents the contribution 
of the incoming field R and the second term repre­
sents radiation from a 2

1
-pole source. 9 

4. MOTION IN THE EINSTEIN-MAXWELL 
THEORY 

We now consider the motion and structure of singu­
larities in the presence of both incoming gravi­
tational and electromagnetic fields. Again, the 
Einstein-Maxwell equations are first integrated 
under the assumption p = --'Y- 1 + O(r) and (J = O(r), 
and the solutions are then analyzed with the use of 
the regularity condition P = P o(1 + I). The cal­
culations become much more tedious and the de­
tails, which can be found elsewhere,6 will not be 
given here. 

In the presence of a Maxwell field F v' the two 
"radial" spin-coefficient equations (3.1) get 
modified as follows: 

an - - B(J 
~ = p2 + (J(J + kCPoCPo, ar = 2p(J + 1/10' (4.1) 

where CPo' which represents the incoming electro­
magnetic field, is given by cP ° = F vt mV , and the 
coupling constant k is twice the Newtonian gravi­
tational constant C. If we again integrate (4.1) 
under the condition p = --'Y- 1 + O(r) and (J = O(r), 

we find that 1/10 = 0(1) and CPo = 0(1).6 Therefore, 
condition (2.3) excludes not only intrinsic mass 
quadrupole and higher multipole moments but also 
intrinsic electromagnetic dipole and higher mo­
ments (Le., r- 3 and higher singularities in cp ). 
In integrating the radial equations, we take 1/1£, the 
coefficient of r- 4 in the Weyl tensor, to be zero 
although it is very likely that, under condition 
(2.3),1/1£ vanishes identically, as in the empty­
space case. 

With the information that the incoming fields 1/1 ° 
and cp 0 have to be regular functions of r around 
r = 0, we may assume that they have the following 
explicit forms: 

1/1 0 = 1/18 + I/Ibr + 1P5r2 + 0(r 3 ), 

CPo = cp8 + cpbr + CP5r2 + 0(r 3 ). 

(4.2) 

We can again integrate the "radial" spin-coeffi­
cient equations asymptotically around r = 0, obtain­
ing at each step a "constant" independent of r. The 
results of the "radial" integration are extremely 
long, so we shall.give here only the relation-
ships among the" constants" and the differential 
equations for 1/19 and CP£, which are respectively 
the coefficients of r- 3 in the Weyl tensor and of 
r- 2 in the Maxwell tensor. 

A. Relationships among the "constants"; 

w O = 1/1£ = CPO = 0, TO = aO + (30 = 0, 
(4.3a) 

~02 = i~03 = -P(u,~, f), P = P, (4.3b) 

K == <55 log P, 

- ap k-
a 0 = - (3 0 = - a f - '2 cp 8cp £, 

AO = kqi85CP£ - k2(qi8cp£)2, 

(4.3c) 

(4. 3d) 

(4.3e) 

ZO == P-l(X02 + iX03), (4.3f) 

<5Zo = 2kCP8qJ'9 - ~ 1/I~1/I8 - kl/l6lcp~ 1
2 , (4.3g) 

32 1 1 -UO = - K + '3 k2
1 cP 812 cP ~ 2 - 2kcp £<5 cP 8 

- 2kqi£5CP8, (4.3h) 

J.1.o = -K + Bk21 cpgl21 cP~ 12 - 2kcp~<5qJ'g - kqJ'£t5cpg, 

(4.3i) 

yO = -~PIP + t5Zo + ~k I/Iglcp81 2 

+ ~ Im(Z05 log P), 

1P~ = i/I~, 

t51/1~ = 2kcp£qJ'~ - 2kI/l9cpgqJ'£, 

t5 cp £ = -3kcp 8 1 cp £ I 2, 

t5 cp 8 = - kqJ'£(cp 8)2 - ~ 1/;8cp £, 

(4.3j) 

(4.3k) 

(4.31) 

(4. 3m) 

(4.3n) 
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5ti~8 = -3~gl/lo - ¥ k~5Icp~ 12 + 6k4J"8cp£ti~8 
+ 2kcp8<iJ~5~8 + 10kCP5ti <iJ£ - 6k4J"£tlCP5 (4.30) 

-10k1/;8<iJ~5CP8 + l~: k21/;8Icp812Icp~12, 

tJ,g = 5K - 3k4J"8cp~K + ~ k4J"~~2cp8 + ~ k5cp~' ti4J"8 

+ 3k2~8cp 8<iJ~ I cP ~ 12 - k24J"5CP ~ I cP ~ 12 

regularity condition P = P 0(1 + 1) and assume 
that P o/P ° and I are first-order quantities. In 
addition, we carry out the analysis only up to first 
order in the coupling constant k. 

Now, since cP 8, cP ~, and 1/; 8 have spin weights +1, 
-1, and +2, respectively, we can write them as 

cp8 = tlA, cP~ = 5B, 1/;8 = ti 2G, (4.6) 

- ~k cp~ti(~84J"~) - 15k2;P8Icp~ I 25CP8 

- ¥ k2<iJ~ I cP 81 25 cP ~ - 3k24J"8(cp ~)2tl 4J"8 

(4.3p) where A,B, and G are all spin-weight zero vari­
ables. Next, from (4. 3m) we find that 

+ ~ k3CP8cp~ Icp8121cp~ 12. 

B. Diffevenlial Equations: 

(p~ - 2 (P/P) cP~ + ~ [ti(cp~ZO} + 5(cp~ZO}1 

= -ticp~ - 5(1/;~cp8}. 
(4.4) 

~~ -3(P/P}tJ,~ + kl1/;~cp812 + ~ 1/;~(tiZO + 5Z0) 

+ HZ051/;g + ZOti1/;~} = -ti5K + 3k[cp£ti(cp8K} 

+ cp~5(cp8K}1 + kcp~<iJg + tk Icp~ 12(tl2~8 

+ 5cp~' (,)2<iJ8) - 36k21cp8121cp~ 12K 

+ ~ k2[(cp ~}2tl (<iJ5<iJ~) + (cp~)25(CP5CP~)] 

+ 3k2[(cp~ti4J"8)2 + (cp~5CP8)21- ~ 

x k2lcp~ 12(~gqJ85cp~ + iil8cp8ti;P~) 

+ 9k21cp8ticp~12 + ¥k2(cp8qJ~15qJ8'5cp~ 

+ ;P8cp~5CP8·tlcp~) + 18k2Icp~15CP812 

+ 3k2[cp8(cp~)2152qJ8 + cp8(cp~}252cp8] 

- ~ k2 1 cp ~ 12(cp 8;P£15 ~8 + 4J"8cp ~51/;8} 

- 15k3Icp~14(cp8;P~ + <iJ8cpij} _ 2~5 

X k3Icp812Icp~12(cp£ti;pg + cp~5CP8) 

- ~ k3 1 cp £ 12[ 1/;g(;pgcp~)2 + ~8(cp 8cp~}21 

_ ¥ k 3 lcp£ 1
2(cp8(cp£)2Fcp£ + cp8(cp£)2l5CP£] 

(4.5) 

These results are obviously much more compli­
cated and nonlinear than those of the empty-space 
calculations. Though in principle we could extract 
equations of motion from (4.5) and (4.4), it is 
more instructive to use a linear approximation 
procedure for the present. Thus, we impose the 

which implies that 

cP~ = E(u} + O(k). (4.7) 

Then, substituting 1/;8 = ti 2G into (4.10) and using 
the commutation relation for ti and ti , we obtain 

(4.8) 

where we have also used the fact that there is a k 
in 1/;~ (c.f. Schwarzschild solution: 1/;g = - -f2 km). 
In the linear approximation, Eq. (4.8) becomes 

(4.9) 

Therefore, 1/18 is given by 

~8 = (')~R + O(k). (4.10) 

If we substitute this together with (4.7) into (4. 3n), 
we get 

(4.11) 

whose homogeneous part has the solution A =F,F 
being an I = 1 spherical harmonic. Hence, the 
complete linearized solution of (4.11) is 

A =F - ~ ER + O(k), (4.12) 

Le., 

(4.13) 

From (4. 3g) we find next that 

15Z0 =: O(k). 

Since the homogeneous part of this equation can 
be transformed away by means of the coordinate 
freedom ~' = g(u, ~), we therefore have 

ZO = O(k). (4.14) 

Now, linearizing (4.4), we obtain 
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15 05 oR = -E + 2E P o/P 0 + 2Ei + O(k). 
(4.15) 

If I is assumed to have a definite I value, Le., 
15 0501 = -1(1 + 1)/, then (4.4) can be decomposed 
such that 

E = O(k) (4. 16a) 

and 

B = -E Po/Po - [2E/l(1 + 1)]i + O(k). 
(4. 16b) 

Equation (4. 16a) implies that 

E = e + O(k), (4.17) 

where the constant e, assumed to be real, is just 
the charge of the singularity (cf. Reissner-Nord­
strom solution: cp£ = e). With this result, CP£, 
cp 8, and cp ~ become 

cp£ = e + O(k), 

cpS = 15 of - 3e 15 oR + O(k), 

(4. 18a) 

(4. 18b) 

Substituting all these into (4.31), we then obtain 

150lt'~ = -2ke2 15 0(P o/P o + [2/1(l + 1)]i) + O(k 2 ), 

which has the general solution 

It'~ = -kW(u) - 2ke 2 Po/Po - [4ke 2 /1(1 + l)i 
+ O(k 2 ), (4.19) 

where -kW(u) is the solution of the homogeneous 
part. 

Finally, we consider the linearization of (4. 5). 
Substituting into this equation the expressions for 
CP£, cpg, Cp~, lJ;8, and lJ;~ obtained preViously, we get 
to first order in k 

kW + 2ke 2 (Po/Po + ~2/2) + [4ke 2 /1(l + 1)1 

- 3kW P o/P 0 - 3kWi = 15 05 015 05 01 

+ 215 0501 - 3ke15 050(F + F) + ke 2 15 050(R +:R) 
- tke 2 (15 555R" + 5515 5R) + O(k 2 ), (4.20) 

where ~2 == ~a~a comes from the identity6 

150(Po/Po)'50(Po/Po) =-[(PO/P O)2 + ~2/2]. 

Since F and Rare 1 = 1 and 1 = 2 ~herical har­
monics, respectively, and since 15 015 0 I = 
-l(l + 1)1, Eq. (4.20) can be simplified further to 
yield 

kW + 2ke 2 (po/P o + ~2/2) + 4ke 21/l(l + 1) 

- 3kW(P o/P o) - 3kWi = l(l + 1)[l([ + 1) -2]1 

+ 6ke(F + F) - 12ke 2 (R + Ii) + O(k 2 ). (4.21) 

If we now decompose this into its different I values, 
then we obtain 

I = 0, W = O(k), (4.22) 

1 = 1, W(Po/P o) = -2e(F + F) + ~ e2 (p o/Po 

+ ~2/2) + O(k) (4.23) 

l = 2, 3 ke 2J - 3Jzwi - 241 = - 12ke2 (R + Ii) 
+ O(k2). (4.24) 

From (4.22) it follows that 

W = 12m + O(k), (4.25) 

where m is a constant which can be identified with 
the mass of the singularity. Eq. (4.24) shows that 
in this order of approximation only the l = 2 part 
of I is excited by the incoming fields. Substituting 
(4.25) into (4.23) and taking the limit k -7 0, we 
get 

12 m(Po/P o) = -2e(F + F) + ~ e2 (p o/P o + ~2/2). 
(4. 26) 

We will now prove that (4.26) is equivalent to the 
Lorentz-Dirac equation of motion. 

If the Lorentz-Dirac equation is expressed in 
terms of a parameter which is 12/2 times the 
proper time on an arbitrary time like world line 
in Minkowski space, it becomes 

(4.27) 

where ~jJijJ = 2 .. Multiplying .. this !>y ljJ and using 
the relations, IjJ~jJ = 1 and ljJ~jJ = P o/P 0' we get 

12 m(Po/Po) = 2eF"
jJi)1J + 3 e2 (P o/P o + ~2/2). 

(4.28) 

Now, since i II can be expres!>ed in terms of the 
tetrad vectors land n as ~ = l + n ,and since 

lJ II JJ II II II 

F jJ is antisymmetric, then 

(4.29) 

But from the definition of cp l' Le., cp 1 = ~ FjJ II (l jJ nil 
+ mjJm), we see that 

jJII -

F llJnIJ = CPl + CPl' 

Hence, the first term on the right of (4.28) can be 
written as 

(4.30) 

NOW, in the flat-space limit (K -7 1,1-7 0, lJ; a -7 0, 
a = 0-4) and in the test-charge limit (cp~ -70) of 
the Einstein-Maxwell solutions, the world line 
r = 0 becomes a regular world line in flat space 
and the value of cP 1 on this line can be shown to 
be 6 
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(4.31) as well as equations for the time development of 
its internal structure I. 

whe re cP 8 satisfies the equation [see (4. 3n) 1 

5 0cp8 = o. (4.32) 

Setting cp8 = ('i 0'1, we see that then (4.32) implies 
that A is an I = 1 spherical harmonic, Le., A = F. 
Therefore, (4. 30) becomes 

2eF)111 ~))1 = e/5 of o(F + F) = -2e(F + F). 

(4.33) 

Substituting this back into (4.28), we get precisely 
(4.26). Thus, we ha:ve shown that (4.26) is equiva­
lent to the Lorentz-Dirac equation, with the Lorentz 
force appearing in terms of a unique background 
field F and the Abraham radiation reaction force 
arising without the use of mass renormalization Or 
ad hoc assumptions. 

5. SUMMARY AND CONCLUSIONS 

We have considered here the extension of a new 
approach lO to equations of motion in general rela­
tivity that was presented in an earlier paper. 
This approach was based on an analysis of motion 
in terms of the structure and behavior of a family 
of null cones emanating from a special class of 
singularities, called elementary singularities. 
Imposing the condition p = ......y-l + O(r) and a = 
o (r) on a family of null hypersurfaces u = const 
in a general curved space, we were able to define 
a fundamental 2-surface (F2S) whose metric is 
specified by a function P = P(u,~, f). Byassum­
ing that this F2S is a deformed sphere, Le., P = 
P 0(1 + I), we were then able to give a,n alternative 
mode of describing motion, in which P olP 0 is 
identified with the acceleration and I is interpreted 
as internal degrees of freedom. If the Weyl ten­
sor is singular at r = 0, Einstein's field equations 
yield differential equations governing the behavior 
of the F2S, from which one could extract ~quations 
of motion for the singularity in terms of P olP 0 
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In this paper we discussed the case where the sin­
gularity interacts with both incoming gravitational 
and electromagnetic fields. We showed (to lowest 
order) how equations of motion are obtained and 
how the internal degrees of freedom are driven by 
the incoming fields (which in turn are modified by 
the presence of the singularity). In the case of a 
charged singularity interacting with a Maxwell 
field, we were able to derive the Lorentz-Dirac 
equation as a first-order approximation. This is 
the major result of our work. 

In conclusion, we would like to point out some of 
the difficulties in our approach that must be clari­
fied before it can be considered as an acceptable 
theory of motion. The primary difficulty is that it 
appears almost certain that in the neighborhood of 
the singularity at r = 0, there exists a horizon 
that prohibits external fields from penetrating to 
r = O. It thus leaves the meaning of the "external" 
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know the results of studying the higher order r 
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patible equations? Our inclination is to believe 
that these are not insurmountable difficulties but 
they nevertheless must be faced. 

The work presented here totally neglects the possi­
bility of introducing singularities with internal 
angular momentum. It now appears that by gene­
ralizing the conditions 

p = -llr + O(r), a = O(r), 

to 1 
p = - r + i~ + O(r), a = O(r), 

it is possible to study singularities possessing a 
spin structure, the resulting equations of motion 
resembling the Frenkel-Mathisson- Papaetrou 
equations. The details of this work will be dis­
cussed in a future paper. 
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The excitation for an obstacle moving with constant velocity in free space (~) is transformed to the 
scatterer's rest system (~'), and the corresponding far-field scattering U' ~ U;(g) is transformed to 2: 
to obtain U ~ Ua(G). A simple expression is derived for the scattering amplitude G in terms of the con­
ventional g, and known functional fonns U[G] give the scattered field in 2: as a complex integral and its 
inverse-distance expansion. In dyadic form,G = P"g'P, where P corresponds to transforming the ex­
citation from 2: to 2:', and p' (a planar reciprocal) to transforming the scattering from 2:' to L. Then we 
transform the Green's function surface and volume integral representations, and the multipole series 
for U', and apply the results to spherically symmetric scatterers. arbitrary small scatterers, large 
tenuous scatterers, and to cylinders and slabs. 

INTRODUCTION 

The scattering of a plane electromagnetic wave by 
an obstacle moving with costant velocity v in free 
space is determined by Einstein's procedure.1 The 
wave 4>(r, t) in the observer's system ~ is trans­
formed to the scatterer's system ~' as the incident 
wave 4>'(r't'), and the corresponding scattered 
wave U'(r' ,t') is then transformed to l,; as the re­
quired function U. We use known results of rela­
tivityl -3 and scattering4 ,5 theory, and transform 
explicit 3-vector forms in an invariant cylindrical 
basis (v,p, iP); initial forms are in spherical bases 
(1-, '9, <p; r', ~,p), and resu~s ~re~ exhibited in re­
t~r~dJft, e, qJ), present irs,8s' qJ), and mixed 
(rs' e, qJ) bases in which qJ is invariant. Earlier 
work of Yeh and Casey, 6 Censor, 7 Lee and Mit­
tra,8 and Restrick9 and TaPo is cited in context. 

Given 4> with dir~ction of propagation fi = k and 
polarization p = 0iPl + Cpi P2 = aP 1 + 6P2, we iso­
late a simple form p' = a'p! + ap 2 in <P'(k':P'p') 
and show it exhibits the invariance aspects of the 
transformation. Given the scattering amplitude 
g(r') for the conventional problem in l,;', we trans­
form only the far-!i~d U'-:;:: U~(g)!o obtain 
U ~ Ua (G) with G(R; r') a: ege' + qJg",; the known4 

functional forms U[G] give the scattered field in 
l,; as a complex integral, and its inverse-distance 
expansion. (Far fields have been transformed 
before,8-10 and a complex integral for U was ob­
tained originally by Censor7 by transforming the 
analO$ous integral for U'.) The result p·G(k; k') = 
p/·g(k') interrelates the interference effects in the 

. ~ - --two systems. In dyadiC form, G = p"·g"P, where 
p = (chi + 66)p' (k-v) correspon~!, to t!~nsfo:!:.mlng 
the excitation from ~ to l,;~ pY = (BO' + qJqJ )/p'(R" v) 
(a planar reciprocal) to transforming the scatter­
ing from l,;' to l,;. 

Then we transform surface and volume integral 
representations and multipole series, and apply 
the results to spheres, arbitrary small scatterers, 
large tenuous scatterers, cylinders and slabs. 

1. THE SCATl'ERED FIELD 

Preliminary Considerations 

We assume that system l,;' has the constant velo­
city v = vz in l,; and that the origins coincide at 
I = I' = O. An event r(z,x,y),t in 6 is specified 
in l;' by r'(z',x',y'), (' where l 

Z' =}' (z - (3et), Xl = X, y' = y, t = y(t - (3z/e), 

{3 = vic, y = (1 - (32)-1I2 (1) 

with the velocity of light given by c = (E olio)-1/2 in 
terms of the free-space electromagnetic para­
meters. USing the dyadic V = wand the identity 
I, we write 

r' =L-(r-vl),t' ==y{t-v or/c 2); 

t = yV + (1 \1) = yV + T 

The fields transform as 1 - 3 

E' = r·E + yV x Hlio, H' == f·H - yV X EEo, 

(2) 

r = V + yT = yt- I . (3) 

For the inverse of (2) or (3), we switch primes 
from left to right and replace v by - v. For t­
periodic (e- iwt) fields, from V X H == EOatE and 
V x E == - iJoalH, we have 

-II _ V x -II _ ~ HfJ.oc t 
i.i- ik -I-EEoC,' V->JI:= 0, (4) 

with k = u:/c. Thus, >JI' and its mate >JIM are speci­
fied by >JI as 

>JI' = r 0 >JI + y{3v x (V x >JI /ik) , 

>JIi~ = t·{V x >JI/ik) - y{3v x >JI; VI. >JII = O. (5) 

Similarly, to transform t'-periodic (e-iw'I') fields 
from l,;' to l,; we switch the primes and replace v 
by v and k by k'. 

We use (5), or its inverse, with explicit 3-vector 
forms in the invariant Cartesian basis (z == v,x, y) 
impliCit in (1), or in the invariant cylindrical basiS 
(V, p == x coscp + y SinqJ, Cp == v x p). or in sphericlll 
bases (f == v cose + (i sine, 8 =:;p x r,;P; r',(j',q;) 
in which only iP is invariant. Corresponding to 
r = z + p zr cose + Pr sinO, we have rl == z' + p, 
with z' = r' cose' = Y(V'r - vi) and p = r' sine' = 
r sine == (x 2 + Y 2) 1/2. The decompositions are 
general, since any direction r can be written in 
terms of the invariant direction v as r == r·w + 
(v x f) x r; then, we define in turn 8, then [p, and 
then p~and}, bJ mea~ of5'r~ cose, v x r ;p 
sine, cp x v = p, and q; x r = e. 

2328 
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Plane Waves 

In 6, we write a plane wave with direction of pro­
pagation k and polarization Ii as 

<1>= eiv(i<')p(i{), v(k) = kkor - wt, i{op(k) = 0, 
(6) 

where kop =:: 0 ensures V 04> = O. In 6', by (5) and 
(2), 

v'(k') =:: k'k.'-r' - w't', 

4>~ = k' X 4>' = p'p~lv) 

p~ =k' xp' = (-a'6 +60) op' =-a' cosQ +6 sinQ, 
(11) 

and we also have ~ == laa + 63) 0 (i{ x p) and 
P~ = (a'a + 66)0(k x p),as well as the analogs of 
(11) for p(PM) and P'(P~). (For some purposes, the 
sets k, p, PM and k' ,p' ,P~ provide natural rotated 
Cartesian bases, but we do not use them in the 
present development.) 

p' = top + y{3v x (k x p) = P'p', (7) The polarization angle Q is preserved in the sense 

where the phase v'(k') == v(k) is invariant l ,2 with 30p == 30p' == cosQ, aop =a'op' = sinQ. (12) 

k'/k :::: w'/w = y(l- (3 cosO') == l/y(1 + {3 cosO') == P'; Thus, if for fixed k we consider two different 
polarizations,Pl == a sinQl + 6 cosQ l == P[QlJ and 
1>2 == p[Q2 J, then 

cosO" = (cosO' - (3)/(1 - (3 cosO'), 

sinO" = sinO'/[y(1 - (3 cosO')], (8) 

in terms of cOSO' == kov and cosO" == k' °v. All details 
of (7) but p' have been discussed fully.l-3 Since 
the isolation of a simple form p'@) exhibiting the 
invariance aspects of the transformation is essen­
tial to our development (and provides the prototype 
for later work), we consider some elementary mat­
ters. See Censor 7 for work with p' :::: [(1 - y)v + 
y{3k]V op + y(1 - {3v ok)p, and Restrick 9 for work in 
rotated Cartesian systems. 

We write k = vokv + (v x k) x v, and introduce 
0', then 6, and then }J. and ;; by means of VOk == 
cos 0', V x k :::: 6 sin 0', and 6 x V :::: ~ and 6 x k :::: ;;. 
Thus, for a given k there is an associated invariant 
cylindrical set v, ,;, 6 (in v, p, cp), and a spherical 
set k, ii, 6 (in r, 0, cp) with 6 invariant. Since pok = 
O,we may write p:::: (I -kk)op or, equivalently, 

P = (aa + 66) op = a(aop) + 6(&oP) :::: aP l + 6P2 

:::: a sinQ + 6 cosQ, (9) 

where Q is the polarization angle. 

In the cylindrical baSiS, we have k :::: V cosO' + 
iJ. sinO', a :::: - v sinO' + iJ. cosO', and r :::: vv + 
y('j.&iJ. + 66); from (7) ,p' :::: [- v sinO' + 
& ( cosO' - (3)]P l + 6y(1 - {3 CO~0')P2' and by (8), 
p' = (-} sinO" + ji cosO")P l + 6P2. Thus, with 
(i' = -v sinO" + jJ. cosO", 

p' = (i'P l + 3P2 == (i'({iop) + 3(3 0 p) 
= (a'a + 66)op = a' sinQ + 6 cosQ; (10) 

since 1(' = to(k - {3v)/p' :::: V cosO" + ji. sinO", we 
have p' ok' = 0 as required for V' 0<J>' = O. The 
final forms of p and p' differ from those of 
Restrick9 in that his corresponding pairs of base 
vectors plus k or k' , respectively, form rotated 
Cartesian bases with one base vector in common. 

In terms of p and p , , the corresponding mates are 

4> -k-Xd.-p- e iv 
M - .,... - M ' 

PM::::k x P :::: (-&6 + 6a)o"'p:::: -a cosQ + 3 sinQ, 

(13) 

is invariant, i.e., the angle between two different 
polarizations along a ray is invariant under trans­
formation. This follows from (12), which is simply 
a consequence of the invariance of the v compo­
nents of the field (3) or (5). Thus, from 
V°<l>M == v°4>M,Le.,v oPM ==P'voPM,we have 
v·(k x p) =P'vo(k' x p');since V x k:::: 6 sinO' and 
v x k' == 6 sinO", we obtain goP sinO' = goP~P' sinn' 
which by (8) reduces to 6 0p :::: 6 0p' of (12). Simi-
~ar~y, ~'4> =_ v'4>' gi~es 6 'PM = 6 °P~ or, e9-u~valently, 
0 0 (k Xp) = 0 0 (it' X p') which reduces to a 0p :::: 
a'op' of (12) on using 6 x k:::: {i and 6 x k' = (i'. 
Thus, the invariants v o4>M an<!. v_o4> co~:r~spond, re­
spectively, to the invariants 60p and OOPM> ~nd_both 
are exhibited in (12) and in the basic form p'(p) 
of (10). The rel}ti.'?n 4>'.:4>)\'1= 4>04>~ required by 
(5) is shown in p' °PM :::: poP'M :::: cosQ sinQ[l -
cos(O" - 0') J. 

Similarly, if we transform from ~' the wave 

4>~ (H') == p'e iv,(Il,) G(H'), 1I'(H') == k'H' or' - w't', 

(} :::: (e'e' + iPcp)o(} :::: 8' sin~ + rp cos.t; {14} 

where H', 6',Cp form a special spherical set 
(in r', (j ,Cp), we obtain in 6 in terms of the corre­
sponding set H, 6, Cp (in r, ii ,(p) 

4>s (H; H') :::: p'pseivsG = Pe iP v(R)G(H); 

G(ft) 0:= (e6' + cpcp) 00' == e sin~ + cp cos~; 
II 0:= k Hor - w t 0:= v'CH'} - PV(H) s s s -, 

II(It) 0:= kItor - wi, P 0:= P'Ps :::: kjk :::: wjw; 
Ps = kjk' = wjw' :::: y(1 + (3 cose') 

= [y(1 - f3 cose)]-I; 

cose = (cose' + (3)/(1 + (3 cose'), 

sine = sine' /[y(1 + (3 cose')]. (15) 

Essentially as before for (7), the form for (} fol­
lows from P G = r o(}' - y{3V x (H' X G') with 
r = vv + y~p + (pcp), etc. We have Ii = to(R' + 
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{3V)/p == V cosE> + p sinE>, and e == fo(6' + {3p)/Ps == 
(p x It; the forms E>(6 ') are the same as (11«(111) of 
(8), and the function Ps is reciprocal to p'. The 
corresponding mates are 

cI>' -RlxcI>l-a'e ivl 
sM - s - M ' 

a~ == R' x a' == (- e'cp + cp6l)o(}l, 

cI> == R x cI> == a PeiPu 
sM s!vi'-, 

aM == R x a == ~e' + qip) o(R x a') 
== (- li$ + q;el)oG'. (16) 

If H' == 1[1, then R == it (and w == u.', etc.), and (14) 
and (15) reduce to (7) and (6) with different polari­
zations;by (13), 

pi O{') oa' O{') == P<k) 000{) == cos(Q - 52,). 

More generally, for fixed R', in terms of a 1 = 
G[!2.1]' etc, 

(17) 

is invariant. Essentiallv as before_for p, (!8) is a 
consequence ofifj oa == lP oa' and iPoGM == ~ o GAt, which 
follow from the invariance of v ocI>;M and v 0cI>~ re­
spectively. 

In terms of the dyadics 1> and i, we rewrite the 
fields as 

scattering amplitude. The normalization is such 
that 

- ReIVog(K') = (k '2 /4rr)af ==:m Ig(i')1 2 + (k'2/4rr)al, 

af = a~ == a~, :m = (l/4rr) jdn(i') , (24) 

where ;nL indicates the mean over all directions 
of observation, and aT' a~, and a~ are the total, 
scattering, and absorption cross sections. (The 
usual normalization corresponds to g/ik ' == /.) 
We regard g as known, so that u is known at least 
for r' > a' . 

We may write u functionally in terms of g as the 
complex mtegral of plane waves with complex 
direction R~ (t:)~, ~J and amplitude g(R~) given in 
(27),4 or as the series (convergent and asymptotic) 
in powers of l/k'y' and of derivatives of g(i') with 
respect to 8' and (p as in (29)4 and (54).4 We indi­
cate these functional forms symbolically by 

(25) 

where f == (1/2rr) jdQ(R') with paths as for h(l), and - - _ c _ 0 
~ == I + (i/2k'Y')D + ... ,with D as a Beltrami 
operator; see Ref.,: 4 for details;.. For the mate uM ' 

we replace g by Rd x g (or by r' x g for the last 
form). 

Thus, since g determines u, and since 
- U' ~ e-iW't'P'u

a 
== e-iw'/'hp'g == Ua' for r' ~ ro, 

cI>s' == e-iw'/'p'$(R')oa', 1>(R') = (6'6' +cW)eWR"r', 
we need only transform 

(19) 
U ' _ i(k'Y'-W'I')G'/'I., , 

a - e 1.,< r , cI>(R, H') == (00' + cPcp)PeiPvcil:J, 

vCR) == k(Ror - ct) (20) G'(f') == P'g == P'(6'gfj d cP g",) == g(r')prex'(r'). (26) 

Statement of the Problem 

We consider cI> == peik'r-iwi of (6) exciting a scat­
terer moving with v == vz in b. The scatterer is 
specified in its rest system ~' by its volume ('0'), 
surface (a'), electromagnetic parameters (E', Il'), 
etc.; the center (r' == 0) of its smallest circum­
scribing sphere (r' == a') is the origin. The exci­
tation in ~' is cI>' of (7), which we rewrite as 

(21) 

with k' == to(k - k{3v) == kp'tC' and p' == (li'li + 66) op 
as in (8) - (10). The corresponding scattered wave 
is 

(22) 

such that t/J + u == 1/1 is the solution of the conven­
tional scattering problem. 4 For r' ~ ro, with 
hex) == h~) (x) == eix/ix, we have 

u ~ ua == h(k'r')g(r'), 

g(r') == «(Hj' + CPcP) °g(r') == (j'g fJ' + cPg'l" 

where g(i') == g(i', 1[1 : p') is the corresponding 

Then, in b we isolate the corresponding amplitude 
G and use it in the functional forms (25) to con­
struct U. 

Solution 

From (5), the transform of U; for r' ~ ro is 

U
a 

== e-iw't'h(k'r')G == eivsG/ik'r', 

!I == P(kRor - wt) == k'r' - w't', s 

G(R; r') == g(r ')PG(R) == p(eg e' + rp g'l') 

== P(eo' + cpcP)og(r'), (27) 

where R == L·(r' + (3v)/p and P == P'ps(8') as in 
(15) in terms of 0' == 8' (corJ::,esponding essentially 
to the transform of (14) for R' == r'). Th«;, mates to 
U~ and Ua are U;M = r' x U~ and U aM = R x U a • 

The scattered wave in :0 is thus 

U == e-iW'/'jeik'r'oiicG(Rc;R~) == j~(R~;R~)og(R~) 
== e-iW'I'h(k'y')!fioG(.R;r'), (28) 
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the mate U M we replace G ~ Rc x G (or by Ii x G 
for the last form) and g by R~ x g. Although G 
differs essentially from g in that G-r' ~ 0, we 
showed by (58)4 and (60)4 that the operations in 
(28) are also equivalent for the present generaliz­
ation. 

The procedure of transforming U~ to obtain Ua 
was used by Lee and MittraS for the cylinder, and 
by Restrick9 for the sphere; the present form dif­
fers from Restrick's in the isolation of G = pee 9' + ijJijJ) -g. The corresponding results for U' 
and U that follow from the functional equation (27)4 
may be written in terms of the wave forms of (14) 
and (15) as 

U' = JeiY'G' = JCI>;(R~)g(R~), 

U = JeiYsG = JCI>s(H; H~)g(R~) 

The second follows from the first on transforming 
the plane wave in the complex integral, the proce­
dure used by Censor 7 with different representa­
tions for Cl>s and G. 

The present form G = P s (86' + ijJijJ) -G' makes the 
structure of the transformation of the scattering 
from ~' to ~ explicit. As discussed after (18) and 
(13), the form corresponds to the invariance of 
ijJ °G' and ijJ oG~, which follow from the invariance 
of v-U~ and voU', respectively (or equivalently of 
V-CI>;M and VoCl>~). A particular consequence of the 
form of G is that (17) applies, and since P = 1 for 
Ii = k, we obtain p'og(k') = poG(k;k'). Thus, we 
may rewrite (24) as 

Rep' -g(k') = Rep oG(k; k') = - k'2a~1 41T, 

p' og(k') = poG(k;k'}, (30) 

which enables us to int.errelate the interference 
effects in ~' and ~. Similarly for the generaliza­
tion of (24) as in (23),4 we may use (17) and (18) to 
replace the scalar products of unit vectors in ~' 
by the corresponding ones in L 

Dyadic Amplitudes 

We now complete the development by introducing 
a form of G that also makes the transformation of 
the excitation explicit. 

We rewrite the transformation (6) to (7) from ~ 
~' as 

.' = p' 'cI», p' = p(k', k) = y(1 - /3v'k) (a'a + 66), 
~ ~ (31) 

where the operator p(k', k) accounts for the change 
in magnitude and direction of the ~ polarization 
p:= «(HI + 66) op, Le.,p' = P'p' = p(k', k) -p. Simi­
larly, for the transformation (14) to (15) from 6' 
to l" 

Cl>s = ps 0Cl>~, 

Ps = pTCR, H') = (00' + ~~)/y(1 - (3v-H), (32) 

where pT accounts for the change in the ~' polari-

zation. Thus the inverse of (31) is cI»= jiT(k,k')-cI»', 
where pY (k, k') is the rElCiproca} ~f p(k')iJ i~ the 
plane perpendicular to k, Le.,p (k,k')-p(k',k) = 
i - kk. The transformation of G' of (26) to G of 
(27), in the form (32), is 

G = ps -G' == pT (ii, r') °G'. (33) 

The conventional scattering amplitude g(r') = 
g(r', k' : p') can be expressed in terms of the 
dyadic amplitude ll ,12,4 as 

g(r', k' :p') = g(r', k') 'p' , 

g(r',k') = g(r',k': a')a' + g(r',k':6)6, (34) 

where g is independent of p' , i.e., 

In terms of g and p, we rewrite G' of (26) as 

Thus we may rewrite G of (27) and (33) as 

G = ps"G' = iis"gop'op = d-p, (37) 

where the dyadic amplitude 

G(R, k) = Ps·g 'p' = pT (R, r') °grr', k') op<k', k) (38) 

is independent of p. The operator p corresponds 
to transforming the excitation from ~ to l,', and 
the reciprocal pT to tran~forming the scattering 
from ~' to ~; since g(r', k') is transverse to r' on 
the left and to k' on the right, pT performs essen­
tially as the inverse of p for the operands at hand. 
In view of the discussions after (13) and (18), the 
forms 

G == ps(ee' + cpcph~o(a'a + 66)P 
= ps(efigs'CiJ + eOgs,o + rpag 'Pa' + rpOg 'Po)p' (39) 

exhibit the consequences of the invariance of 
voCP, V°Cl>M' voU',and VoU~. 

In term~ g.f dyadics, (30) equals Rep' 0g(k', k') op' = 
RepoG(k,k)op. To consider reCiprOCity, we must 
show more of the dependence of G on the para­
meters than required here, or elsewhere in the 
text. We therefore reserve discussion for the 
Appendix. 

Interpretation 

The phase of the)ncident wave CI>' at r' = ra = 0 
and t' = to is v'(k') = va = - w'to and this is also 
the phase v' of U~ at r' and t' = to + r' Ie. The 
displacement R' = r' - ro and the interval 
t' - to = R'le are observed in l, as 

R = r - ro = r;o(r' + f3r'V) = RH, R = r'ps ' 

t-to=Rlc, (40) 
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where P" and Ii are the same as for (27). The trans­
form of the incidence event r o' to is the retarded 
event to' to with ro = Vy(vt' - /3r') = v(vt - /3R) = 
vt 0 and to = yto = t - R/ c; the displacement R 
is the retarded vector from r 0 to the observation 
position r at the present time t, and t - to is the 
time for light to travel from r 0 to r. The form 
R 2 = l:r - vlo 12 = c 2(t - to)2 corresponds to a 
spherical wave emitted from the retarded position 
vt 0 at the retarded time to' The scattered phase 
Vs (r, t) = v' (r' ,t') is the same in both systems 
and equals the phase va = - wolD of the incident 
wave c)' at r o' t' and of c) at the retarded event 
r o' to' Le., Vo = koro - wto = - <.<-'(1 - /3 cosa)lo = 
- w'to/y; thus 

Vs = P(kiior - wt) = k'r' - w'l' = - w'to 

= - w(1 - /3 cosa)to = (1 - (3 cosa)(kR - wt), 
(41) 

where - w(I - (3 cosa)t = kovt - wt = - w't/y 
is the phase of c) at the present position vt. 

By (2), we may rewrite Ua (r' , t') and U(r', t') in 
~r!ps~ of r, t, and by (40), in terms of R, t [with 
R, e, cp as before for (27) and (28)]. We may also 
work with present (simultaneous) coordinates ori­
ginating from vt (the position of r' = 0 at t): 

rs = r - vt = R - R(3V, r s' 9s ' (P. (42) 

Since, from (2), 

r' = Lors = LO(R - R/3v), 

it follows that 

r' = r/q = R/ps' 

q = l/y{1 - /3 2 sin2BJ 1 / 2 = (1 - (32 cos 2B')1/2, 

cosB' = yq cosBs = yPs(cos6 - (3), 

sine' = q sinBs = Ps sine. 

We also use mixed forms 

(43) 

(44) 

cos(Bs - e) = (1 - /3 2 sin2BJ1/2 = l/yq = cos~ 

sin(Bs - 6) = (3 sinBs = sin~ (45) 

such that is = Ii cos~ + e sin~, etc. From (44) 
and (45), 

rs/R = q/Ps = sinBs/Sine = (1 - 2/3 cose + (32)l/2 

= cos~ - /3 cosOs 

as well as R/rs = ')12 (cos~ + (3 cosBs) 
= (1 + {3 COSB/)1/2/(1 - {3 cose')1/2, etc. 

From (44) we see that r' ~ CXJ corresponds to 
R ~ rs ~ CXJ, and that (27) may be rewritten as 

Ua = (eilll/ik'R)PsG = (eivs/ikR)p;(egfJl + q;g",), 

(46) 

v' = k'r' - U."t ' = vs' (47) 

We may also rewrite G of (27) as 

G = - pit x Lo(r ' x G/) = - qPsR x (rs x foG/) 

= - P;R x (rs x r °G')/R2. (48) 

In particular, from (48) and the first form of (47) 
we obtain 

Ua = (eiv '/il?'R)[- P;qR x (rs x roG')] 
eiV'RX(rs x roG') 

ik ' y 3R3(1 - {3 cose)3 . (49) 

Comparison of Ua with the E-radiation field2 of a 
moving dipole of charge e and acceleration v shows 
that for this case eivIGI/ik' corresponds to 
-(e/47Tc 2 Eo)V' with v' = y3r-1ov = y2L ov as the 
acceleration in 6'. 

From (41) in retarded or present coordinates U , a 

is a periodic function of t with period T = 27Ty/ w' 
an interval that by (1) transforms to 6

/sas the ' 
period T' = 27T/W' of the t'-periodic function U/,i.e .. 

T' = 27T/W ' , Ts = 27Ty/W' = 27T/w(l- {3 cosa}, 
(50) 

with Ts as the dilation of T'. From the final form 
of (28), Le., (47) with G replaced by:OoG we see 
that this result for Ua also holds for U. Thus when 
in 6 ' we consider quadratic functions (energy and 
momentum) of U' that have been averaged over one 
cycle T' in t', the analogs in 6 in retarded and 
present coordinates may be interpreted as t aver­
ages over Ts' We illustrate this in the following, 
but reserve discussion of the quadratic functions 
and of conservation of energy and momentum for 
a sequel. 

Thus, we interpret S = ~ ReE x JI* in R t as s s &~ , 

the scattered Poynting vector averaged ove!' Ts. 
With U = Es, and So = Eoc/2, we have 

Ss = SoReU x U~ 

~ SoIGI 2i'i/(k'r')2 = (~lgI2/R2)R = SsaR, 

S = So/k 2 = Sop'2/k'2. (51) 

In general, the interval Ts is small enough for the 
implicit t variation of (51) in r, t to be neglected 
for practical purposes. Plots of Ssa for a small 
perfectly conducting sphere are given by Res­
trick9; he interprets S sa as the limit of the t aver­
age over an infinite interval. Since dQ(R) = 
dn(r')(ofJ' cose)/oe' cosB' =dn (r')//J;, the scattered 
flUX ~<Ps~ through t.A(H.) with RdA(R) = RR 2dQ(R) = 
Rr'2dQ(r') equals 

,M)s =s!"p;lg(r')1 2dQ(r'), Ps =y(1 +(3 cosB'), 

A = t-n(R). (52) 

From (51) or (52),dCPjdn(R) = sp;lgI2. 

The corresponding energy density is 

w. = h o(IUI2 + IUM I2) = h o lul 2 ~ Ssa/c = Wsa ' 
(53) 

and from (51) and (53) we construct 
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Ss - v~ ~ Ssa - v~a = SsaCR - J3v) = Ssa(q/PJrs 

sp;lgl2 ~ ~ SPsq31g12 ~ 
----,-- (R - $v) = r . (54) 

R2 r; s 

Since dS1(rs) = dO (r')(o(j' coses)/i:l(j' cose' = 
dS1(r')/yq3, the flux of (54) (say M>~ through Ms 
with i\dAs = rsr;dS1(r) = i sP'2dO(i')/yq is 

M>R = Sf6. (1 + P cosB')lg(r')12dQ(i\ 6. s = 6.Q(rs); 
s 

(55) 

for the corresponding flux through M(R), we re­
place D.s by D.. We regard (55) as the fundamental 
reradiated flux measure in ~. It yields 
d<PR /dS"2(R) = Sp;lgI2/y andaYR/dQ{rs ) = 
SPsQ 3 IgI 2. 

Several special values of Ua are of particular 
interest; we list key vectors and P. Corresponding 
to the forward-scattering direction in ~', 

i' = k' = V cosa' + {i. sina', 

R = k = V cos a + {i. sina, 

is = i j = v cosej + {i. sinej = (k - J3v)/8, 

cosej = (cosa - $)/8, sinej = sina/8, 

8 = {1 - 2{3 cos a + f32)1/2P = 1. (56a) 

For back scattering in ~', 

i' = - k', R = ~ = - z cosab - {i. sinab , 

is = ib = - ij' 

cosO' b = {cosa - {32)/ (1 - 13 2 cosa), 

sinab = sina /[1'2 {1 - {32 cosa)], 

{32 = 213/(1 + 13 2 ), 

1'2 = (1- t3~)-l/2= (1 + /32)/(1 - {32) 

P = ~ = 1'2 8 2 = (1 - 2/3 cosa + J32)/{1 - {32) 

= 1'2 (1 - 13 2 cosa). (56b) 

For back scattering in retarded coordinates 

R- k- -, -, - -= -, r = kb = - z cosab - Ii sina b' 
is = - (k + J3v)/ (1 + 213 cos a + {32)1/2 

cosa; = (cosa + $)/(1 + 13 cosa) 

= (cosa' + 13 2 )/(1 + 132 cosa'), 

sinab = sina'/[Y2(1 + 13 2 cosa')], 

P = (1 - /3 cosa)/(l + 13 cosa) 

= [1'2(1 + f3 2 cosa')]-l , (56c) 

where 13 2 corresponds to the relativistic sum of 
two identical velocities. For geometrical reflec­
tion from z' = 0, 

i' = k~ = - z cos a ' + {i. sina', 

1t = ky = - z cosab + {i. sinab , 

rs = iT = - z cosej + Il sinej , PT = Pb • (56d) 

SCATTERING 

For observation in the direction of motion, 

is = Ii = i' = v, es = 6 = e' = 0, 

P = P(o) = (1 - 13 cosa)/(l + /3). 

For observation back from the motion, 

rs=R=r'=-v', es =6=e'=7T, 
P = P(7T) = (1 - 13 cosa)/(l - $). 

For observation perpendicular to the motion, 
es = e' = 7T/2, 

is = i' = p, Ii = vJ3 + p(l - 13 2)1/2, 

P = P(7T/2) = (1 - 13 cosa)/(l - 13 2 ). 

For e = 7T/2, 

it = p, r' = - vJ3 + p(1 - 13 2 ) 112, 

2333 

(56e) 

(56f) 

(56g) 

rs = (- vJ3 + p)/(l + /3 2) 1/2, P = 1 - 13 cosa. 
(56h) 

Finally, for forward and back scattering in present 
coordinates, 

- -, -, V cosa + p(sina)/y i\ = ± k, r = ± rj = ± (1 _ /32 sin2a)1!2 

(1 - /3 cosa) [ 13 cosa J . 
P = 1 - 132 1 ± (1 - 132 sin2a)1!2 . (561) 

The Doppler effects are determined primarily by 
P in the form PII(:R) = lis of the phase given in (27); 
see Lee and Mittra8 for discussion, and also for 
graphs of P(O) and P(7T). In terms of es ' 

, " 13 coses ] 
P = P (a)ps(e ) = P (a)y 1 + cos{e

s 
_ e) 

1 - (3 cosa [ 13 coses J - 1+ . - 1-13 2 (1-J32 s in 2e)1!2' (57) 

the apprOXimation P ~ 1'2(1 - /3 cosa)(l + {3 coses)' 
correct at least to order 13 2 , is rigorous for es = 
0,7T/2,and 7T. 

2. ALTERNATIVE REPRESENTATIONS 

Surface and Volume Integrals 

As discussed before, 4 we may write u of (22) in the 
form (12)4 

u(r') = {h(k' Ir' - r" I), u(r"n = {ii,1/I} 
= (- k'2 /47T) f [(ii xii') ° u M + ii M O (u xii')] dA', 

(58) 
fi = V' x V' x { h o/k'2 = (I + v'v' /k'2)h o, 

fiM = V' X fi/ik' = V' x {ho/ik', 

ho = h~p(k'lr' -rill), (59) 

where A'(r") is any surface enclOSing the scatierer 's 
surface (1,' and excluding r', and ii' is the outward 
normal. [Equation (58) differs from (12)4 in_that 
it contains uM instead of V" x u(r'')/ik' and hM 
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instead of - V" x fi/ik'.] If A' = (i', the usual boun­
dary or transition conditions lead to alternative 
surface «(i') or volume ('0') integral representa­
tions, and provide integral equations for 1/1 = 4> + 
u. In particular, essentially as in (14), 4 we may 
represent u for constant parameters by 

u(r') = (-=-4:/) IlCT)'2B - 1)11 0 1/1 

- (1 - B)I1M01/lM]d'O', 

, =K' =(~)l/2 ={Be}={J.i.o/J.i.'} 
TJ k' J.i.oEo ' B 4n EO/E' ' (60) 

where the ordering for B corresponds to that in 
(4). For dispersive scattering material, the rest 
system parameters E', Il' and index of refraction 
TJ' depend on w' and therefore on v and Q'. 

For r' ~~ <Xl, we have ho(k Ir' - r" I) ~ h(k'r') 
x e-ik'r '.r", and (59) reduces to 

fi ~ Ii" = (6'6' + ifiP)e-ik'r'.r"h 

= $(- i';r")h(k'r'), 

liM ~ r' x ha = r' x q,h = q,Mil , (61) 

where if> is the form in (19). By using (61) in (58) 
or (60), it follows from u '" hg that 

g(i') = {$(- i';i"), 1/I(r")}, 

where { } represents integration over any sur­
face inclosing the scatterer, or over '0. From 
(26),4 

fi(k'lr' -r"l) = (.(0'0' + ~ cP~ )eik'(r,-r,,).a' JI c c CPc c c 

(62) 

= J$CR;;r')oCP(- R~;r"), fiM = J4Joij)M' (63) 

Substituting (63) into (58) gives the integral repre­
sentation (25) withgas in (62). 

We may rewrite U' of (22) as 

U' = {X; 1J;}, X' = fi(k' Ir' - r" I)p'e-iw,t" 

(64) 

and, by (61), 

U' '" U~ = he-iw't'G', G' = p'{ifj, 1J;} = P'g. (65) 

By (5), the transform of U' in 6 is 

U = {X,1/I}, :iC = or(li - y{3vx liM)p'e-iw't', 
- - - .... _ -iw't' 

3CM = (rohM + y{3v x h)p'e (66) 

For r' '" <Xl, from (61) and the forms in (19) and 
(20) , 

X", Xa = P(OO + ifiP) ohae-iw,t, 

= ~(R, 10'; r') 0$(- 'i'; r")/ik'r', 

- ~ - 4>Mo~ ~0;P M 
X M ~ R x lea = ik'r' = ik'r' . (67) 

Substituting (67) into (66), we obtain 

U '" Ua = he-iw't'G, 

G = P(e{j' + l,Ocp) o{~, 1/1} = P(69' + ifiP) og (68) 

~s given originally in (27). Using (63) in ic and 
X M , we have 

(69) 

which when substituted into (66) gives the integral 
representation of (28) in terms of (62). Alter­
natively, we could start from (28) in terms of 
G as given in (68), then identify XandXM of (69) in 
the result, and then relate Xto ii, etc. 

In terms of spherical waves, 

fi = (~'-9' + cpcp)Je l + i'i'H I , 

hM = (-O'cp + cpe')ih l , 

hI = hl(x) = h~)(k Ir' - r" I), 

Je l = ax(xhl)/x, 

where hI = h(- i + l/x) and Je l = ihl, - h/x2 • If 
r' ~ 00. we pave Je l ~ ihl ~ h(k' I r' - r" I) ~ 

I I -1,k'r' ·r" -2 
h(k r)e and HI ~ O(r' ), th~n (70Lsim-
plifies to (61). The corresponding Je and JeM of 
(66) may be represented in various ways in dif­
ferent coordinate systems. It is useful to keep 
the right- hand vectors in i' ,8 ' , (p and to express 
the left-hand vectors in terms of is,e,and (p. 

Thus 

3C /p' e -iw't' = (60' + ;P;P) :JLI + r .(i' JLy + r' :JLl), 
:JL} = y(Je l + ih 1f3 cose'), 

:JL~ = [(ih l - Je I )y(3 sine]!cos~, 

:JLl =HI/cOS~, 

XM/p'e- ;w't' = (_ ~ + ~9') ~i + i\cP~~ 

+ ~r'~l' 

(71) 

~here th~ basis r~ciprS!.cal to r .;.,6,;P is R/cos~, 
6.1 cos~, cp. Since r. ~= R c0!i.~ + 6 ~in~, we could 
regroup into forms R Al + 6A2 + cp A3 , but the 
present forms are simpler and more similar to 
(70). If r' ~ <Xl, we have :JLI ~ ~i ~ P h and the 
remaining terms are O(r'-2)j then (71) simplifies 
to (67). We always have :JLy = ~y 0:: h/x 2 = O(x- 3 ). 
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Special Function Series 

Similarly the procedures discussed before4 for 
generating the series representation of u can be 
generalized to u. The Hansen functions satisfyl1,4 

IMl V' }N l .- n J -ik'r'.R' \c(r()} 
)N J = fiT x 1M \ = 1 e c )iB(R~) 

~ hi -n {c(r') \ 
iB(r') , 

(72) 

B = r' XC, c = - i' x B, 

m ~ ) 

U == :0(mte - imb)i" = U(e,b), UM = U(b,- e), 
(79) 

which also fo~19'fs directly from (5) on transform­
ing U' =P'e- twt u with u as in (76). The corres­
ponding scattering amplitude is 

G=:0(ec +CBb)=P(ege' +;Pg'l')' 

em = (roc'" - (3v- x Bm)p' == P(60 - - 0 )ym 
" n y" f/lfJ'n, 

(80) 
where M = ~m(k', r'), C = C" (r' , etc., with 

Since h" (x) has the form e ix times a p'olynomial 
in l/x, we may fac.tor u in the form e HS

[ ], where 
Jen = o x(xh,,)/x , the phase factor etvs was discussed for Ua. 

subscripts usually suppressed. In terms of 

H" = n(n + l)h,,/x, 

x = k'r', (73) 

and the spherical harmonics Y:;(IJ', cp) normalized 
as before 4, 

o = (sinO') -10 '1', 

'rhe functional forms M(C) and N(B) of (72) are 
also satisfied by mt(e) and m(<8); thus, if we sub­
stitute the present series G(e,<8) into the complex 
integral inj28), we ~ai~9btain (79). Censor7 de­
composed r og - yfl v x (Rc x g) as a series of 
vector spherical harmonics involving P:; as well 
as C:; and B:;, and obtained a series for U involv­
ing 4m(r') as well as ~m and N"m' - -
Essentially as before for :JC and:JC M' we resolve 
the analogs m and mt/i into components along 

Ifr'~(j),thenhn~ (nh , Jen~ i-n
+

1h andHn~O(x-2). rs,e,andcp: 
The analogs with h ~1) replaced by j" are written M1, N1. 
The Green's function (59) may be written 11,4 

_ 00 n 

h == 6 6 [~m(r')M~._m(rll) + NN1 ](-I)mdn , 
n=l m=-n 

dn = (2n + 1)/n(n + 1), (75) 

and hM has M(r') and N(r') replaced by -iN and 
-iM (corresponding to MM and N M). By substitut­
ing into u of (58) we obtain (36)4 

u = 6(Mc - iNb)in == u(e,b), uM=u(b,-e)=w 

(76) 

where e == cnm = Cn(-I)mdJM~._m,1/I},and b == b"m 
has MI replaced by NI. Similarly, as in (37)4, 

g = 6(Cc + Bb) 

m"m/P' e -iw't' 

== l'JL~(6ae' + ;Pal +rs('JL~ae' + 'JL~)lY"m, 

where 'JL~, 'JL~ = ;J1l;, etc. are the forms given in 
(71) for :JLi, :JLI' etc., with 111 (h I r' - r" I), HI' and 
Je l , replaced by 1I,,(k'r'), H,., and Je". 

Alternative representations may also be construc­
ted by using (106)4 and (108)4, 

- ~ -
h = zN IO + i Re Nll + Y 1m N11 = h(N), 

hM/i = h(M), (82) 

and the analogs 
= :6 [9'(eo + bOe') + Cp(-eorj + bo)lY:; 

= O'ge' + (pg<p. 

The corresponding form of 3C is 

(77) 3C(N, M)/p'e-iw't' = zNIO + xy(Re Nll + ifl 1m M
ll

) 

+ yy (1m NIl - i(3 Re Mll ), 3C M =3C(M,N). 

(83) 

:re == 6 [mtMl + m.N1](-1) m d", 

mt = (roM + iy(3V x N)P'e-iw't' == mt(M, N), 

m. = mt(N, M) (78) 

and:JC M has mt and m replaceo by -im and -imt. 
Substituting into (66), we obtain 

General Decompositions 

Alternative representations and decompositions 
may be more useful for special computations. 
Thus from (5) in the form 

-iw't' - -
U/p'e ='U=r ou-y{3v x w, 

w = UM == V' X u/ik', (84) 
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we have in the invariant cylindrical basis 

<lJ. = zu. + py(u p - (3w",) + q;y(u", - (3wp) 

= i'U. + p'Up + CP'U",. (85) 

We rewrite the scalars in terms of the spherical 
components as 

'U
• , . lJ' 

• = U r , cose - Ue' sino, 

'Up/y = Uri sine' + U e, cose' + (3w"" 

'U", = y(u", - Wf)I(3 cose') - wrl {3y sing' 

= 'U'i'1 - wr ' {3y sine' 

and can express (z, (j) in (R, e), or (I's' e J, or 
(i', e'), or in a mixed system. 

In il, 0, cp, we have 

<lJ. = R'UR + e'Ue + ~'U'i" 

'lilt = u r ' - (us I - W'" )y{3 sine, 

(86) 

'lie = (u r , y{3 sine + us,)p s - (u(JI - w",)y{3 cose, 

(87) 

with 'U"" as in (86). The representation in r s' e, cp 
is simpler: 

<lJ. = rs 'U~ cos~ + e'U
e + ~'U"" 

'lie = y(uw + w",{3 cose'), (88) 

Here 'U
e is similar to 'U"'l' and all terms but these 

become negligible as r' ~ <Xl. The behavior of the 
terms can be seen from (76) and (74): 

u(c,b) = ~ [r11 + ii'J2 + ~/3] Y::'i n
, 

w=u(-b,c), 

11 = - ibH, 12 = cha - ibJeotJ" 

h = - cho s' - ibJeo, 
" ~ ~] mn 'U = iLJ[rsF1 + 8F2 + tpF 3 Yn i , 

F 1 =;}fL2 (co - bow) - 'J'I.,3b, 

F 2 = - ;mIco - 'J'(,1bos" 

F 3 = ;}fLlcOf)' - 'J'(,lbo + ;m3c . (89) 

As r' ~ <Xl, 'Us(a, °0 ,) and 'U"'1 = 'U
El (_ oS" 0) re­

duce to hoPsgf)' and h9Psg~. On th; other hand 
Uo, - w'" = L.(h + iJe)tco - bOtJ')Yi ,as well as 'Uri 

and W r ', become negligible. 

Spherical Scatterers 

For spherically symmetric scatterers we have 
cnm = p'o C~m(k')(- 1) mcn , and Similarly for bnm• 

For a homogeneous sphere, 11 with <I> = Eo in 
terms of x = k'a' and X == K'a' == 1J'X 

an (B) == 

(90) 

where 8" is the form Jen of (73) with hn replaced 
by jn' Restrick9 discusses a different decomposi­
tion of U a in terms of the coefficients cn and bn 
for a sphere, and gives numerical results for a 
perfect conductor (B e --7 <Xl in cn , and B m -> 0 in 
bn ) for small k'a'. Censor7 considers a different 
decomposition of U and specializes the result to 
dipoles . 

For spherical symmetry, we write the dyadic scat­
tering amplitude (35) for the conventional problem 
essentially as in (90),4 

00 

gCi', tt,) = 6 (en Cn + Bnbn), 
n_1 

Bn = (r'v r,)(k'V k' )Pn (?ok'), c = - r' x B x k' n n 
(91) 

such that g = gop'. Here r'V r' = 8'tle, + cpo ",I sine', 
etc., and Pn is the Legendre POlynomial. In terms 
of 

Qn = ioxPn(x) +k'r'a~Pn(x), x = k'or' (92) 

We obtain 

En = (iJliJl + cp[P)oQn o (O'a' + 66), 
en = - (- iJlcp + cpiJl)'oQn 0(- &'6 + 6a') 

= - r' xQ n xk'. (93) 

Thus, for the corresponding relativistic problem, 
G of (38) equals. 

00 

G = HI (encn + <Bnbn), &n = PsOQnopl, 

e =-R><ffi xk=-Pso(r'xQnxk')op', 
n n 

cBn = ps(ee' + ~~)oQn 0 (a'a + 66)p', 

en = - Ps(- 8[P + ~jj')o,t 0(-a'8 + 8a)p', (94) 

from which we obtain G = Gop. If <I> = Eo, then bn 
and cn correspond to electric and magnetic mul­
tipoles, respectively. If only the dipoles are signi­
ficant, w~ retain only PI = X, and Q1 reduces to the 
identity I. For the perfect conductor, b I ~ - 2c I ~ 
i(k'a')3 (the case considered by Restrick9 ), and for 
homogeneous spherical dipoles, b1 ~ i(k'a')3 x 
(E' - EO)/(E' + 2Eo) = beE', EO) and c i ""b(/-L', /-La); 
to include scattering losses, we replace these first 
approximations for b i or c i by b- 21b 12/3. If 
the quadrupoles are also significaJ,lt, then, from 
P 2 = i(3x 2 - 1), we get Q2 = 3lt'°i'I + 3k'r', etc, 

The corresponding dyadic scattered wave ii such 
that u = iiop' is 

Mn =:= t M"m(r')c~m(k')(- Om = hnC,. 
m=-n 

= hn (- iJ'cp + [pe') oRn X k', 
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III 

Nn = 6 Nnm (r')B~m(k')(- l)m 
m~-n 

= :Ie R + H r'r"P ft-'n n n' 

P = a Pn(o'o + 66). 
" x 

(95) 

Similarly, the relativistic dyadic U, such that u = 
D'p, equals 

:5t = 6~B'P'(- l)m, 

:5t,./e- iw'/!= lJl~(eB' + 0/0/) + Jl~rs6']'Bn'P' 

+ ;:rr~rJ"i\ 'p', 
~n/ie-iWIl' = l~~ (- eiP + 0/6') 

+~~iso/] ,0\ x k')'P' + ~~q;i"'(Pn x k')'P' 
(96) 

where B = (6'9' + iPiPt'B for comparison with (95), 
and '!Ie may rewrite mL in tetms of P~ = .i' X P' = 
P' xk. We obtain a form of mL more similar to 
the final form of M in (95) by replacing the terms 
in ~l and ~2 by l;m~ (89' + iPiP) -~~rs6']·Cn 'P', 
where the form in bra{;kets is now clo§€ to th~ 
corresponding one of :n. The dyad~cs :n1 ~nd ~di 
are identically the dipole dyadics3C(k'r')'p'/P' and 
XM'P'/p' of (71). The set:5t2 and :JT'2/i are sym­
metrical quadrupole dyadics, etc. 

Arbitrary Dipoles 

If q. = Eo, in terms of (99),4 the scattered wave for 
a general electric dipole with moment 6 is ' 

-".. -iw't r - .,.. 
Es = De 'p ~ he Ge 'p, 

Ue = Je(k'r', w't')· b'p', 
G

e 
= Ps 'b'p' = Ps (86' + 0/q;).1). (a'a + 66)P'. 

(97) 
For a magnetic dipole with moment c, we have 

E =U- ·p-~he-iw't'G .p~ U =-~ ·c·p-' 
s m m' m M m' 

Gm = - PSM'c'PM = - R x [p, 'c'p'] x k 
= - p s • [r' x c x k'] 'P' , (98) 

where PsM = Ps (- 8iP + iP9') and PM = p'(- a'6 + 
6a). The sum Ue + Um = U is the result for a 
general particle with dimensions small compound 
to l/k'. We have 

nal wavelength. If b = b 11 and c = C II, we get the 
corresponding special results for a small sphere. 

Tenuous Scatterers 

From (66) and (60), we have 

Es = (ik'3/41T) 1{[(E' - EO)/EO] ie'1/I 

- [(Il' - Ilo)/Il'] Je M·1/IM}dl)'. (100) 

If E' ~ EO and Il' ~ Iln, we may use the Rayleigh­
Born approximation 1/1 ~ cpo For small k'3l)', we 
obtain the special case of (99) with 

b = fik'3l)' (E' - EO)/41TEO = Ib = 1)O(E', EO), 

c = bo(Il', Ilo) = Ie. (101) 

If k'3l)' is not small, we useG = G'P, 

G = Ps '(bo - r' x Co x k')'P' 8, 

!J = 1eik,(k,-r,).r" dl)'(r")/l)', (102) 

where !J is the conventional Rayleigh-Born inte­
gral. The usual explicit results for d(r,. k') may 
be rewritten in r, k in terms of k' = L' (k - (3v)/p' 
and i' = f.. (R - (3v) Ps = f.. r"q. 
In the forward direction r' = k', Ii = k, from 
the eikonal approximation, 

G = (Cia + 66)(b + e) de' 

de = 1 ei(K'-k') (i;'-i;[) dl)'(r') ~ 1 + ik'(TJ'- l)l', 

(103) 
where C' is approximately half the scatterer's 
mean thickness13 along k'. We usej.~' = k"r' and 
1/1 = cp(~o) exp[iK'(~' - ~o)] with ~Qk' as the impact 
point on <1/ for the ray through r'. 

Cylindrical Scatterer 

Results analogous to (21) ff. hold outside the smal­
lest circumscribing circle (of radius a') for an 
arbitrary cylinder with generator along y, and k' 
and r' in the plane y = O. For this case we use5 

2n 
h(x) = e iX (2/1TX) 1/2e- i1T/ 4 , 'JI1 = (l/21T) 10 de', 

1 = (1/1T) 1 dec, (104) 

where h is now the asymptotic form of H~l), and 
the path of 1 is as for H8"); also h'.D(k'r'; at,) of 
(11)5 provides the complete asymptotic series, 
and (34)14 the converging series. Thus, since 
Ii = P = x and 6 = cp = y, the analog of (27) is 

D ~ U
a 

= p-iw't'h(k'r')G =eillsG(2/1Tk'r')1/2e-i1T/4, E s = ('0 e + U m)'P ~ h(k'r' )e- i 
w' t'G 'P, 

G = P, ·(6 - r' x eX k') 'p', (99) G = p(ee' + YY).g (105) 

which follows directly on substituting g of (101)4 
into (38). If (3 ~ 1 and k = v (Le., for large veloci­
ties and excitation along the motion) then all par­
ticles become small compared to l/k' = (A/21T) x 
(1 + (3)1/2/(1- (3)1/2, where A = 21T/k is the origi-

with k'r = kr cos(e - a) and P = a sinQ + y cosQ 
in the incident wave and vs =Pv(R) =P[krcoS(e - e) 
- wt] for the scattered phase. The rest follows 
through (30) with the factor k'2/41T in (24) and (30) 
replaced by k' / 4. The essential difference is that 
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now we cannot factor eivs in the form of U obtained 
from (34)14 [which involves e -,w't, H~l) (k'r') and 
-,w,t' .,n) ( )] e iti k'r'; however, we can factor the com-

plete asymptotic series (11)5 so there is full cor­
respondance for moderate to large k'r'. 

The scattering amplitude g for <I> = Eo may be 
written 

h = B'B'X 1 + yyHo + r'r'-H1 , 

liM = (- e'y + ye')iH 1 , 

Ho = Ho(x) = Hb1)(k'lr'- rill), 

(112) 

ik,r·r" 
g = O'ge' +ygy = fi'gm sinQ + yge cosQ, (106) If r' ~ co, then Xl ~ iH 1::, No ~ he- with 

h(k'r') as in (104), and H1 ~ O(x-3 / 2 ). 

where g m corresponds to the standard function for 
the scalar problem of H parallel to a generator, 
and ge corresponds to E parallel. 13 In terms of 
the dyadic 

(107) 

we have the same development (31) to (39) with 
6 = ip= y, ge'y = gyCi.' = O. 

The analog of (51) is 

Ss ~ (25 o/rrk'r') IGI2R = (S2PllgI2/R)R, 

S2 = 250p'2/ rrk' = 25oP' /rrk, (108) 

al!.d since dE> = de' / P s the flux through AA = 
RR~E> equals (52) in terms of :)2 and dQ 2 = de'. 
Thus, d(JJs/dE> = S2Ps

31g1 2. 
Similarly the analog of (54) is 

Ss - vws ~ :i 2Ps31g12(R ~- (3v)/R 

= S2Ps q 2 Ig\2rjrs ' (109) 

and since de s = de' /yq2, the flux through AAs = 
rs rs ll. e s is the form (55) in terms of S2 and dQ2. 

Thus,d(JJR/dE>= :i2P~ Ig12/y and dJ>R/deS = 
:i 2 Ps Q2 1g1 2 , 

The Green's function development is essentially as 
in (58)-(69) with 

{}=-(k'/4)![ ]dA' =_(k'2/4i)![ ]d'U' 

as line and surface integrals, and with h~) of (59) 
replaced by H~f>; the analogs of (58)-(60) follow 
directly from (9)4 to (14)4. From the Sommerfeld 
representationll for H~l) (k I r' - rill) as a com­
plex integral, we construct 

h2 = (I + V'V'/k'2)H~1) 
= (l/rr) J (e~e~ + YY)eik'(r'-rll).ft~de~, (110) 

and using this in u = {fi2, If- } gives the cylindrical 
analog of (25). This is one way of generalizing our 
earlier scalar result (9),5 i.e., 

u[g} = (l/rr)! eik'r,cos(e~-EJ')g(e~)de; (111) 

to the problem at hand; see Ref. 5 for discussion 
of paths. 

The cylindrical dyadics corresponding to (70) are 

Similarly, corresponding to (71), 

ie/p 'e-iw't' = e~''Y(~ + iH
1

{3 cose') 

+ ",Wo + iH1{3 cose') 

+ rJ'{iH1 - ~)y{3 sinE>/cos~ 

+ rsr'ii/cos~, 
- iw't' ............. 

:reM/P'e- = - 6yy(iH1 + Ho{3 cose') 

+ ye'y(iH1 + ~(3 cose') 

+ r3(iH1 - Ho)y{3 sinE>/cos~ 

+ yr'H1 y{3 sine'. (113) 

Because (112) and (113) involve Ho (a monopole 
term) as well as X l' the present functions are not 
quite as symmetrical as those of (70) and (71). 

The cylindrical Hansen functions subject to (72), 
in terms of 

H" = H" (x) = H~l)(k'r'), H" nIln/x, 

X" = 0xH", 

may be written15 
;..... ...... ine' 

Mn = yMn = yHn e = HnC n , 

...... inB' ...... 
C n = ye = - r' x Bn 

- ..... - inO' 
N = X B + H P = (- 8'X + r'iH )e n nn nn n n 

= zd (Mn - l + M
II

+l ) - x~ (Mn - l - M II+ 1) , 

(114) 

(115) 

where H(l) ~ iX ~ h(n+1 and Ii ~ O(x-3/ 2) for 
ll... It. '1\ n 

r' ~ co. The analogs with H~u replaced by J are 
written M!, N!. n 

The Green's function is 

h2 (k' I r' - r II I ) 

= f; [M .. (r')M!n(r") + NIIN!nH- I)" (116) 
n::: -00 

and the development of (76) to (79) carries over 
in terms of the present functions. We have 

u = f; (Mnc" - iN"b,,)i" 

= ~(i,Hb + 6'iXb + yHc)einei n (117) 

and we obtain (106) in the form 

~ ( ) '" r::. ~ inB' g = n200 \Cncn + Bnbn = LJ ,ycn - 9'bn )e , 

en = c,. cosQ, bn = - bn sinQ, (118) 



                                                                                                                                    

RELATIVISTIC SCATTERING 2339 

where en and bn are the coefficients for the stand­
ard scalar problems. For circularly symmetric 
scatterers, for either set, a ±n (a') = ane+ iCX

'. If the 
scatterer is homogeneous, then we use the form (90) 
with d n replaced by unity; we work with J,. and Hn 
instead of j" and hn' and 3" and Je,. correspond to 
oJn and aHn (differentiated with respect to argu­
ment). Similarly we obtain 

e P ~ ina, 
n = ye , 

In the present version of (79), i.e., 

u= 2; (mt c -Wl b lin ==U(c,b), 
n::;. -co n n n n 

(119) 

(120) 

we decompose 5l and mt essentially as for (81), 

mY I'p' -iw't' __ ~(<YrY1 _ '001'3) i"a' J""n Z e - y .. JlL n t JILn e , 

~! = y(iHn + Xn{3 cosO'), 

~~ = Hnyf3 sinO', 

:Jr. Ip'e-iw't' = [- e:Jr.1 + r (- :Jr.2 + i:Jr. 3 )]eina' 
n n s n n , 

:Jr.! == r(Xn + iHnf3 cose'), 

:Jr.~ == [(iH" - Xn)y{3 sine]!cos~, 

Equivalently, in the Cartesian basis 

CJTCn/p'e-iw't = yy [Mn - i{3(Mn-1 - M,,+I)/2], 

5l /p'e-iw't
, 
= -'(M + M )/2 n Zl n-l n+l 

The scalar problem for Ii = Y corresponds to 

(121) 

U' - P' - I w' " '" . n M - e ul an n' P' = y (1 - (3 cosa), (123) 

and by (5), to 

U = y[l- (i{3/k' )o.,]U' 

= yP'e-iw'tl2:;inan[Mn - if3 (Mn-1 - Mn+ 1 )/2] 
(124) 

in terms of a z,Mn = (Mn_1 - M" +1)k '/2. The series 
in (124) was obtained originally by Censor7 by 
transforming the plane waves in the complex 
integral p'e-iw't'u ' of (111), and the corresponding 
asymptotic form U"'" he- iw't 'P'y(1 + f3 cose,)g was 
obtained directly by Lee and Mittra; 8 see Refs. 7 
and 8 for detailed discussion. 

Similarly for the mates to U' = U'Y and U = uj 
= 6i"anmt" of (123) and (124), the transform of 

(125) 

as obtained directly from (5) is 

(126) 

in terms of 5l" of (122), or, more conventionally, of 
(121). From (124) and (126), we obtain the general 
case (120) by superposition. 

Slab Scatterer 

Similarly for a slab - a' '" Zl '" a', and Ii in the 
plane y = 0, we use h = exp[ilk'· ZI 1+ ik' • x] 
and take ~ as the mean over the forward and re­
flected directions. We obtain U = Ua in the form 
(105) in terms of (106), i.e., 

U = Ge ivs = P[8gm sinQ + ygecosQ]eiUs, g =g(S'), 

(127) 

where g (a ' ) = 1'- 1 and g('1 - a') = CR with l' and 
(Jl as the usual13 transmission and reflection coef­
ficients for the scalar problem of the slab. In the 
forward scattering direction e' = a', correspond­
ing to (56a), we have 

U == (agm sinQ + yge cosQ)e iu , 

W == q; + U = (a1'm sinQ + y2"'e cosQ)e
iU = 2"'e

iu 

(128) 

and the mate wM = It x "+. In the reflected direc­
tion, e' = 1T - (1 I, 
U =Pr(arffimsinQ + Y CR

e 
cos(t)eiPruOly) 

= P at iP yv(Jir) U = It x U 
r e ,M r , (129) 

where lick,.) = kr cos(ar - O}- wt, with P r and kr 
as before in (56d). 

The analog of the scattered flux (51) is 

Ss = SoIGI2R= Sl Ps
2 1g1 2R, Sl = SOp '2 , (130) 

which reduces to S Igl 2 k in the forward direction: 
the corresponding hansmitted flux is S = s I g + p 12 
)( k = 5 I'!. [2k. In the reflected direction, ~ = 
Sop/ Imi 2kr • Similarly, the analog of (54) is 

Ss - vWs = 31P~ IgI2(R- (3v) = S1Psqlgl2 rs 

= [31 (1 + {3 cosO')lgI2)yqrs (131) 

with ~ == r as in (56a) for S' = a' and is = rr as in 
(56d) for e' == 1T - a'. The beam width of the flux 
from unit area of slab surface is proportional to cosO I 
along R: and to cosOs along is, and. from (44), 
cos Os = (cose ')/yq; we isolated 31 (1 + (3cose') I g 12 
for comparison with (55). The reradiated flux den­
sity along R is SlPs igl 2ly, and that along r is 
SIPsqigi 2 . s 

For a homogeneous slab, in terms Of 

~ = (1 - Z')/(l + 2'), 

Z' == (BK,.v)/(k'·v) = B(/1'2 - sin2a)1/2jcosa', 
(132) 

with Band 1)' as in (60), we havel3 
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Pi = p(k[,ki ; V) == (a'a + SO)pt 
= [<6 X k')(O xk)+OO]N=p{-k;,-k;;-v), 

(133) (A6) 

where d' = 2a'v. 

The scalar problem (Q = 0) is discussed in detail 
for the perfect conductor «(){ = 1, '1' = 0) by 
Einstein1 .and Pauli z and for the homogeneous slab 
by Yeh and Casey6 and Censor. 7 

APPENDIX 

The usual reciprocity relation in dyadic form 
is12,4 

g(kz,lt1) = gT(-k1,-kz), 

g(-kv-kz) = gT(lt2,k1) (Al) 

where gT is the transpose (Gibb's conjugate) of g. 
Similarly, the generalization of (24) for lossless 
scatterers is 

- ~ ~ -t ~ ~ - ~ ~ -* ~ ~ g(k2,k1 ) + g (kV k 2) = g(k2 ,k1 ) + g (-k2,-k1) 

= - 2'JTt[g t(k3,k2 )'g(k3,k1)], (A2) 

where gt = gT* is the ~Hermitian adjoint of g, and 
we integrate over dU(k3)' 

For the present problem, the rest system g depends 
not only on Iti and k? as shown in the above, but 
also on the direction of incidence in !; (and the 
direction v) as it enters the wavenumber 

ki = kpt, 
I ..... C - - ..... ""'" Pi = l' (1 - f3v OKd = p'(v ,ki) = p'(- v, - kilo 

(A3) 

Thus instead of (AI), we have 
- ~ ~ -T ~ ~ 

g(kz,ki;Pi) = g (-ki,-kz;Pi), 

g(-kJ., -k? ;Pz) = gT(kz,k1;Pz)' (A4) 

where ki is the direction of incidence for the first 
relation, agd - ka for the second. yo seek analogs 
involving G of (38), if we reverse k i' then we must 
also reverse v to insure that the relation between 
- k. and xi is preserved, Le., as determined by 

Sincej;(k['~i) = Pi of (31) is unaltere?- by reversing 
both v and ki (and thereby reversing k[ ), Le., 

* This work was supported in part by National Science Founda­
tion Grants NSF-GP-8734 and 21052. 
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we may write corresponding :forms of a of (38) as 

a(k2 ,It1 ; v) = p; 0 g(k2,ki;PJ.}" Pl 
_ [p-Tog-(_k' -"-kt·p,).p-rT]T 
- 1 1> 2' 1 Z , (A7) 

(A8) 

Thus, in general, there is no direct relation between 
G of (A7) and aT of (A8); to stress this we write 

(A9) 

where Pz ~ Pi indicates an ad hoc interchange. 

For an arbitrary scatterer, a simple relation 
exists for the forward scattered direction kl = kz 
= k, i.e., 

a(k,k;v) = a(-k,-k;-v) = aT(-k,-k;-v) 

for which case 

G = (aa' + 88)'go(a1 e; + 60), 

g::;: i(k', ttl) === g(- k', - k'). 

(AlO) 

For arbitrary directions, if g has inversion sym­
metry, Le., if 

g(kz,ki;Pi)::;: g(-ltz,-k1;Pi) = gT(kl,Rz;Pi), 

then 
(All) 

G(k2,k1 ; v) == a(-kz, -k1;- v) 

= p;' g(kz,ki; PJ.}°Pl· (A12) 

In general we may rewrite (A2) as 
- ~ ~ ~ -* ~ ~ ~ 

G(kz,k1;v) +G (-k2 ,-k1;-v) 

::;: 2'JTt IP;'g*(- kz, - k3;p ,)og(K3, ki;pt)opd, 
(A13) 

where we can insert P3 • p; between t;!le g~s to show 
that the integranE has !he s!ruct~re G* - G with Pi 
instead of P3 in g*. If k2 = k~ =:. k..: t:..hen by (AIO) 
the left side reduces to 2ReG(k,kjv) and we obtain 
(30) by forming poGop. If the scatterer has inver­
sion symmetry, then (Al3) reduces to 

- ReG(k2,R1 j v) 
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In a previous paper we transformed the plane wave excitation 41(r,l) for an obstacle moving with con­
stant velocity in free space (L) to obtain 41'(r', I ' ) in the scatterer's system (L'), and considered the 
scattered wave U' in L' and its transform U in L:. The wave 41 has period T in I, and 41' and U' have 
period T' in t'; the wave U is not periodic in r, I, but in retarded (R, I) and present coordinates it has 
the period T. equal to the dilation of T'. Now we transform I' -averages (over T') of quadratic func­
tions of 01>' + U' (the time-averaged energy density, the energy flux vector, and the momentum flux 
tensor) to obtain r, I-dependent forms in L (which in R, I may be interpreted as I-averages over T .), 
We consider the average power absorbed by the scatterer and the force that acts on it in L', and the 
theorems that relate these to the scattered and interference terms. Then we show how the known L' 
,conservation theorems are exhibited in L, and determine in L the corresponding (r, i-independent) 
power imparted to the scatterer and the force that acts on it, and the reradiated and interference 
terms. Since Ts is, in general, small enough to regard the present position as practically fixed in L, 
we also consider the corresponding dlfferential reradiated cross section, etc. 

INTRODUC TION 

In a previous paper,,1 we applied Einstein's proce­
dure 2 to the scattering of an electromagnetic wave 
iI> by an obstacle moving with constal)t ve~ocity v 

- tk .. r-twt in free space. The wave <I>(r, t) = pe in the 
observer's system ~ was transformed2- 4 to the 
scatterer's system ~' as the incident wave 
iI>'(r', t') = p'p'eik,.r,-iw'/'; then, the corresponding 
scattered wave U'(r',t') was transformed to ~ as 
the required function U. The function iI> has the 
period T = 27T/W in t,and <1>' and U' have the period 
T' = 2rr/w' in t'. The wave U is not periodiC in 
r, t, but in retarded (R,t) and present (rs ' t) coordi­
nates, it has the period T s equalling the dilation of 
T'. 

For r ' ~ 00, the far-field U' ~ U' is proportional 
to G' = g(r')p '(k';), where g =ag 8' 6' + g 'PCP is 
the scattering amplitude for the con~entional prob­
lem in ~'. Similarly for R ~ 00, the corresponding 
funct~on U :~Ua is~pr?portiona! t~ ~(R) =(g(JI8 
+ g'P fII) P '(k 'v)/p'(R'v), wh~re ~,e,'p is lhe re­
tarded basis. The result p'G(k) = p'.g(k') inter­
relates the interference effects in the two sys­
tems. 

Now we consider t'-averages (over T') of quadra­
tic functions 5 - S of 1/1' = <1>' + U': the time-averaged 
energy density (W'), energy flux vector (S'), and 
momentum flux tensor (M/). In ~,in r, t coordi­
nates, the analogs W, S, and M depend in general 
on t; however, in R, t or r s' t coordinates, the func­
tions may be interpreted as t-averages over T s' 

We then show how the known ~' conservation 
theorems8 - 12 are exhibited in ~,and determine 
the average power (P B ) imparted to the scatterer 
and the force (F) that acts on it in ~,etc. (The 

interval T s is, in general, small enough to regard 
the present position of the scatterer as practically 
fixed for far-field intensity measurements by a 
receiver with rest system ~. Restrick13 and Cen­
sor14 interpret S as the limit of a t-average over 
an infinite interval.) 

We discuss several different derivations of the 
results for P Band F. The first, and most direct, 
involves transformation from ~' to ~ of the known 
densities in the scatterer's volume 'D'. The second 
involves transformation of ~' surface (A') integ­
rals and facilities unambiguous resolution of 
interference terms, etc. Then we consider the 
quadratic functions directly in ~,in order to 
clarify interrelations between different functions 
in the two systems. 

We use the same notation and the same symbols 
as before. 1 We begin with a short statement of 
several key results discussed earlier in detail,1 
and then consider the quadratic functions. 

1. FAR-FIELD SCATTERING 

In ~,we write the incident wave as 1 

iv­iI> = e p, v = k'r - wt = k(k·r - et), 

p = (aa + OO)'P, (1) 

where k, ii, '6 form a special set in the spherical 
basis i, 9, 0/; we use r = v cose + p( cp) sine, etc. 
The transform in ~' is 1-4 

.... ' iv'~,p' "f!=e p , v' = k"r' - w't' = v, 

p' = (a'a + 66)'p, p' = 1'(1 - (3V'K) = k'/k, 

1(> = ['(k - (JV)/p', a' = 6 x k', 
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the scattering amplitude for the con~entional prob­
lem in ~'. Similarly for R ~ 00, the corresponding 
funct~on U :~Ua is~pr?portiona! t~ ~(R) =(g(JI8 
+ g'P fII) P '(k 'v)/p'(R'v), wh~re ~,e,'p is lhe re­
tarded basis. The result p'G(k) = p'.g(k') inter­
relates the interference effects in the two sys­
tems. 

Now we consider t'-averages (over T') of quadra­
tic functions 5 - S of 1/1' = <1>' + U': the time-averaged 
energy density (W'), energy flux vector (S'), and 
momentum flux tensor (M/). In ~,in r, t coordi­
nates, the analogs W, S, and M depend in general 
on t; however, in R, t or r s' t coordinates, the func­
tions may be interpreted as t-averages over T s' 

We then show how the known ~' conservation 
theorems8 - 12 are exhibited in ~,and determine 
the average power (P B ) imparted to the scatterer 
and the force (F) that acts on it in ~,etc. (The 

interval T s is, in general, small enough to regard 
the present position of the scatterer as practically 
fixed for far-field intensity measurements by a 
receiver with rest system ~. Restrick13 and Cen­
sor14 interpret S as the limit of a t-average over 
an infinite interval.) 

We discuss several different derivations of the 
results for P Band F. The first, and most direct, 
involves transformation from ~' to ~ of the known 
densities in the scatterer's volume 'D'. The second 
involves transformation of ~' surface (A') integ­
rals and facilities unambiguous resolution of 
interference terms, etc. Then we consider the 
quadratic functions directly in ~,in order to 
clarify interrelations between different functions 
in the two systems. 

We use the same notation and the same symbols 
as before. 1 We begin with a short statement of 
several key results discussed earlier in detail,1 
and then consider the quadratic functions. 

1. FAR-FIELD SCATTERING 

In ~,we write the incident wave as 1 

iv­iI> = e p, v = k'r - wt = k(k·r - et), 

p = (aa + OO)'P, (1) 

where k, ii, '6 form a special set in the spherical 
basis i, 9, 0/; we use r = v cose + p( cp) sine, etc. 
The transform in ~' is 1-4 

.... ' iv'~,p' "f!=e p , v' = k"r' - w't' = v, 

p' = (a'a + 66)'p, p' = 1'(1 - (3V'K) = k'/k, 

1(> = ['(k - (JV)/p', a' = 6 x k', 
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L = yvy + (f - Vi), 

(3 = vic, y = (1- (32 J I/2, 

T' = 21T/W' of CP' and U',and it is also simply re­
(2) lated to the original period T = 21T/W. Thus, 

with k', a', 6 as the corresponding set in r', 9' , q;. 
We have kev = cosQl,etc., so that 
P' = y(l- (3 COSQl) = l/y (1 + p COSQl'), etc. 

The corresponding scattered wave in ~' for r',.." 00 

is 
iv' -U' ,.." U~ = e sp'g(r')/ik'r', I); = k'r' - w't', 

g(r') =' (9' 9' + cpcp) eg(r '), (3) 

where g(r') = g(r', k' : p') is the conventional 
scattering amplitude. (The more usual normali­
zation corresponds to g/ik' = f.) Its transform in 
~ is1 

U"'" U
a 

= eiusG(R)lik'r', 

G=p'ps(eO' + cpq;)eg(r'), Ps=y(1+{3v er') 

I)s = I); = P'Ps(kIter - wt) = P'(kR - wt)/y, 

R = Le(r' + !3V)/Ps' (4) 

with It, e, cp as the retarded basis, and R, t as the 
retarded coordinates. For brevity, we write the 
relativistic scattering amplitude G(It, k: p; v) as 
G(R). We have 

r' = :i: e(R-R{3V) = i:;' rs' r' = R/Ps = r/q, 

q = 1/y(1 :- {32 sin2es )I/2, 

r'ev = cose' = yps (cose - {3) = yq coses ' 

Ps = y(1 + (3 cose') = l/y (1 - {3 cosS), (5) 

where r 5' 6s , cp is the present (simultaneous) 
basis, and r 5' t are the present coordinates. 
Equation (4) corresponds to R ,.." r5 ,.." 00. For 
forward scattering in ~', we have r' = k' and 
It = k;for this case,p'ps = 1, and 1 

enables us to interrelate the interference effects 
in the two systems. 

The mates to cJ» and U, and their transforms, are 
given by 

cJ»M = k x CP, cJ»M = k' x CP', 

UMa = r' x U~, UMa = It x Ua 

such that at UM = - cV xU, etc. For t' -periodic 
fields in r',I',we have UM = V'x U'lik',etc. We 
take cJ» = Eo as the original electric field, so that 
Bo = cP M( E 01 llo)I/2; similarly, U = E s is the 
scattered electric field and U M = Hs(J.lo/Eo) 1/2 
is the normalized scattered magnetic field. Thus, 
+' = cJ» + U = Eo + Es = E is the electric field in 
L, etc. 

In retarded or present coordinates, Ua of (4) is a 
periodic function of I with period T 5 = 21Ty / w'; 
this interval is the dilation of the t' -period 

T5 = yT' = yT/p' = T/(1 - (3 COSQl). (7) 

~ince U ffiffers froIl!. Ua in that Gis r_eplaced1 by 
:DeG = [I + (i/2k'r')D + ... ] eG, with D as. a 
Beltrami differential operator on the angles, 10 
U(R, t) also h~s t-period Ts i similarly for UM in 
terms Of5)e(R x G). We also refer cJ» to the re­
tarded event r o' to [with ro = vto = v(t - Ric)] 
by rewriting I) o~ (1) as I) = ke(r 0 + R) - w(to + RI c) 
R/c) = 1)0 -t- !<R(keR-l)iusing 1)0 = I)s as dISCUS­
sed before,1 we express cP in retarded coordinates 
as 
cJ»(R, t) = e ius + i (k'R-kR), 1)5 = (1 - {3 cosQl)(kR - wt), 

(8) 
with 1)5 as in (4). In present coordinates, we have 

In ~', we factor the fields and write 

"" -, ik'r' 
'f' =p e , U ' -iw't'p' = e u, 

cP + u = 1/1, u ,.." eik'r'g/ik'r' (9) 

where 1/I(r'ik' :p') is the usual ['-independent solu­
tion of the reduced wave equation for real k'. The 
scattering amplitude g may be represented as an 
integral ll ,1 over ~he scatterer's surface (1,': 

g(r') = _:~2 J[tP x n')eU M + 4>M e(U X n')]d(1.' 

-..... ..... ...... -- -ik1r/.r" 
cJI(-r') = (0'0' + q}(p)e , 

U M = V" X u/ ik' , i M = r' xii>. (10) 

We use da' = fi'da'(r") with fi' as the outward 
normal (and we may replace (1/ by any surface A' 
inclosing the scatterer, in the volume V' external 
to the scatterer's volume '0'). In the forward 
direction r' = K', in terms of CP(- K') = CP*(K'), 

p'eg(k') = ~': j[CP*(k') x uM-u x cp;(K')]edA' (11) 

2. ENERGY AND MOMENTUM 

The fields are periodic in ~' and we may average 
products over one cycle T' in I' to obtain the 
usual8 quadratic functions: the time-averaged 
energy density 

W' = t(EoIE'12 + f..IoIH'12) = iWo(I'l1'12 + I 'l1M I 2), 

Wo = i EO; (12) 

the Poynting flux S' and momentum denSity N' vec­
tors 

S' = c2N' = i Re (E' x B'*) = So Re ('l1' x +M*)' 
(13) 

and the momentum flux dyadic 
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M' = - ~ Re(€oE'E'* + lloH'H'*) + IW' 
= - WoRe('ii'IIt'* + \{I:r\{l ~n + Iw'. (14) 

The square of the dimension of E is implicit in the 
definition of W 0' etc. 

Transforming (12)-(14) to 6, we have the ana­
l ogs5-7 

W = y2[(W' + voN') + vo(S' + Mov)/c 2], (15) 

S = yLo[(S' + vW') + CM' + vN')ov], 

N = yLo[(N' + vW'/c 2 ) + (:M' +vS'/c 2 )oV/C 2], (16) 

M = L o[ (M' + vN') + (S'v + W'vv)/ c 2 ] 0 i, (17) 

which depend on t in r, t (but in R, t correspond to 
t-averages over Ts). By superposition, 

W-v oS/c 2 = W' +voN', 

W - voN = W' + vos1c 2, 

8 - Wv = yL-lo(8' + M'ov), 

S - MOv = Lo(8' + W'v)/y, 

M - Sv/c 2 = LO(M' + vN')o:[;-l, 

it - vN = L-lo(M' + S'v/c 2)oi. 

(18) 

(19) 

(20) 

We keep 8 and N distinct to facilitate interpreta­
tion. 

We have E' = lit' = 4.1' + U' = Eo + E~, etc., and 
W' = Wo + Wi + W;, etc. The incident (Wo) and 
scattered (W;) energy densities are 

D = l/ik'r'. 
(22) 

The interference term is 

Wi = Wo Re(q,'* 0 U' + q,M* 0 UM) 
~ Wo Re{ eik'rt-ik.'.r'[p' og + (k' x p')o(r' x g)] D} 

= Wi", (23) 

ang" the phaS! of the asymptotic form is stationary 
at r' = rt~ - k'; the stationary value of WI a is 
2 Wo Rep'og(k')D for the first and zero for the 
second. (We use tt, og(± k') = 0, etc.) 

The incident (So) and scattered (S~) fluxes satisfy 

So == So Re(q,'* x q,M) = k'So, So = SOp'2, (24) 

S' == S Re(U'* XU) '" r' s' 1 g(r') 121 D 12 = S' s 0 M 0 sa' 

(25) 
The total power reradiated from the scatterer's 
surface (1' is 

with a~ as the scattering cross section; we used 
V'oS' = 0 in V' to replace (j/ by A'. Taking 
dA' ~ r'r'2dQ(r') with r'''''' 00, (henceforth A;'), 

a~ = b'Jf( [lg(r') 1
2 ], 'Jf( = (l/41T) JdQ(r'), 

b = 41T/k'2, (27) 

where 'Jf( indicates the mean over all values of r,. 
The interference of the incident and scattered 
waves is shown by 

S' - S Re(q,'* x U' - U' x 4.1' *) (28) 1- 0 M M ' 

and from (11), the power diverted from the inci­
dent wave by interference is 

Pi = jSlodA' = Sob Rep'og(t'). (29) 

This result may also be obtained from the asymp­
totic form 

s~~ So Re{eik,r-ik'or'[p' X (r'X g)+g x (k" x p')]D} 

= Sla' (30) 

which reduces to ~la = S02_Rep' og(k')k'D, 0 at the 
stationary points r' = k', - k'. Thus, evaluation of 
jSlaodA' by the method of stationary phase, 

je i k'r'f(O~ "') ~ (e', cp) r'2d(J'dcp 
ik'r' 

21T, eik'r' fm €f
m 

'" k'2 W [a§, .t.c~fm - (ao' a", -')2)1/2 ' 

also yields (29). Here f == 1 - K' or', and we 
sum over the set (m) of stationary values. 

The net flux intI) the scatterer's surface, the 
power absorbed in '0', equals 

P~ = - Is' °da' = So a~, (31) 

where a~ is the absorption cross section. Since 
V'oS' = 0 in V', we also have 

I S'oda' = fSi odA' + jS's°dA' = PI + Ps 
= Sorb Rep'o g'(k') + as}, (32) 

where we used JSo °dA' == 0, and (26) and (29). 
From (31) and (32) we obtain the usual energy 
theorem9, 10 in the form 

P' = Sao', (33) 

where aT is the total cross section, and Pi- = - PI 
is the energy diverted from the incident wave by 
interference with the scattered wave, and either 
absorbed or reradiated by the obstacle. 

P' = fs' 0dO.' = Is' °dA' = S' a' s s s 0 s' 

Similarly, for the components of the momentum 
(26) flux tensor, 
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Mo = - Wo I cI>' 12[p'p' + (k' x p')(k' x p') - i J where Q'(r') is the power loss density within the 
= Wok'it' = Sci'/e, (34) scatterer. Similarly for the force on the scatterer 

Ms '" - woIU~12[g'g' + (i' X g')(i'x g') -I] F' = - jM'od(t,'= - jV'oM'd'), = jf'dU', 

= W' r'r' = s' r'/e (35) V'oM' = - f', (44) 
Sa Sa' 

M10 k' = Wo Re[U' X (k' X cI> ')* + UM X (k' X cI>~)*] 

= Wo(U'X cl>M* +cI>'* X UM) = Sl/e, 
M/oi' = - Wo Re{[cI>'*U'o;' + cI>* X (i' XU')] 

- [cI>;UMoi' + cl>M*X (i' X UM )']) '" S//e. 
(36) 

The analog of (26) is the force 

F~ = j M~ odO.' = Wob~ [ 1 g(i') 12 i'] 
= Wo a~(i') =p;<i')/e, 

(r') = j 1 g(i') 12 i'dO (i')/ j 1 g(i') 12 d1t (i') 

= b;m [I gl2 i']Ia~, (37) 

where we used v'ol\1; = 0 in V'. The analog of (29), 

Ff = jM.;oda' = Wob Re p'og(1{')1{' = Pi1{'/e, (38) 

gives the momentum diverted from cI>' by inter­
ference with U'. 

Since V' 0 M' = 0 in the volume external to the 
scatterer, the radiation force on the obstacle [the 
analog of (31)] is 

F' = - jM'odO.' = Woo' (39) 

where 0' is a directed cross section for force. In 
terms of (37) and (38), we also have 

jModa' = jMiod(j,' + jM'soda' = F; + F~ 
= Wo[b Rep' og(k')k + a~(i')]. (40) 

From (39) and (40), 

F' + F~ = Fz, = - F;, 

0' + a's (i') = 0T = - b Rep' og(k')k' = a~k'; 
a' = a~ k' - a~(i'), (41) 

where Fz, = - F; , the momentum diverted from 
the incident wave by interference with the scat­
tered wave, equals that imparted to the obstacle 
plus that reradiated. For a spherically symmetri­
cal scatterer, the radiation pressure is specified 
by 

0' = a'k', 
a' = aT - a~<-k'oi')= aA + a;<l-1{'oi') (42) 

as discussed by Debye,l1 and van de Hulst. 12 

We may write the absorbed power as an integral 
over the scatterer's volume (1)') 

PA =- IS'oda.' =- jV'oS'd'O' = JQ'd'O', 

V'oS' = - Q', (43) 

with f'(r') as the internal force density. The 
divergence relations are the usual ones for the 
t' -independent problem. The densities transform 
as 2 - 5 

f = Lof' + yvQ'/c 2 = :eo(f' + vQ'/e 2 ), 

Q = Q'/y; Q + vof = y(Q' + vof'), (45) 

where we used the result for Q corresponding to 
heat; vof is the work per unit volume. From the 
above and the relations 

dV= dV'/y, dA = :eodA'/y, (46) 

we determine the absorbed power PA and force 
F in ~. 

In ~,the corresponding force on the scatterer is 

F = JId'O = y-l j(f' + vQ'/e 2 )oLd'O' 

= - y-1 j dG.'oCM' + S'v/e 2)oL 

= - -j dG. o(M - vN), (47) 

where we used (43)-(46), and finally (20). Thus the 
force on the scattere-r depends on both the momen­
tum flux tensor and the momentum density vector. 
Similarly, the corresponding absorbed power is 

P
A 

= j Qd'O = y-2 j Q'd'O' = - y-2 js'o,,(1,' 
=.- jda. o[S - vW - CM - vN)ov], (48) 

where the final form follows from (16). Since the 
mechanical power that the field spends on the 
moving scatterer is 

PM = voF = j'vofd'O = - f dG.o(M: - vN)ov, 

(49) 
the total power imparted to the scattering body 

PB = PA + PM = j (Q + vof)d'O = J(Q' + vof')d'O 

= - j(S' + v ol\1)od(l' = - f(S - vW)oda (50) 

depends only on the energy flux and energy density. 

Rewriting the last form of (47) as an integral over 
'0, 

F = jfd'O = - Jvo(M- vN)d'O, (51) 

we have, within 'U , 

where VovN = vovN = - a tN follows from 
y(Vov + at)N = at, N = O. Outside the scatterer's 
volume, 
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v-CM - vN) = O. (53) 

Similarly, from (50) in the form 

PH = ./(Q + VOf)d'O = - Iv-(S -vW)d'O, (54) 

within 'U, 

-Q-v-f=V-S-V-vw=v-s+atw (55) 

and outside '0, 

v-(S - vW) = O. (56) 

The forms of (52) and (55) in -v-v = at, the usual 
ones8 for the r, t-dependent problem in ~, may be 
taken as the starting ones for the development. 

We determine F and PB initially by twl"\ procedures 
based on the results obtained in ~'. Tnen we con­
sider W, Sand M in ~ and discuss derivations 
based on evaluating the ~ integrals in (47) and (50). 

The most direct procedure for determining F and 
Pa etc., and the corresponding cross sections 
(1= F/WO,OB =PB/So,etc.,isto compare the 'D' 
integrals of (47) and (50) with those in (43) and 
(44). Thus, 

F = f.-(F' + vPA/c2)fy = f.-F'fy + vPA/c2 = Wo(1, 
(57) 

PA = pA/y2 = SOOA' (58) 

(59) 

(60) 

The last form (60) is the simplest to interpret. In 
~,the power PB imparted to the moving scatterer 
is the electromagnetic power PA it absorbs in its 
rest system plus the work done on it by the rest 
system electromagnetic force F'. However, the 
power PA of (58) absorbed in ~ is the relativistic 
transformation of the power PA absorbed in ~'. 
The first form (57) says that the force F that acts 
on the scatterer in ~ consists of the distorted 
rest system electromagnetic force F' plus a force 
arising from motion .1Ild the inertial effect 
(PA/C 2 ) of the absorbed energy; both forces con­
tribute to the work done on the scatterer in ~, Le., 
to PM of (59). If Pl = 0, the scatterer is lossless; 
the results simplify to F = t- F' / y, and PB = 
PM = v-F' = v-F. 

We construct the cross sections in ~ by substitu­
tion. The simplest form is (58). Substituting from 
(31)-(33), we obtain 

PA = SOaA = SOoA/y2, 

0A = (1 - f3 cosa)2 0A = (1 - (3 cosa)2(o; - os). 
(61) 

Next we consider (57) in terms of (41) and (33), 

F = %(1 = wof.-«(1' + V{30A)/Y 
= wQf.-[o'T(k' + f3V) - 0s(r' + (3v)l 

= Wo[uTk/P'- °s(RPs)]/Y 

= WOp'2[ O'Tk(1 + j3 cosa') -as (R(1 + j3 cose'» ], 

(1 = p'2(1Tk(1 + (3 cosa') - p'2os(:R(1 + j3 cose'» 

= 0T(1 - j3 cosa)k - P'2os(R(1 + (3 cose'», (62) 

where R(1 + (3 cosB') = L -(i' + {3V)/y = v (cose' + m 
+ p(sine')/y with p = x cos<p + y sin<po We 
obtain (59) from (62): 

PM = Soo M = v-F = So{3V-O 

OM = (3p'2 oT ({3 + cosa') - (3p'20's({3 + cose') 

= j30T (1 - j3 cosa) cosa - (3p'2 US«(3 +cose'). 

(63) 
Finally from (61) and (63), or more directly from 
(31) and (41), we express (60) as 

PB = SOa B = So(a A + aM) = Sop'2(a;' + j3Vo(J'), 

aB =p'2oT(1 + j3 cosa') - p'2a's(1 + (3 cos8') 

= ax (1 - j3 cosa) - p'2as (1 + (3 cos8'). (64) 

If the scatterer is lossless, then a B = aM = 
p'2j3us(cosa' - cose'); see Restrick13 and 
Censor 14 for different developments. 

From (33) and (41), we have 

and we see that (64) and (63) are Similarly related. 
By comparison, we identify the total cross section 
in ~ as 

aT = p'2ax (1 + j3 cosa') = 0x(1-{3cosa), (66) 

and the reradiation cross section as 

OR =p'2us (1 + (3 cose') 

= p'2b'JTt[ !g(r') 12(1 + (3 cose')] 

= k-2 I Ig(r')12(1 +(3 cose')dSl(r'), (67) 

and introduce 

«:R» ='JTt[lgI2R(1 +{3 cose')]/'JTt[lgI2(1 +(3 cose')] 

= b'JTt[ Ig12R(1 + {3cos8')]/OR (68) 

to exhibit the same structure as (65): 

Soon we derive the components directly. 

We make the interference effects explicit by 
using (33) in terms of (6): 

Thus, although we are simply substituting ~' 
results, the interference of ... and U in 2: is 

(69) 
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shown by the last form. In particular, 

0B + aR == 0T = 0r(l- (3 coso) 

== - (1 - (3 coso}b RepoG(k), 

PB + PR == P l , = - PI . (71) 

Essentially as for (33) in ~', in ~ the function Pl' 
is the total power derived from the incident wave 
~ by interference with the scattered wave U and 
either spent (as absorbed or mechanical power) 
or reradiated by the obstacle. Similarly, we re­
write (62) in the form (41) as 

CT + 0R«R» = aTk = 0T(1 - {3coso}k 

== - (1 - {3 coso}b Rep o G(k}k , 

F+FR==FT==-F I (72) 

and interpret the result essentially as for (41). 
From (7), the factor 1 - (3 coso in (72) equals 
1,/T S' the ratio of the incident and dilated periods. 

Now we rederive our results by using the surface 
integrals in ~'. This enables us to evaluate the 
reradiated and interference terms separately, 
and gives directly the decompositions of (71) and 
(72). 

Since v' oS' == 0 and V' oM' = 0 in V', we also have 
V'o(S' + voM') = 0 in V', and may therefore re­
place the a '-surface integral for PB in (50) by 
one over any surface A' inclOSing the scatterer. 
Proceeding essentially as for (31)-(33), we write 

P B == - j (S' + voM')odA' 

=-PI-PR =PT -PRo (73) 

For PR , we use S's of (25) and if;, of (35) and pro­
ceed as for (26); thus 

PR == J (Ss + voMs)odA' 

= So05<1 + i3V or') = SOaR' (74) 

'Yith oR as in (67). Similarly, from S'I of (3~} and 
M J of (36), 

PJ == J(Sj + voMi}odA' == S'ob(1 + i3VoK') Rep'og(k.'} 

== S 0(1 - (3vok)b RepoG(k), (75) 

PT ==-Pf =So(1 + f3Vok')a~ 

== So(1 - i3V o k)oT == SOOT' (76) 

We follow essentially the same procedure for the 
force functions in terms of the ~'-surface integral 
in (47). Since V'o(M' + S'v/c 2) == 0, we proceed 
essentially as for (39}-(41). Thus 

F = - 1'-1 IdA' oeM' + s'v/ c2 ) o£ 
== - F 1- FR == F 7' - FR • (77) 

FR = y-q::o jCMs + vSs/c 2 )odA' 

= Woos(r'+~)oL/Y 

= WoP'2 0 ;'(R(1 + (3 coSEJ'» = WooR«R», 
(7S) 

and from (3~} and (36) 

F [ = '1"-1 L 0 j (M] + vSj/ c2 ) °dA' 

== Wob Rep' og(k') (k' + {3V)/y 

== Wo(1 - [3 coso)b RepoG(k)k, 

FT =-F[= Wo(1- (3 cosa)oT k = WooTk. 

(79) 

(SO) 

Now we rederive our results by working with the 
quadratic functions in ~,Le., by using the Cl.­
surface integrals in (47) and (50). This exhibits 
the physical content that the ~' procedures have 
left implicit. 

In ~,with + = ~ + U == Eo + Es := E, etc., in 
terms of (1) and (4), we have the analogs of (21)­
(23): 

(81) 

Ws ~ Wo IG(R)I ~ /D12 == Wo IP'Psg(r') 121D/2 = WSa , 
D := 1/ik'r' == ps/p'ikR, (82) 

W
J 
~ WoRe {eikR-ik.R[poG + (k xp) o(R xG )]D} = W1a 

(83) 

where WSa == p~ WSa' We use ~* as given in (S) to 
cancel eivs of U in W1a ; the result is the full 
analog of (23) in terms of the corresponding ~ 
quantities. In particular, at R := k, - k we get 
W fa := 2 W 0 RepoG(k)D, O;,!he first value differs 
from the corresponding (r' == k') result for (23) 
in containing Wo instead of Wo == Wop'2,and in 
that we now work with D = l/ikRp'2. Similarly 
the analogs of (24), (25), and (30) are 

2 1 ..... ..... 
So := c No == 2" Eock = Sok, (S4) 

Ss =c2Ns '" SolGI21DI2R 

== So Ip'Psgl21DI2R := SSa' (85) 

{ 
ikR-ik'R ~ ~ 

ST = c 2N[ '" So Re e [p X (R x G) 

+G x (kx p)]D} = Sfa (86) 

where S~sa ==.P'iP'sa' If R == k, -k then SIa = 
25 0 RepoG(k) kP, O.~ The first differs from the 
corresponding (r' = k') result for (30) in containing 
Sok instead of Saki. Finally, the analogs of (34)­
(36), are 

- 1 ~~ 1~ 
Mo == 2" Eokk == W Q'U", (87) 

(89) 

The original procedure (31)-(33) for PA in ~' was 
From (25) and (35), based on v' oS' = 0 in V'. We can parallel this 
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procedure in ~ for PB of (50), since by (56), 
vo(S - vW) = 0 in V. Thus, the analog of the 
sequence (31)-(33) is 

PB =- j(S-vW) od6 =- J(S-vW)°dA 

= - PI - PR = P T - PR , (90) 

with corresponding cross sections given by P/S o' 
In particular, in terms of W s of (82) and S s of 
(85), 

PR = j(Ss - vWs)od6 = J(Ss -vWs)odA 

= S j' P;Ig(r')12 (R-f3V)odA (91) 
o k 2r'2 ' 

where A is any distant closed surface around the 
scatterer. If we take A as AlC) in R, then since 
dO. (R) = dO. (r')(a e cos8)/as' cose' = dO(r')/p;, 
and R = r'p ,we have dA = RR2dQ (R) = 
A A S 
Rr'2dO(r'); thus, 

PR = (SO/k2) J Igl2 Ps2(R - f3V)oRdfl(r') 

= (SO/k2) j Igl2 N(1 - (3cose)dQ(r') = SOaR 

which, since N(1 - (3 cose) = Ps /y = (1 + (3 cose') 
is the result given before in (67) and (74). The 
same result foll.Qws if we take A as Ace in r ~ and 
use dQ(rs)=dQ(r')(oe,coses)/as,cos6'=dg.(r )/ yq3 

~d rs = r'q as in (5) to obtain dA = rsr;dQ(rs) = 
r s r': dO~rJ/Y1!J substituting into (91), and noting 
that R - {3v = rsq/ps, weAagai~ ob.!ain (74). Most 
simely,w!! use Ps (ft - (3v) =Ar'o_L-1of (5) to write 
#(R - (3v) = y(1 + {3 cos8')r'oL-l in (91); taking 
yL-lodA = dA' with A' as A:.o gives (74). 

In general, Ts is small enough for the implicit 
slow t-variation of WSa and SSa in r, t to be neglec­
neglected for practical purposes. We may identify 

with the flux through the directed aperture AA.{rs ) 
of a fixed receiver in ~ pointing at the scatterer's 
present ~osition vt. If we replace 6 s by 
6. = 60. (R), the form corresponds to the flux 
through the directed aperture M(R) pointing at 
the scatterer's retarded position V(vt - (3R) = vto' 
The corresponding differential cross sections are 

daR(R)/dQ(R) = Pr Igl2/k2y 

daR(r)/dQ(rs ) =PsQ3 IgI 2 /k 2 • 

The distant Poynting flux through dA(R) is 

6P Sa = (S oIk2 ) j~p~ Ig(r') 12 dQ(r') 

(93) 

= (Solk2)')'2 L .. (1 + (3 Cose')2Ig(r') 12 dQ(r'), 

da/R)/dQ(li) =MlgI2/k 2 (94) 

but since VoSs '" 0, in general, (94) is not a funda­
mental differential flux measure in ~,e.g., if we 

use 6.A(r s),the integrand becomes Pl 1 gl2R ois/yq = 
IgI2(Pshq)2 = Ig12(1 +A{3 cose,:)/(1- (3 cose') 
with corresponding dus(r s)/dfl(r s) = p~q 1 g 12/k2y. 
Sommerfeld4 converts the differential form in 
(94) to the first form in (93) for the case of a 
radiating accelerated electron by introducing 
~t/oto = 1- {3 c...os8, Le.,he replaces RO~sa~y A 
RoSSa at/ato = RoSSa (1 - (3 Acos6) = SsaRo(R-{3v~ 
which equals (Ssa -vWSa)oR. However,since 
Vo(Ss - vWs) = 0 in V, we would use the second 
form in (91), i.e., j (Ss - vWs)odA for all dis­
tances. This indicates directly that (93) is the 
fundamental differential reradiated flux mea-
sure in ~. 

For the interference term, from WI of (78) and S I 
of (86), we obtain 

PI = j (SI- vWI)odA 

= So Re jDeikR-ik'R{[pX (RXG) + GX (kXp)] 

- v{3[poG + (k x p)o(ii x G)]} odA(R) 

= Sob [Re poG(t{)t{ - vj3 Re poG(t{) 10 k 

= Sob Re poG(t{)(1 - (:ivot{) (95) 

which, since poG(k) = p'°g(k') is the same as in 
(71) and (75). 

The same development carries over for the force. 
Thus the orig,!nal procedure (39)-(41) for F' in ~', 
based on v'oM' = 0 in V', applies in ~ to F of (47), 
since by (53), voCM - vN) = 0 in V. Thus, 

F = - JeM -Nv)od6 = Woa 
= - F I - FR = F T - FR (96) 

with corres~nding cross sections given by F/Wo• 
In terms of Ms of (88) and Ns of (85) 

FR = j(M s -Nsv)od6 = jCMs -Nsv)odA 

j NIg(r')12 AA AA 
= Wo k 2r'2 (RR-{3Rv)odA (97) 

and proceeding as for (92) we obtain 

F R = (WO/k2)j Ig 12 P;R(R - {3V)o:RdQ (r') 

= (W oIk2)J Ig 12 Ps2 R(1 - (3 cose)dQ(r') 

= WoaR«R» (98) 

as in (69) and (78). Similarly, in terms of (89) and 
(86), 

F 1= jCMI - NIV)odA 

= Re jneikR-ikoft. [S laR - {3Sla v)odA(R)/c 

= W obk RepoG(k)(k - 13Y)oic 
== Wob (1 - (3 coso) RepoG(k)k (99) 

as in (72) and (79). 

The present results also apply to arbitrary cylin­
ders and slabs in terms of the representations 
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for the fields given in the earlier paper 1 (which 
includes t:. P R and t:.P s for the three sets of 
scatterers) with ~ equal to (1/21T) J dB' for the 
cylinder, and to the mean of the forward space 
and back space values for the slab. For the cylin-
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Classes of potentials are defined by the finiteness of certain norms. For potentials if! any of these 
classes, the phase shift for any partial wave is shown to possess a norm-dependent bound as a function 
of energy. Two norms are adduced in which the phase shift is uniformly bounded for all energies. A 
number of theorems are proven concerning the high-energy behavior of the phase shifts corresponding 
to potentials in these classes. 

I. INTRODUCTION 

The present and the following two papers will in­
vestigate the "scattering functions" of potential 
theory, viz. the partial wave phase shift Dl(k) at a 
fixed energy k 2 (1£ = 2m = 1 units are used through­
out) and the S-wave scattering length A as (non­
linear) functionals of a spherically symmetric po­
tential V(r). The over-all questions raised in these 
papers deal with the boundedness and continuity of 
the partial wave phase shift as they depend on the 
potential function V(r). These considerations are 
of interest in view of a number of paradoxes l noted 
in the literature calling for a clarification of these 
fundamental questions. These investigations also 
bring to light an interesting topological structure 
governing the dependence of scattering functions 
on potentials. In particular they point to a Banach 
space of potentials (see following papers) in which 
the scattering functions are continuous and bounded 
functionals. Such a structure may serve as a use­
ful theoretical tool. A number of inequalities, some 
of which may be new, are arrived at in the course 
of this investigation which are likely useful in 
other contexts. 

The present paper will establish a lemma which 
shows how the scattering functions have absolute 
bounds related to certain norms of the potential 
functions. While phase shifts are always subject to 
a mod-1T ambiguity, we adhere to the convention 

that they be continuous in k and vanish at all ener­
gies for zero c·oupling. The bounds established in 
these papers apply to the phase shifts defined by 
this convention. They are of interest for the pur­
poses of analysis as will be seen in the follOWing 
articles. Some results on the high-energy limit of 
the phase shifts are presented in a theorem. In the 
following articles, it is shown how these norms, 
when bounded, serve as moduli of continuity for 
the dependence of the phase shift on the potential. 
In a subsequent paper, continuity is investigated 
when the potentials are of unbounded norm as in 
the case of repulsive singular potentials. All theo­
rems and proofs will be explicitly presented for 
the 1 = 0 case. The considerations in the cal'!e of 
other partial waves are almost identical, and the 
necessary modifications are presented in Appen­
dix A. 

n. SPACES OF POTENTIALS 

We deal in the present papers with potentials which 
are spherically symmetric and which are Ll over 
any closed finite subinterval of [0, (0) which ex­
cludes the origin. We thus do allow for singular 
behavior at r = O. One might allow for non-Ll 
singularities at finite nonvanishing r, but they are 
not of sufficient interest though certain aspects are 
touched upon in an accompanying paper. The po­
tentials are assumed to be point functions as dis­
tinguished from distributions, though such genera-



                                                                                                                                    

2348 V. T W E R SKY 

for the fields given in the earlier paper 1 (which 
includes t:. P R and t:.P s for the three sets of 
scatterers) with ~ equal to (1/21T) J dB' for the 
cylinder, and to the mean of the forward space 
and back space values for the slab. For the cylin-

• This work was supported in part by National Science 
Foundation Grants NSF-GP-8734 and 21052. 

1 V. Twersky ~Relativistic Scattering of ElectromagnetIc 
Waves by Moving Obstacles, J. Math. Phys, 12,2328 (1971). 

2 A.Einstein,Ann.Phys.(paris) 17,891 (1905). 
3 W. Pauli, 'Theory oj R-elativity (pergamon, New York, 1958). 
4 A. Sommerfeld, Electrodynamics (Academic, New York, 1952). 
5 M. Laue, Das Relativitlltsprinzip (Friedr, Vieweg und Sohn, 

Braunschweig, 1911), p. 79. 
6 L. Silberstein, The Theory oj Relativity (Macmillan, London, 

1924), p. 237. 
7 P. Penfield, Jr. and H. A. Haus, Electrodynamics oj Moving 

Media (MIT Press, Mass., 1967). 

JOURNAL OF MATHEMATICAL PHYSICS 

der, we use D2 = (2/1Tk'r')l/2 e -in/4, b 2 = 4/k'; and 
for the slab Dl = 1, b 1 = 2. Although U for the 
cylinder is not periodic in R, t, its complete 
asymptotic expansion has period Ts ' so that the 
essentials of the present development carryover. 

8 J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New 
York, 1941). 

9 D. S. Saxon, Phys. Rev. 100, 1771 (1955). 
10 V. Twersky, J.Math. Phys. 8,589 (1967); see Report EDL-L30 

(1965), Mountain View, Calif., for additional results. 
11 P. Debye, Ann. Physik 30, 57 (1909). 
12 H. C. van de Hulst,.Light Scattering by Small Particles (Wiley, 

New York, 1957), p.13. 
13 R. C. Restrick, Radio Science 3,1144 (1968). 
14 D. Censor, Tel-Aviv U, Report No. ES 70-005, Ramat-Aviv, 

Israel, 1969 [Radio Sci., (to be published)]. This work also 
discusses measurement procedures and alternative develop­
ments. 

VOLUME 12, NUMBER 11 NOVEMBER 1971 

The Phase Shift. I. As a Bounded Functional 
William M. Frank 

U.S. Naval Ordnance Laboratory, White Oak Silver Spring, Maryland 20910 
(Received 16 March 1971) 

Classes of potentials are defined by the finiteness of certain norms. For potentials if! any of these 
classes, the phase shift for any partial wave is shown to possess a norm-dependent bound as a function 
of energy. Two norms are adduced in which the phase shift is uniformly bounded for all energies. A 
number of theorems are proven concerning the high-energy behavior of the phase shifts corresponding 
to potentials in these classes. 

I. INTRODUCTION 

The present and the following two papers will in­
vestigate the "scattering functions" of potential 
theory, viz. the partial wave phase shift Dl(k) at a 
fixed energy k 2 (1£ = 2m = 1 units are used through­
out) and the S-wave scattering length A as (non­
linear) functionals of a spherically symmetric po­
tential V(r). The over-all questions raised in these 
papers deal with the boundedness and continuity of 
the partial wave phase shift as they depend on the 
potential function V(r). These considerations are 
of interest in view of a number of paradoxes l noted 
in the literature calling for a clarification of these 
fundamental questions. These investigations also 
bring to light an interesting topological structure 
governing the dependence of scattering functions 
on potentials. In particular they point to a Banach 
space of potentials (see following papers) in which 
the scattering functions are continuous and bounded 
functionals. Such a structure may serve as a use­
ful theoretical tool. A number of inequalities, some 
of which may be new, are arrived at in the course 
of this investigation which are likely useful in 
other contexts. 

The present paper will establish a lemma which 
shows how the scattering functions have absolute 
bounds related to certain norms of the potential 
functions. While phase shifts are always subject to 
a mod-1T ambiguity, we adhere to the convention 

that they be continuous in k and vanish at all ener­
gies for zero c·oupling. The bounds established in 
these papers apply to the phase shifts defined by 
this convention. They are of interest for the pur­
poses of analysis as will be seen in the follOWing 
articles. Some results on the high-energy limit of 
the phase shifts are presented in a theorem. In the 
following articles, it is shown how these norms, 
when bounded, serve as moduli of continuity for 
the dependence of the phase shift on the potential. 
In a subsequent paper, continuity is investigated 
when the potentials are of unbounded norm as in 
the case of repulsive singular potentials. All theo­
rems and proofs will be explicitly presented for 
the 1 = 0 case. The considerations in the cal'!e of 
other partial waves are almost identical, and the 
necessary modifications are presented in Appen­
dix A. 

n. SPACES OF POTENTIALS 

We deal in the present papers with potentials which 
are spherically symmetric and which are Ll over 
any closed finite subinterval of [0, (0) which ex­
cludes the origin. We thus do allow for singular 
behavior at r = O. One might allow for non-Ll 
singularities at finite nonvanishing r, but they are 
not of sufficient interest though certain aspects are 
touched upon in an accompanying paper. The po­
tentials are assumed to be point functions as dis­
tinguished from distributions, though such genera-
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lization is presumably possible, and in fact the 
limit as o-function potentials are approached will 
be considered in the following paper. In practice 
we shall have piecewise continuous potentials in 
mind. 

We shall be interested in a number of classes of 
potentials in what follows. The class Ll is the 
familiarly defined class of potentials V(r) for which 

and the inequality valid for V(r) E £1/2 follows 
from 

x [V] == foOO drr I VCr) I = fooo dx .£00 dr I V(r) , 

~ fooo dx Loo dryer) ~ fooo dxV(x) 1/2 

X foOO drV(r) 1/2 == T2(V]. (7) 

[ J J"" , , It should be noted that the norms W B[V]' X [V], and 
~ V == 0 dr V(r) < ct), (1) T[V] are dimensionless in the units 1i = 2m = 1 

which quantity we call the" Ll norm" of the poten- with (3 of dimensions length-
1

. 

tial. The class L~l) consists of potentials VCr) such III. BOUNDS ON PHASE SmFTS 
that 

In this paper, we show that these norms serve as 
W [V] == .r drr I V(r) , < ct) 

8 0 l+{3r 
(2) moduli of boundedness for their respective classes 

in the sense that the phase shifts for potentials in 
each of these classes can be bounded for each k by 
a quantity which depends on the corresponding 

for some fixed positive {3. The validity of Eq. (2) for 
one positive value of {3 implies its validity for all 
positive (3. This integral will be termed the "L~l) 
norm" of the potential ({3 dependence suppressed). 
Two special cases are of interest, {3 = k (k 2 is the 
energy~ and {3 = O. The latter class will be termed 
the" L 1) class" and corresponds to potentials with 
finite first moment, Le., 

norms of these potentials. 

An extremely useful tool in the ensuing discussion 
is the following intuitively obvious comparison 
lemma. 2 

X == X[V] == Joo dr r' V(r) , < 00. 
o 

Comparison lemma: If two potentials V1 (r), 
(3) V 2 (r) satisfy the ordering relation for all r, 

X [V] is termed the L (1) norm of VCr). If 

T == T [V] == f; dr' VCr) 11/2 < ct), (4) 

VCr) will be said to belong to the class L(1/2) and 
the quant~ T is the L(l/';!.) norm of VCr). We define 
the class L (1/2) of potentials VCr) to be those for 
which there is a V(r) , such that 

(i) I V(r) , ~ VCr), 

V1 (r) :;. V2 (r), 

then correspondingly for each real energy k 2 , 

The conceptual content of this lemma is quite ob­
vious; if one potential is at least as attractive as 
another everywhere, its phase shift at any energy 
is at least as great. In this sense we shall speak 
of the phase shift as a "monotonic functional" of 
the potential. It therefore suffices in order to 

(ii) VCr + a) ~ VCr) for any a :;. 0, 

(iii) J dr I V(r) 11/2 < 00. 

(5) establish bounds on the scattering functions to 
establish them for appropriately stronger poten­
tials. Our interest in particular will be in bounds 
which are uniform in k. Only S-wave results are 
explicitly presented. (See Appendix A for discus­
sion of higher l values.) 

[In what follows, VCr) will always denote an app!o­
priate bounding potential corresponding to an Ll/2 
potential VCr) for which (i), (ii), .and (iii) are true. J 
We also ia~roduce the notation which we exemplify 
for the L norm 

X [V]~ == t dr r' VCr) , 
a 

so that x[V] == x[V]~. 
The subA~quent paper shows that the L 1, L~) L (1), 
and L (l norms serve as moduli of continuity, 
respectively, for ~e scattering functions in the 
L1, L ~), L (1), and L (l/2) classes of potentials. The 

We define the respective attractive and repulsive 
parts V-(r) , v+(r) of a potential VCr) by 

P (r) = HV(r) ± 'V(r) I ]. (8) 

Boundedness lemma: (i) If VCr) E £1, its 
phase shift at any nonzero energy obeys the inequa­
lities2 

(9) 

following inclusion relations apply to these classes: with L arbitrary nonnegative. 

L (1/2) c L (1) C L~l), Ll eLf). (6) (ii) If VCr) E L (1) , its phase shift obeys the in-
equalities 

These relations follow from the evident inequali­
ties 

Wa[V) < X [V], wa[V] < (l/{3g[V], 

- {kL + 2wk [V+(r)]7! ~ o(k) ~ F{X[V-(r)]} , (lOa) 

-jkL + x[V+(r)]~f ~ o(k) ~ F{x[IV-(r)I]}, (lOb) 
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for any L ;;. o. F(X) is a specific monotonically in- One may optimize this with respect to L. For L (1) 

creasing function of its argument [see Eq. (28)] potentials, we employ the alternative inequality 
which vanishes at X = O. These bounds are uniform 
in k. 

(iii) If VCr) E £ (1/2), then Eq. (lOb) is valid as well 
as the weaker inequality (L arbitrary) 

-jkL + T2[V]~f.,; o(k) .,; F{T2[V}}. (11) 

Remark: It is clear that, in order to prove this 
lemma, one must work with expressions for the 
phase shift which define it by the previously stated 
convention which resolves the mod-1T ambiguity. 
Such relations are provided by Eqs. (13) and (22). 

Proof: We first note that the inequality, Eq. 
(11), applied to £(1/2) potentials is an immediate 
consequence of Eq. (lOb) for L (1) potentials, in view 
of Eq. (7). We also rem~rk that the phase shift is 
finite for all k for all .u1

) potentials. For k = 0 this 
is a consequence of Levinson's theorem and the 
Bargmann-Schwinger inequality, Eq. (21a).3 For 
k ;t' 0, it is a consequence of the existence of the 
Jost function (see Appendix B) I(k) (identical with 
the Jost solution at r = 0 in the S-wave case) and 
the fact thatl(k) ;t' 0 for real k ;t' 0. 4 The phase 
shift is merely 1m ln/(k). 

From the comparison lemma, we readily conclude 
that 

o (k, V+) .,; o(k, V) .,; o(k, V-) (12) 

(in an obvious notation). It suffices in establishing 
the theorem to prove the upper bound in Eqs. (9) 
and (10) for a purely attractive potential and the 
lower bound for a purely repulsive potential. 

Let VCr) be a purely repulsive potential, i.e., 
VCr) ;;. O. The variable phase equation5 specifies 
the phase shift as 

o (k) = - i fooo dryer) sin2 [kr + o(r, k)} 

=-i (fOL + fLoo)drV(r) sin2[kr + o(r,k)} 

~ 01(k) + 02(k), (13) 

where o(r, k) is the phase shift for the potential 
truncated beyond r.5 For purely repulsive poten­
tials6 

- kr .,; o(r, k) .,; O. (14) 

In particular, 

01 (k) = o(L, k) ;;. - kL. (15) 

If in O2 (k) we employ the inequality I sine I.,; 1, we 
immediately find for Ll potentials 

I sin2e I.,; I sine I.,; 2e/(1 + e) (17) 

and one readily finds in view of Eq. (14) 

l02(k)I==i f L
oo 

dryer) sin2[kr + o(r,k)] 

.c 2 roo drrVJ!l (18) 
'< h l+kr 

== 2Wk[V]~, 

Equations (15) and (18) together imply for the pure­
ly repulsive case the lower bound in Eq. (lOa). The 
inequality I sinel< e and Eq. (15) give Eq. (lOb). By 
choosing L == 0, we find a bound uniform in k, 

lI(k) ;;. - X [V+]. (19) 

Through an alternative use of the inequality (17), 
one readily derives for purely repulsive potentials 
the inequality 

roo drr2V(r) 
o(k) ;;. - 4k Jo (1 + kr)2 . (20) 

This inequality has not been emphasized in the 
lemma as it fails to have any counterpart in the 
attractive case, since the right-hand side is finite 
even for some singular potentials. Our object is 
to indicate the norms which serve as moduli of 
boundedness. 

The bound we find for a purely attractive potential 
V(r) is not quite as simple. For k == 0, however, 
simple expressions are possible in view of Levin­
son's theorem. If n B denotes the number of bound 
states supported by the potential, one finds from 
the Bargmann-Schwinger inequality 

0(0) = 1Tn B .,; 1T fooo drr I VCr) I == 1TX[V] (21a) 

for L (1) potentials. For L (1/2) potentials one can, 
in fact, go beyond the implications of Eq. (7) by 
means of the inequality7 

1. 0(0) = n B .,; 1 !'ooo dr IV(r) 11/2 = 1 T[V]. 
1T 1T. 1T l21b) 

Fork ;t' 0, the upper bound in Eq. (9) is an immediate 
consequence of the variable phase equation. For 
nonzero energies, the proof of Eq. (10) is consider­
ably more complicated. In this case, we show that 
a choice of radius g > 1 is possible, which will 
give o(k,-gl Vi) a uniform bound in k. We proceed 
from the following expression for the phase shift 
for a potentials 

6(k) = kfooo dr[I/(k,r)/-2 -1], (22) 

o(k) ;;. - {kL + it'[VJ~}. 
where I(k, r) is the Jost solution for that potential. 

(16) We write 
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6(k) = kfe dr[lf(k,r) 1-2 -1] 
+ 

- kfe_ dr[l- If(k,r) 1-2 ] 

== 6+(k) - L(k), (23) 

where C+ is the subset of the positive r axis over 
which If(k, r) I ~ 1 and C _ is the complementary 
subset. Clearly 6(k) ~ 6+(k). An upper bound to 
6+(k) can be found from a lower bound to If(k, r) I. 
In Appendix B, we establish the upper bound to 
If(k, r) I , 

If(k, r) I ==If(k, rjg) 1 ~ exp{2gw k [V];"}, (24) 

where a coupling constant g > 0 has been attached 
to the potential (eventually to take the value unity). 
(The g dependence will occasionally be suppressed 
in the notation.) A standard function theoretic re­
sult states9 that, complementary to the upper bound 
in Eq. (24), one can find a related lower bound on 
fJ(k, r) I valid in the entiregplane exclusive of cer­
tain small neighborhoods of the zeros of f(k, r). 
We shall use the following form of this result for 
the case g = 1, which we prove in Appendix C. 

Result: For fixed k and r, 

If(k,r;1)1 

~ exp{ - ~ 1T2(~ + 8ln(32g3 X2)]wk[V];"} 

== exp{- Awk[V);"}. (25) 

We find from Eqs. (23) and (25) 

6(k) ~ 6+(k) ~ kfooo dr{ exp{2Awk[V];"} - I} 

= 2kAfooo dr;21 Z) I exp{2Awk [V);'}. 

~ 2XA exp(2xA}, 

where an integration by parts has been done in 

(26) 

Eq. (26). The integrated part vanishes at the upper 
limit since 

J. oo dss I Yes) I ~ _1 _ lOO dss 1 Yes) 1= 0(1) (27) 
.. 1 + ks 1 + kr .. r ' 

which follows from X [V] < 00. The quantity W k [V] 
appearing in Eq. (26) is replaced by X fV] only 
because a finite L (1) norm is necessary for the 
integrals to converge. One thus verifies the upper 
bounds in Eq. (10), 

F(x) = X(p + CTlnx) exp[X(p + CTlnx)], (28) 

with p, CT defined in Eq. (C17). We note that F(x) is 
a continuous monotonically increasing function of 
X which goes to zero as X ~ O. 

We note that this proof which was based on the 
representation of Eq, (22) for the phase shift cannot 
be repeated for the S-wave scattering length which 
is expressible analogously by10 

A = fooo dr[lf(O,r) 1-2 -1]. (29) 

Indeed the scattering length for attractive potentials 
is not a bounded functional in any of the norms, as 
it becomes infinite at every bound state threshold. 
The argument fails because the scattering length is 
not a monotonic functional of the potential. Bounds 
on the scattering length in the purely repulsive case 
can be inferred from the present approach, but this 
will be deferred to another treatment. 

When theJlotential becomes singular in the sense 
that x[V]o = 00 for any a > 0, the upper bound in 
Eq. (10) fails to be finite, while the lower bound is 
generally finite, though it grows unbounded as 
k -7 00. 

IV. WGB-ENERGY BEHAVIOR 

The behavior of 6(k) for large k is described in 
the following theorem. 

Theorem: (i) If,for some f3 > O,wtl[V) < 00, 

then 6(k) ~ 0 as k ~ 00, 

(ii) If r2 VCr) ~ + 00 monotonically as r ~ 0 and 
Wary]': < 00 for all a > 0, then 6(k) ~ 00 as k ~ 00. 

(iii) If, for some f3 > 0, 

Wtl[V-] < 00, wtl[v+J-: < 00 for any a> 0, (30) 

then 6(k)/k ~ O. 

Proof: To prove (i), we appeal to the expression 
for 6(k) in Eq. (13), in particular, to the decompOSi­
tion into 61 (k) and 62 (k) with L to be specified. We 
choose an E> O. 61 (k) is the phase shift for the 
potential VCr) truncated beyond r = L. Now F[xJ 
of the lemma goes to zero continuously as X ~ 0, 
and so does wtl[VJ~ as L ~ O. It follows from 

x[vJ~ ~ (1 + j3L)w[VJ~ 

and the inequalities in Eqs. (lOb) and (19) that, 
through choice of sufficiently small L, one can 
make 161 (k)l< h. For 6a(k), one can write the 
inequality 

(31) 

(32) 

which, with L fixed, can be made smaller than %E 
through choice of sufficiently large k. Since E is 
arbitrary, one concludes that 6(k) ~ 0 as k ~ 00. 

We now consider statement (ii). One considers only 
VCr) purely repulsive in the neighborhood of r = 0, 
as the phase shift for a strongly attractive singular 
potential is essentially undefined. We again con­
sider the decomposition into 01 (k) and 6a(k) of Eq. 
(13). It has been presumed that within some fixed 
finite neighborhood of r = 0, r2 VCr) is positive and 
monotonically decreasing. Define r l by the con­
dition 

(33) 
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Then r l -t 0 as l-t <Xi. In Eq. (13), choose L = r l • 

For fixed 1, 

162(k)I""iJ,.~drIV(r)I""* (j3+~) wB(VJ~,(34) 
which shows that 62 (k) -t 0 as k -t <Xi. By compari­
son, one concludes from the monotonicity of VCr) 
for small r for sufficiently large I that 

(35) 

where o(k; e l ) is the phase shift corresponding to 

e z<r) == (l(l + 1)/r2 Je(rl - r). (36) 

o(k; e l ) is expressible by means of the (l = 0) vari­
able phase expression in Eq. (13) 

6(k; C, ) 

= -(l(l + l)/k] fo
YI 

drr2 sin2[kr + o(r,k; 1)] 

= (l(l + 1)/k] foco drr-2 sin2 (kr + o(r,k; I)] 

+ [1(1 + 1)/k) J,.~ drr-2 sin2[kr + o(r,k;l») 

= - ~ Irr + (1(1 + 1)/k) fr~ drr-2 

x sin2[kr + o(r,k;1)), (37) 

where o(r, k; 1) is the variable phase function for 
the centrifugal potential 1(1 + l)r- 2 • For fixed 
I, one readily sees that o(k; C I} -t - ~ lrr as k di­
verges. Since 1 is arbitrary, one concludes from 
Eq. (35) that 01 (k) -t - <Xi as k -t <Xi, from which 
follows the same for o(k). 

We now prove statement (iii) which is meant to 
apply to singular potentials, i.e., potentials for 
which x[V) = 00. It follows by comparison from 
statement (i) and W B(V-) < 00 that, in fact, o(k) "" 
o as limk ~ 00. Choose an E > O. Then if 
L = ~E, 

from Eq. (15). For such an L, one can choose k 
so large that Eq. (18) implies k- 1 02 (k) ;;. ~E. The 
result follows from the arbitrariness of E. 

V. DISCUSSION 

The upper bound in Eq. (10) is likely to be generous 
in view of the simpler form for k = 0, Eq. (21a), and 
the known bounds for potentials which have mono­
tonicity properties.ll One may speculate in view of 
Eq. (9), the k = 0 case and the results for the purely 
repulsive case, whether an upper bound with only 
polynomial growth in A IS possible for large X. One 
should also note the inequality in Eq. (25) as an 
inequality on the modulus of the Jost solution, which 
is useful in later contexts. The boundedness lemma 
is a vital consideration in the arguments of the 
following paper. 

APPENDIX A: HIGHER I VALUES 

The boundedness lemma and high-energy theorem 
remain essentially valid for the lth partial phase 
shift with, only minor modification of the reasoning 
or results. The upper bounds in Eqs. (9) and (10) 
are only changed by addition of ~ lrr to the right­
hand side. The presence of the centrifugal barrier 
does not change the attractive part of the potential, 
while the uS-wave phase shift" for VCr) -l(l + 1)r-2 

is Hrr less than the I partial wave phase shift. The 
lower bound can be studied by a parallel treatment 
to the 1 = 0 case. Again we may take VCr) to be 
purely repulsive. The variable phase equation for 
the lth partial phase shift iS12 

dOL 1 ~ ~ 
dr (r,k) =-/iV(r)D¥(kr) sin2 (oz(kr) + oz(r,k»), 

~ ~ (AI) 
where D I (x) and 01(X) are defined in terms of the 
conventional spherical Bessel functions j I (x) and 
nz (x)13: 

D z (x) = x(j¥(x) + n¥(x) ]1/2 

5z (x) = arctan(j I (x)/n z(x) J. (A2) 

6z (x) is defined for all x ;;. 0 by 6z (0) = 0 (in the 
repulsive case) and 0 I (x) continuous. From (AI) 

0l(k) =- (l/k)fo
CO 

drV(r)D¥(kr) 

x sin2 [51(kr) + ill(r,k») 

= 61(L,k) - (l/k)fL

co 
drV(r)D~(kr) 

x sin2(61(kr) + 0l(r,k»). (A3) 

We appeal to a number of relations. For purely 
repulsive V(r),14 

0"" 51(kr) + 6z(r,k) "" 6z(kr) 
and 

61(x) "" x, D¥(x)6 z(x) "" x, 

(A4) 

(A5) 

which follow from the monotonically decreasing 
character15 of Dz(x),DI(oo) = 1, and the relation16 

01(X) = foX dyD-;:2(y). (A6) 

We conclude from Eqs. (A3)-(A5) that,for purely 
repulsive V(r) , 

(A7) 

which is the appropriate inequality to appear in 
Eq. (lOa) with V+(r) replacing VCr) in the general 
case. Setting L = 0, we readily verify the lower 
bound in Eq. (9). We note the behavior17 of 
6z(x) for small and large x as 

~ X2Z+1 

o lex) x---:::O (2l + 1) !! (21 - I)!! ' (A8) 
61(x) ~ x - ~lrr. x-oo 

Equation (lOb) is proved in the same way to hold 
with O,(kL) replaCing kL. One derives analogously 
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to Eq. (20) for purely repulsive potentials 

rOO r6 1(kr) VCr) 
ol(k) ;;. - 4Jo dr 11 + t

l
(kr)J2 • (A9) 

The theorem on the high-energy behavior applies 
to higher partial phase shifts, with essentially no 
ch~ge in the proof. 

APPENDIX B: BOUNDS ON THE JOST SOLUTION 

The Jost solution to the 1 = 0 partial wave equation 

d 2 
dr 2 f(k, r) + [k 2 - gV(r)]f (k, r) = 0, (B1) 

satisfying the boundary condition for large r 

f(k,r) ~ e- ikr , 

also obeys the integral equation18 

f(k,r) = e- ikr +g.!:'dr'[sink(r -r')/k]V(r')f(k,r'). 
r (B2) 

This Volterra type integral equation allows the 
solution by iteration 

f(k,r) = e- ikr + "~1 (1) n LOO dr 1 '" 

x 100 
dr sinker - r _ ) ... rn -1 ,. ,.. n 1 

n 
sink(r2 -r1 ) sink(rl -r)e- ikr,. ·j~lV(rj) 

00 

== ~gn¢n(k, r). 
n=l 

(B3) 

Bounds are easily derived from this expression. If 
VCr) E L~1/2) for k real, one readily finds from the 
inequality (17) 

1
00 100 rj I V(ri ) I 

1¢,.(k,r)l~ 2n r drl'" r n-
1 

drnl1 1 +kr. 
) 

= ;!{2~[V];,}n, (B4) 

which implies 

If(k, r) I ~ exp{2lgl wk[V];'}. (B5) 

From I sine I ~ e, one immediately deduces that if 
VCr) E L (J.) , 

If(k, r) I ~ exp{ Igl X[V];'}. (BS) 

Alternatively, 19 if VCr) E LU/2), 

lAo. (k r)l~loodr .•. 100 
dr (r -r ) ... 

'f' n' r 1 r n -1 n,. n-1 

x(r2 -r1 )(r1 -r) i~llv(ri)1 

~ Jroo dxlLoo dr l '" fx tix,. 
1 n-l 

xfOO dr .n IV(r.)V(x.)11/2 
Xn n )=1 J J 

= _1 {T[V]oo}2n 
(2n) ! r , 

(B7) 

so that 

(BS) 

APPENDIX C: PROOF OF THE INEQUALITY OF 
EQ. (25) 

We appeal to the representation of f(k, r;g) as in­
finite product representation in terms of its zeros 
(in g). In generalf(k,r;g) may have exponential 
order as high as 1 in g, 20 and, therefore ,/(k, r; g) 
would have the infinite product representation 

(C1) 

The dependence of g n on k, r is suppressed, and the 
known value of f(k, r; 0) has been included. Equa­
tion (24) implies an inequality21 on the number of 
zeros of f(k, r ;g) within a circle of radius g 

which implies that 

19,.1;;. 4w:(r)' 

(C2) 

(C3) 

The r dependence of the g n is frequently suppressed 
in the notation. We consider22 

If(k, r;g)f(k, r; - g) I 

= 111 (1-:~) I;;. 11 [1- ,::,2J == cpfg). (C4) 

We shall find a lower bound to ¢(g). ¢(g) of course 
has its minima at its zeros. Since ¢(g) clearly 
vanishes at g = Ign I, we exclude each of these 
points together with a small neighborhood. We sur­
round each point g = g n (r) by a circle of radius 

(C5) 

and exclude the interior of the circle from the 
region for which we try to establish a lower bound 
to ¢(g). The choice of radius of the disc is arbi­
trary, so long as the sum of the radii of the exclu­
ded circles is finite. We denote the g-plane with 
these r-dependent circles excluded by G(r). The 
total diameter of the excluded circles is bounded 
by 

_ 4 00 2 

g == 3 ~n-2 = 91T2 > 1, 
n=l 

(CS) 

where Eq. (C3) has been used. We note thatgas de­
fined in Eq. (C6) serves as a k- and r-independent 
radius, for which for some value of g ~ g, the in­
equality to be derived will be valid. For g general, 
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lnl cf>(g) 1= E Inll-~I I 
It Ign 2 

= E lnll-~I 
igni<2g Ignl2 

+ E Inll-~I 
ign i2:2g Ignl2 

== L1 + L2· (C7) 

For Ig It 1< 2g, 

Ig2 - Ign 12 I ~ ~ Ign IIg - Ign II ~ Ign I/n2, 
(C8) 

and therefore from Eq. (C3) 

In 11 -~ I ~ - In(n2 Ig I) ~ - In(32g3 X2) (C9) 
Ig

n 
12 n , 

so that 

L 1 = E lnll-~ 
ign i<2g Ig

lt
l2 

I ~ - n(2g) In(32g3X2) ~ - 8g In(32g3 x.2 )wk(r). 

(CI0) 

By employing the inequality In(l - x) ~ - ~x 
for x ~ t, we find 

L2 = E In 11 -~ I ~ - ~g2 E -I 1
12

, 
Ign i>2g Ignl2 ign i2:2g gn 

(Cll) 
Now from Eq. (C3) 
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". 1 ~. [ 1 16W~(r)J 
L.J ~ L.J mm -

Ign l ~2g Ignl2 n=1 4g2' n2 

= n(2f) + 16w~ (r) E n-2 

4g n "'8gw (r) 
k 

< 2w k(r) + 2w k(r) = 4w k(r} 
g g g' (CI2) 

so that 

(CI3) 

(CI4) 

Consequently for any gin G(r) from Eqs. (24), (C4), 
(CI0), and (CI4), 
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F(X) = x(p + (] lnx) exp[x.(p + (] lnx)], 
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(CI6) 
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The scalar field due to a bounded source and obeying the wave equation is analyzed. As a result of this, 
a set of rules is derived for solving a class of "wave theories,· including electrodynamics and general 
relativity, by expanding the field in a power series of c- 1 in null-spherical coordinates. The method is 
applied for the Maxwell equations to give all the well-known results without the use of Fourier analysis 
and Bessel functions. 

1. INTRODUCTION 

From the time when general relativity was intro­
duced as a gravitational theory, the problem of ex­
pressing explicitly the gravitational field in terms 
of the source was recognized as a very important 
one. It is the purpose of this paper to set up a 
method for solving this problem. 

Because of the complexity of the Einstein equa­
tions, an exact general solution, as in electro­
dynamics, does not seem possible. However, we 
ask for the next best answer: namely, a procedure 
which will enable us to express the metric tensor 
g/Jv explicitly in terms of the source at any 
desired accuracy. 

Earlier investigations by Bondi, van der Burg, and 
Metzner1 and Newman and Penrose2 opened the 
way for the exact treatment of the far zone of a 
gravitational field produced by a bounded source. 
These and other similar works 3 - 6 employ charac­
teristic or asymptotic ally 6 characteristic hyper­
surfaces and are based on the possibility of ex­
panding the metric tensor in powers of r- 1 , where 
r is an appropriately defined parameter which at 
infinity coincides with the radial coordinate. How­
ever, because of the expansion in powers of r-l, 
only the far zone can be studied by this method. 

For the near zone, different procedures have been 
used. Einstein, Infeld,7 Hoffman, Fock,8 and 
Chandrasekhar 9 have given a solution for the field 
inside and near the source. Also the reaction on 
the source due to the emission of gravitational 
waves has been derived by Chandrasekhar and 
Esposito.1o The "near zone" approach assumes 
an expansion of the field in powers of c- 1 (or vic) 
and is not valid far from the source because, 
among other reasons, the metric tensor behaves 
as rn (n ~ 1) at large distances. 

Consequently, the problem of uniting the two pro­
cedures arises. In that direction, the couI1ling of 
the radiation to nonrelativistic sources has been 
studied by Burke 11 in the linearized version of 
general relativity using the method of matched 
asymptotic expansions. However, this method 
appears to be rather complicated, and in the 
author's opinion, it is questionable whether it can 
be applied effectively for higher approximations. 

In this paper, we adopt a different approach to the 
problem of relating the gravitational field in the 
far zone to the source. We consider a class (not 
exactly defined) of "wave theories" with the scalar 
wave theory, classical electrodynamics, and 
general relativity among them. Each "wave 

theory" consists of a set of field equations, a 
source function (with one or more components), 
and a set of boundary conditions. Our objective is 
to find a set of "rules" for reducing the field 
equations to a set of linear equations which can be 
rather easily solved. The rules must be more or 
less the same for all the wave theories of the 
class. Hence, they must not depend on the field 
equations (linear or nonlinear), the source func­
tion (charge distribution or energy-momentum 
tensor), and the boundary conditions. 

In Sec. 2 we will discover the rules by examining 
some properties of the scalar wave equation and 
its solutions. 

In Sec. 3 the new method will be applied to the 
Maxwell equations to derive all the well-known 
results (with emphasis on the radiation) without 
any use of Fourier analysis, Bessel functions, and 
retarded potentials. 

In Sec. 4 we will briefly examine the limitations, if 
any, of the method, and in Sec. 5 some concluding 
remarks will be made. 

The application of the technique in general rela­
tivity, which is the purpose for developing the 
method, will be done in a future paper. 

2. THE SCALAR WAVE FIELD 

In flat space-time with signature - 2, we consider 
a one-component field 1/1 satisfying everywhere the 
equation 

DIJ! = - 41T/(t, r), 
where 

jJ., II = 0, 1, 2,3, 

(1) 

(2) 

b/JV is the contravariant metric tensor of the space, 
/(t, r) a function of the time t and position r repre­
senting a bounded source if = 0 outside an appro­
priate sphere), and the semicolon denotes covariant 
differentiation with respect to 9.11' 
Assuming that 

!(t, r) = !(r)e- iwt , (3) 

we have the general solution of Eq. (1) outside the 
source as a linear combination of 

(4) 

Every h/(kr) contains12 a factor eikrwhich can be 
combined with e- iwt to give e- iWM , where u = 
t - c- 1r. The remaining part of hl(kr) is a poly-

2355 
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nomial of r- 1 with coefficients, which are powers 
of c-1 . This is the only place where c appears in 
!/11m' and consequently, !/11m is of the form (with the 
indices 1 and m omitted) 

1/Ilm = ikh1(kr)e- iwt j~ r'2jl(kr')F1m (r')dr( 

+ ikjl (kr)e- iwt j;or'2h 1(kr')F1m (r')dr' (7) 
and 

F1m (r) = jYl~f(r)dfl,. (8) 

1/1 = L;Fn(U, r)c-~ 
n 

Let our space-time be represented by a fout­
dimensional. manifold M with coordinates 13 u, r 

(5) The function 1/Ilm satisfies exactly a differential 
equation which written in coordinates u, r, e, and cp 
becomes 

(u ranges from - co to + co and r stands for x, y, z 
or r, e,cp with the appropriate ranges). A one­
parameter family of functions on M, If!'(u, ri c), 
labeled by the parameter c, will be called a'u-lype 
function if, for fixed u and r, If!' is analytic in c-1 , 
i.e., if If!' can be written in the form (5) [with 
F,,(u,r) independent of c]. A c-dependent tensor 
field on M will be called a u-type field if each 
component of that field (in this coordinate system) 
is a u-type function. 

The importance of the "u-type function" concept 
lies in the fact that a u-type function can represent 
time-dependent fields generated by a bounded 
source, governed by linear or nonlinear equations, 
and exhibiting radiation phenomena. The Simplest 
scalar outgoing wave r-1e- iwu is a u-type function. 
Any solution of the Bessel equation multiplied by 
e- iwt becomeS a u-type function. In flat-space 
electrodynamics, let Jil be a contravariant vector 
field on M whose components are independent of c 
in the coordinate system t, r. We suppose in addi­
tion that Jil has compact support on each I = const 
hypersurface and JIl:1l = O. Then for each c, there 
is a unique retarded solution of Maxwell's equa­
tions with source Jil and which goes to zero at 
spatial infinity. This solution is a u-type function. 
Because of the expected similarity between elec­
trodynamics and general relativity, we will assume 
in Einstein's theory that the gravitational field of 
a bounded source is a u-type function with u, r, e, 
and cp appropriately1,6 generalized. 

If we now express the operator 0 using co­
ordinates u, r, e, and cp as a power series of c-l, 
then automatically D!/Ilm will be a power series of 
c-1, and since D1/Ilm = 0, we conclude that the co­
efficient of c-n of D1/Ilm will be zero for every n. 
The same conclusion could be reached if we had 
considered c-1 as an independent variable instead 
of a constant. It is important to notice that any 
sum of 1/Ilm with respect to 1 and m, and any sum 
or integral with respect to w (in case the source 
has a dis,crete or continuous spectrum) are also 
u-type functions. Hence, the solution of (1) outside 
the source is a u-type function and c-1 can be 
considered as a variable independent of the co­
ordinates or any other parameter of the problem. 
We now consider the inhomogeneous Eq. (1). Let 
f(t, r) be given by (3). We also assume that f(r) 
does not contain c. The physically acceptable 
(~ r- 1 for large r) exact solution is 

(6) 

where 

(L -} M) I/Izm = - Flmr2e-iwt. 

where 

L = r2£ + 2r~ -1(1 + 1) 
ar2 ar 

and 
a2 a 

M = 2r2 auar + 2r au' 

(9) 

(10) 

(11) 

In the above, !/11m is not a u-type function. However, 
we can consider it as a function of u, r, e, and cp 
and expand it formally in powers of c-1 • The fac­
tor e- iwt of the first term of (7) combined with e ikr 

of h,(kr) will give e- iwu• The factor e- iwt of the 
second term will be expanded as 

(12) 

Finally, we expand the Bessel functions h1(kr) and 
jl(kr) and replace k by wlc. Keeping only the two 
first powers of c-1, we find 

1/Ilm = 1/1~ + (l/c)1/Ig? + 0(c-2) 
where 
.,/0) = e-

iwu [r-I-1 (r r'I+2F, (r')dr' 'l'im 21 + 1 JO 1m 

+ rlj; r'-1+1F1m(r')dr'] 
and 
./.(1) = _ iwe-

iwu 
[r-1 (r y'I+2F, (r')dr' 

'l"lm U+T Jo 1m 

(13) 

+ r 1+1j; r'-1+1'p;m(r')dr']. (14) 

We now have the u-type function 1/1~ + c-11/1f!?, and 
multiplying by L - c-1M, we find 

(L - ~ M) (#~ + ~!/Ig?) 
= - Ftm(r)r2e-iwu (1- i~r). (15) 

But the right-hand side is the first two terms in 
the expansion of -'p;mr2e-iwt of (9). This means 
that, instead of solving (9) exactly, we could expand 
the source in powers of c-1 (in coordinates u, r, e, 
cp), and solve the equation 

Ll/12? = - Flm(r)r2e-iwu 

to find 1/If:!?, then solve the equation 

L1/Ig? = M!/I}~ + iW'p;m(r)r3e-iwu 

to find 1/IgJ and so on. 

(16) 

(17) 
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At this point, we are ready to state the general 
rules for any wave theory of the considered class: 

1. 

2. 

3. 

4. 

Write down the field equations in null­
spherical coordinates13 u, r, e, and Cf' and 
expand14 the source-function in powers of 
c-1 . 

Replace c-1 by E and consider E as a 
variable independent of the coordinates or 
any other parameter of the problem. 

Consider the field as a power series of E 

and write down the field equations as a 
sequence of equations for the various co­
efficients of En. 

Solve each set of equations (each member 
of the sequence) from n = 0 up to any 
desired En. 

The approximate solution of the original field equa­
tions comes from the expansion of the field in 
powers of E by replacing E with c-1 _ Having the 
field as a power series of c-l, we can expand the 
coefficient of c-n in a power series of r-1. In this 
respect, the method appears similar to the use of 
Li~nard-Wiechert potentials and, of course, gives 
the same results as these potentials or any other 
method in electrodynamics. However, the Li~nard­
Wiechert potentials are solutions of the linear 
wave equation in flat space and do not employ ex­
panSion in powers,of c-1. Contrary to the Lienard­
Wiechert potentials, the present approach, as stated 
by the four rules, is suitable for solving nonlinear 
field equations (the Einstein equations in general 
relativity). 

Comparing now the above rules with those followed 
by Chandrasekhar,9,10 we see that there is one 
essential difference: namely, the coordinate frame. 
In fact, Chandrasekhar uses coordinates t, r, 8, and 
cp and considers the field as a t-type function (de­
fined accordingly as the u-type function). In the 
near zone, t and u = t - rc-1 are approximately 
equal, so the field can be considered to be of u-type 
or t-type. Consequently, the new method is ex­
pected to give essentially the same results as the 
E .I.H. and post-Newtonian methods in the near 
zone. However, in the far zone, t and u are com­
pletely different and the field is a u-type function. 
Although this difference seems small, it is enough 
to make the present method valid at large dis­
tances, where the other methods of expansion do 
not apply and radiation phenomena dominate. The 
use of u instead of t distinguishes, in a way, two 
kinds of factors of c-1: one coming from the ex­
pansion procedure (which is replaced by E) and one 
which remains hidden in u and generates the re­
tarded effects. 

In Sec. 3, we will apply the rules on the Maxwell 
equations leaving the question of the validity of the 
apprOximation for Sec. 4. 

3. THE ELECTROMAGNETIC FIELD 

A. The Field Equations 

The solution of the Maxwell equations using the new 
method will serve two purposes, First, it will in­
spire COnfidence in the new technique since the 
results can be compared with the known exact solu­
tions. This is not possible in genel·al relativity and 
there the method has to be trusted, Second, it will 
raise questions which can be answered rather 
easily in electrodynamics. Similar questions are 
expected in general relativity, and it will be better 
for us to be prepared since at that time our whole 
attention will be focused on overcoming other 
difficulties due to nonlinearity, physical interpreta­
tion, etc. 

We can start fron: the covariant form of the field 
equations which contain the field tensor FjlV and 
apply the rules. However, it is better to start from 
the equivalent set 

~-E = 4np(t, r, e, cp), 

1 aB 
~XE=-cat' 

"'t-B = 0, 
41T 1 aE "'t X B = c J(t, r, 0, cp) + cat' 

(18) 

(19) 

(20) 

(21) 

where Vt is the usual V operator with the under­
standing that E and B are functions of the four 
independent variables t, r, 0, and <po If we consider 
u, r, e, and Cf' as the independent variables, then we 
must replace 

a a 
at by au' 
a I a a 
ar by - c au + ar' 

and leave alae and a/aCf' as they are. These 
changes send 

"'t-E to VeE - (1/c)ro·E, 0 
and 

~ x E to V x E + (l/c)E, 0 x ro 
and Similarly for B. The operator Vis given by the 
usual formula but with u, r, 0, and Cf' being the in­
dependent variables for E, and 1'0 is the unit vector 
in the radial direction. 

The sources of the field are described by p(t, r, e, 
Cf')and J(t, r, e, Cf') which are considered known and 
do not contain c. To expand the source function, we 
write 

p(t, r, 0, Cf') = p(u + (ric), r, 0, <p) = p(u + Er, r, e, Cf') 

~ rnp<n) = L.J --, - En, 
n=O n. 

(22) 

where p stands for p(u, r, e, cp) [from p(t, r, 0, cp) by 
replacement of t by u] and rJn ) the nth partial deri­
vative of p with respect to u, Similarly, 
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00 rnJ(~ 
J(t, r, 13, cp) = ~ -,- En. 

n~O n. 
(23) 

Obviously, the coefficients of €n in (22) and (23) do 
not contain E (or c). Field Eqs. (18)-(21) are now 

~ rnrJ.n) ~ 
VoE = 41T LJ --I - + EE,o oro, 

n=O n. 
(24) 

Theorem 1: There is a sequence of potentials 
<l>n and An. n = 0,1,2 ... CIJ, such that 

En = - V<I>n + <l>n-1,OrO - A n_1,0, 

Bn = V X An + An -1, 0 X rO 

(we define <1>-1 and A-1 to be zero). 

(35) 

(36) 

(25) Proof: We will prove the theorem by induction. 
In the zeroth approximation, n ::::: 0, Eqs. (30)-(33) 

(26) reduce to 

~ rnJ(n) +1 ~ 
VX B = 411 LJ --,- En + €rO X B 0 + €E 0' 

O n. " 
n = (27) 

with commas denoting partial derivatives with 
respect to u, r, 13, cpo This completes the second 
step. We now assume that 

(28) 

(29) 

and replacing E and Bin Eqs. (24}-(27), we have, 
since € is an independent variable, 

(30) 

VoEo = 41TP, 

V X Eo = 0, 

V'Bo = 0, 

V X Bo = 0, 

(37) 

(38) 

(39) 

(40) 

with physically acceptable solution (falling off as 
r-1 for large r) 

Eo = - V<I>o' 

Bo::::: 0, 

where 16 
4> - JP(U, r', 13', cp') dV' 
0- Ir - r'l . 

(41) 

(42) 

(43) 

v x En = ro X En-l"O - Bn-1,0, 

VoBn = Bn-3., 0 or 0' 

(31) Obviously, Eqs. (41) and (42) can be derived from 
(35) and (36) with <1>0 given as above and Ao ::::: 0. 

(32) Hence, the theorem holds for n = 0. 

for n = 0, 1, 2, ... IX' (we define E_1' B_1' and J(-l) to 
be zero). This is a sequence of equations equivalent 
to the original field Eqs. (18}-(21). We see that the 
(n - 1) th approximation serves as a source (part­
ly) of the nth approximation. 

Taking the divergence of (33) (with n replaced by 
n + 1), we easily find that 

rJ.n+1) + v-J(n) = 0 (34) 

for n = 0, 1, .. . ,CIJ. This condition corresponds to 
the continuity equation. 

B. The Superpotentials 

We come now to the fourth step, namely, the solu­
tion of Eqs. (30}-(33). As these equations stand, an 
obvious answer is the following: If we know all the 
approximations up to and including the (n - 1) th, 
then Eqs. (30) and (31) [or Eqs. (32) and (33)] deter­
mine uniquely (with the boundary conditions) En (or 
Bn) by specifying its divergence and curl.15 How­
ever, we can do better than that because of the 
following theorem. 

We assume that it holds for a specific n, namely, 
that Eqs. (35) and (36) are true for a fixed n. We 
have 

ro X En,o - Bn,o = - ro x V<I>n,O - V X An,o 

= V x [cpn oro - An 0] , , (44) 

( 45) 

Hence, the equations resulting from (31) and (32) 
with replacement of n by n + 1 will be satisfied 
whatever the choice of <l>n+1 and An+1 is. Hence, <l>n+1 
and An+1 must be chosen so that En+1 and Bn+1 sat­
isfy Eqs. (30) and (33) after replacing n + 1. This 
means that CPn+l and An+1 must obey the equations 

_ 41Trn+1p(n+1) CPn,O 
v2<1>n+l - - (n + 1)! + 2CP",01 + 2y-

- <l>n-1,00 - V-An,o + A n_1,00orO (46) 
and 
V x (v x A ) = + 41Trn

J(n) _ 2A _ 2An ,o 
n+1 n! n,Ol r 

+ (voAn,o)ro + V(ro·An,o) 

- (An - 1 ,oo'rO)ro - V<I>n,O + 4>n-1,OOYO' (47) 

These equations have always a solution; so this 
completes the theorem. 
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Equations (46) and (47) do not specify uniquely ~ .... 1 
and An+1' In what follows we assume the gauge con­
dition 

VoAn - A n_1,00ro + <1>n-1,0 = 0 (48) 

and we ask from <1>n and An to fall off as r-1 at in­
finity. Because of (48), Eqs. (46) and (47) reduce to 
(replacing n + 1 by n) 

4rrrn rJ.n) ~ n 1 ° 
v2<1> = - + 2 ---'- + 2~ 1 01 (49) n n! r n- , 

and 
4rrrn-1J(n-l.) A,,-1,0 

V2AII = - (n-1)! + 2-r-- + 2An-1 ,01' 
. (50) 

The above introduced potentials are nothing else 
than the expansions of the usual <I> and A. Equatioll 
(48) corresponds to the Lorentz gauge. In this 
gauge ~n and An are uniquely 17 determined as the 
solutions of Eqs. (49) and (50) which have con­
tinuous second derivatives and fall off as r-i for 
large r. We will call ~n and An superpotentials 
because ~n-l and An-1 contribute as sources to <l>n 
and An' as the case is for the superpotentials of 
the Newtonian gravitational theory introduced by 
Chandrasekhar and Lebovitz.1S There is, however, 
an essential difference. Although ~n-l and An-1 
are in general of order r-1 for large r, the com­
binations r-1~n_1 ° + ~n-1 01 and y-1An_1 ° 
+ An_1 01 are such that tlie right-hand sides of (49) 
and (5(1) are of order y-3. And exactly because of 
this, a solution~n = 0(r-1),An = 0(r-1 ) exists,con­
trary to the superpotentials of Chandrasekhar and 
Lebovitz. 

At this point, it appears that determination of En' 
B

II
, ~n' and An requires solution of all the approxi­

mations from n = 0 up to n and calculation of inte­
grals over all space. However, the following 
theorem simplifies the situation. 

Theorem 2: If <1>n and An satisfy everywhere 
Eqs. (49) and (50), respectively, and are twice con­
tinuously differentiable and are of order y-1 as 
r~ to, then 

<I> = 1- JrJ.n) (r - I r - r' I )n dV' (51) 
n n! Ir - r/l 

and 
A = 1 j.J(n-1)(r- Ir-r'l)n-1dV' (52) 

n (n - 1)! I r - r / \ 

forn= 0,1,2, ... 00. 

Proof: We can verify by direct substitution 
(after some calculations) that <l>n and An' as given 
by (51) and (52), satisfy (49) and (50). Since the 
solutions of these equations are unique under the 
assumptions of Theorem 2,17 Eqs. (51) and (52) 
give just these solutions. 19 

This theorem enables us to calculate the super­
potentials for a fixed n directly from the source 
function. Then En and Bn can be derived from Eqs. 
(35) and (36). 

C. The Radiation Zone 

Far from the source, we can expand the field in 
powers of r-1 and write 

(53) 

where Xn stands for En' Bn, <l>n' or An' Since V act­
ting on Xn always gives terms of order y-2, we 
have from (48) 

and from (35) and (36), we conclude that 

(54) 

(55) 

(56) 

Since Ali = 0, E~ and B~ can be nonzero only for 
n;. 2. 

Calling 
cosy = ro oro I" 

we have 

(r- Ir- r/l)n 

Ir-r'l 

and from (52), 

(57) 

r'n cosny (1~ ----'- +(:)-
r y2 

(58) 

A1 = 1 JJ(n-1)yln-1 cosn-1ydV'. (59) 
n (n - I)! 

Using the addition theorem for spherical harmonics, 
we get 

41TC n 

cosny = ~ uTI Yzm*(8 ' , cp')Yz,JO, cp), (60) 
I,m 

where20 

cr = (21 + 1)n !/(n - 1) !!(n + 1 + 1)!! (61) 

for n - 1 even nonnegative and otherwise zero. 
Combining (59) and (60), we find An in the radiation 
zone to be 

Al _ 411 cy-1 
n - (n - I)! t2. un~I7I(8, qJ) 

o Jr,n-IJ{n-I)Yzm*(8', qJ/)dV'. (62) 

The above expression for A; and Eqs. (55) and (56) 
determine completely the radiation field in terms 
of the source. 

For n = 2 a detailed calculation gives 

B~ = D,oo x ro, 
where 

D = Jr'pdV'; 

in other words, we have the dipole radiation. 

For n = 3 we have 

(63) 

(64) 
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B~ = (m,oo x yo) x Yo - (1/6)Yo x Q, 000' (65) 

where the vector Q has components along the x, y, z 
axes 2 1 

Qcx. = L; Qcx.so(ro)s, a, {3 = 1,2,3, (66) 
s 

Q:s = j(3xcx.xs - r20cx.s)pdV, (67) 
and 

m = ifr' x JdV, (68) 

namely, the magnetic dipole and electric quadru­
pole radiation. 22 

4. THE VALIDITY OF THE METHOD 

In the E.I.H.and post-Newtonian methods,7-11 the 
expansion in powers of c-1 has been based essen­
tially on the assumption of plow motion and not too 
strong fields. Accordingly, the question is raised 
here whether there are similar limitations for the 
present method. Remarkably enough the answer is 
negative. In other ''lords, there is no limit on how 
close to the exact solution we can get. Although 
Eq,s. (63) and (65) are the dipole and quadrupole dis­
tributions only in the slow motion (wavelength 
large compared to the dimensions of the source) 
limit, the higher approximations (n > 3) will con­
tribute more terms to the dipole and quadrupole 
radiation, so that at the limit n ~ <X) we have the 
exact multipoles. 

To be more precise, let pet, r) and J(t, r) represent 
a bounded source and let the potentials <I>( t, r) and 
A(t, r) of the resulting electromagnetic field be 
given by the well-known retarded integrals 

iflt ) - f[P(t, r')]ret dV' 
~ ,r - !r-r'! (69) 

and 
1 rJ(t r')] 

A(t ) - - J ~, ret dV' ,r - c Ir - r' ! • (70) 

This is the usual approach in electrodynamics. 

If we follow the method of this paper and calculate 
<Pn and An from (51) and (52), then 

and 

00 

<p(t, r) = E <Pn En 
n=0 

A(t, r) = B AnEn. 
n=0 

Hence the two series, 

00 00 

2; <P n En and L:; An En 
n~O n~O 

(71) 

(72) 

(73) 

converge at a point (t, r) in the same way (uni- (73) 
formly or otherwise) as the integrals (69) and (70) 
do (or diverge if the integrals (69) and (70) do so). 
In other words, the knowledge of <Pn and An for all 
n is equivalent to the knowledge of the retarded 
potentials. The proof of (71) and (72) is straight­
forward, I.e., 

f; <PnEn = f; E~ f pCn)(u, r') (r - Ir - ,r' I )n dV' 
n~O n=O n. Ir - r I 

= fP(u + Er - Elr - r'l, r') dV' 
Ir - r'I 

_ fP(t -c-1Ir - r' I! r') dV' 
- Ir-r'l 

- f[p(t,r')]ret dv, -<p(t ) 
- Ir- r'l - ,r (74) 

and similarly for A(t, r). 

Since the series (73) converge, we can represent 
<P (t, r) and A(t, r) by taking a finite number of 
terms in (71) and (72). If we have slow motion 
(v « c), the first approximations are enough. If we 
have large velocities or strong fields, we have to 
take more terms. 

In general relativity, difficulties will arise as a 
result of the nonlinearity of the original field equa­
tions. In fact, we do not expect to have general 
formulas for any n as in (51) and (52) or theorems 
similar to the theorems of Sec. 3, and the question 
of convergence of the expansion cannot be 
answered rigorously. 

5. CONCLUSION 

From the application of the new method in electro­
dynamics, it is reasonable to claim at this point 
that the presented method constitutes an alterna­
tive way to the usual procedures in attacking elec­
tromagnetic problems. Moreover, it can be said 
that this method is preferable when a Fourier ana­
lysis of the source is difficult or when the usual 
integrals involving Bessel functions are too ,com­
plicated compared to those of Eqs. (51) and (52). 

Since the method does not depend on the original 
field equations, we can use it to study the field 
produced by a bounded source in any theory which 
predicts wave phenomena in a locally Minkowskian 
space-time. In the wave theories examined in this 
paper (scalar waves and electrodynamics), it is 
perfectly reasonable and proper to specify first 
the sources and then attempt to solve for the 
fields. However, such a procedure is inappropriate 
for general relativity. Fortunately, the application 
of the introduced method requires only the form of 
the energy- momentum tensor (as for example for 
a source of perfect fluid) and not the exact be­
havior of the source. In this respect, the method 
is similar to the E.I.H. and post-Newtonian expan­
sions. 

In Sec. 3C, we demonstrated the procedure through 
which the field in the far zone can be related to 
the source. The expansion in powers of r-1 holds 
only in the far zone and, consequently, must follow 
the expansion in powers of c-1 which holds every­
where. In this respect, the present method pro­
vides the studies of the far zonel - 6 (which employ 
expansion in powers of r-1 only) with the missing 
part: the tools to calculate the field in the far zone 
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(the news function, the Newman-Penrose constants, 
etc.) in terms of the source. 

In a future paper, we will use the method in 
general relativity to relate the gravitational radia­
tion to the source by giving an explicit expression 
of the news function 1 in terms of the density, pres­
sure, ahd other characteristics of the source. This 
could open the way for the definition of gravita-
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versity of Texas at Austin. 
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It is shown that a variety of equivalent representations for the spin projection coefficient, given in terms 
of the generalized hypergeometric function with unit argument, 3F2[1], can be generated by applying 
Whipple's theory to the function. 

I. INTRODUCTION 

Apparently dissimilar representations for the spin 
projection coefficient (SPC) were obtained by 
Sasaki and Ohno1 and by Smith.2 Equality of these 
representations was proved by Smith and Harris3 

by rewriting them in terms of an 3F2 series, after 
applying certain identities for binomial coefficients 
to the Smith representation. 

The purpose of this paper is to show in some 
detail4 that an application of the 3 F 2 theory de­
veloped by Whipple 5 gives a variety of equivalent 
3F2 forms for SPC such that the equality men­
tioned above follows directly from the theory. 

n. SOME 3F2 FORMS FOR SPC 

The SPC that may be defined by 3 

Cj(S, M,n) 

= (- 1)j(2S + 1)101 2F1 [- S + M,; + S + M;1 
x zj(1 - z)n-j+Mdz (1) 

can be calculated by expanding the 2Ft and evalua­
ting the first Eulerian integral that arises there, 
in the following form: 

c1 = (- 1)i n !SM\\ (n ; ,-1 
X F f- S + M,1 + S + M,j + 1; 11, 

3 2 L 1, n + M + 2 J 
n -j + M + 1> O. (2) 
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(the news function, the Newman-Penrose constants, 
etc.) in terms of the source. 

In a future paper, we will use the method in 
general relativity to relate the gravitational radia­
tion to the source by giving an explicit expression 
of the news function 1 in terms of the density, pres­
sure, ahd other characteristics of the source. This 
could open the way for the definition of gravita-
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tional multipole moments in terms of the source 
and the physical interpretation of the Newman­
Penrose constants. 
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Our concern in this section is to point out that SPC 
may be represented by many other forms of 3F2' 
Thus, the application to Eq. (I) of the two-term 
relations 

2F l[a, b; Cj z] = (1 - z)c-a-b 2Fl[c - a, C - b; c; z ](3) 

with a = - 5 + M, b = 1 + 5 + M, and C = 1, gives 
rise, respectively, t06 

C2 _ (- 1)1(25 + 1) (n - M)-'l 
- n-M+1 j 

[
-S-M1+5-Mj 

x 3
F

2 i n - M + 2 , 
n-j- M + 1>0, 

C
3 _ (- 1);(2S + 1) (n + S)-l 

- n+S+1 \ j 

+ 1; 1], 

[
- S + M - 5 - M j + 1; 1J ' x F ' , 

3 2 1,j - n - 5 

(5) 

n - j + M + 1> O. (6) 

The re-expressed form of Eq. (6) [Eq. (19) of Ref. 
3] 

(- 1)1(28 + I)E(_ l)k (5 - M) (5 + M\(~ + 5)-1 
n + S + 1 k k k J J + k (7) 

will be referred to here as the Smith representa­
tion for SPC. In passing, we note that the sym­
metry of ClS, M, n) in M can be made explicit by 
the use of )!;q. (3). 

Similarly, the use of three-term relations,7 such 
as 

F ra, b; zl _ I'(c)I'(b - a) (_ z)-a 
2 1 L c J - r(b)I'(c- a) 

, 'z 
L
a 1 - c + a . .!.] 

x2F l 1-b+a +(aHb), 

(2S + 1)(5 + M) !(n - j - M)! 
(S- M)! 

in terms of a 3F 2' which can readily be found to 
coincide with C5. 

In the foregoing, we indicated that the SPC, 
C (S, M, n), can be represented by various forms 
of. gF 2' Their equivalence is evident by retracing 
the ways through which they were found. Here, let 
us suppose instead that we are interested in prov­
ing the equivalence by regarding them as just 
given to us without reference to their origins. It 
can be done by utilizing appropriate two- and 
three-term 3F2 relations such as9 

whose second term on the right-hand side 
vanishes, leads to 

C4 _ (- 1)J+S-M(2S + 1) !(n - { + M) !(S - M + j)! 
- (5 + M) !{S - M !(n + 5 + I)! 

x F [- S + M, - 5 + M, - n - 5 - 1; 11 
3 2 - 2S, - j - S + M J ' 

n - j + M + 1 > O. (8) 

Further, we note that some other means help us 
augment the number of 3F2 forms for SPC. Thus, 
direct rewriting of Eqs. (22), (26), and (27) of Ref. 
3 produces, respectively, 

C5 _ (S + M)! (n - M)! (S - M\ (n - M) -1 
- (25) ! (n - 5) ! \ j J j 

x F [1 + S - M, 1 + S - M, - n + S; il 
3 2 1 + 5 - M - j, 28 + 2 J ' 

S - M - j + 1 > 0, (9) 

C6 _ (2S + l)(n + M)!(n - M)! (s - M\ In - M\-l 
- (n + 5 + 1) !(n - 5)! j J \ j J 

x F [1+S-M,-n+5,-j;11 
3 2 - n - M, 1 + S - M - j J ' 

S - M - j + 1 > 0, (10) 

C7 _ (- 1);(25 + l)(n + M) !(n - M)! 
- (n + S + I)! (n - S)! 

x (n j s) (n ; M) -1 (n j M)-l 

[
- S - M,- 5 + M,- j; il 

X 3
F

2 1, n - S - j + 1 J ' 
n - 5- j + 1 > O. 

Also, in general, we may expect to obtain new 
forms by summing in reverse orderS the finite 
3F2 terms in C's found above. 

(11) 

At this point, it is appropriate to rewrite the 
Sasaki-Ohno representation [Eq. (3.17) of Ref. 1] 

F IQ, b, c; il 
3 2 L e,! J 

(12) 

_ r[j, s 1 F re - a, e - b, C; 11 (13) 
- r(j - c, s + c] 3 2 L e, S + c J ' 

where r[a,b, ... ] = r[a]r[b]'" and s = e +! - a 
- b - c. In proving the equality of a pair of C's, 
we may apply these relations in a variety of ways 
to obtain many multistep routes that connect the 
pair. In view of the fact that 3F 2' s thus obtained 
are all equivalent to each other, the procedure 



                                                                                                                                    

3F 2 REP RES E NT A T ION S 2363 

may lead to the possibility of finding an increas­
ingly large number of 3F2 forms for SPC, when 
combined with the symmetry of Cj(S, M, n) in M 
as mentioned earlier. 

Questions then arise as to whether one can make 
any statement regarding the number of equivalent 
3F 2 forms that can represent Cj(S, M, n) and also 
as to a systematic method, if any, by which these 
forms can be exhausted. A key to the solution of 
this problem can be found in Whipple's theory for 
3F2 that will be described next. 

m. WHIPPLE'S THEORY 

In order to systematically study the numerous 
two- and three-term 3F2 relations found by 
Thomae,10 such as those mentioned in Ref. 9, 
Whipple introduced functions Fp and F" as follows. 

Let ri , i == 0, 1, ... , 5, be numbers such that 
'1],5=0 r i == 0, and a and fJ are associated with them 
by al mn == 1- + rz + r m + r n and fj m" == 1 + r m - r n' 
The functions are then defined by 

E(u' v w) 1 F ra ",., a UZ%' a "x.y;1] 
n " r{lY.uvw, ftv, {J"w)3 2 L (3"v, (3"10 • 

(15) 

Here {u, v, w} and {x,y, z} are cosets of each 
other relative to the set {i lOs i s 5}. The Fn 
function is derived from the corresponding .FJ, by 
changing the signs of all r's. Through permutation 
of suffixes u, v, and w, we can find 60 Fp's and 60 
F,,'s. 

If we set a145 == a, a245 == b, a 345 == c, fj40 == e, 
(359 == f, and a 12,3 == S, it can be shown that 
FptO; 4,5) ex: 3F2La, b, c; e,l; 1] and all of the Fp's 
aDd F,,' s are expressible in appropriate 3 F 2' s. 

Whipple showed that ten of FpCu; v, w) with the 
same u are all equal and hence may be denoted 
Fp(u), and similarly for F" (u). 

When c, say, is a nonpositive integer - m, Whipple 
showed that the following relations obtain: 

r(a123, a 124, a 125).FJ,(0) 

== r(a023' a 024' ( 02 5)Fp (1) 

= r(a 0 13' a 014' a o1 s)Fp (2) 

== (- 1)mr(0123' a 023' (013)F,,(3) 

== (- 1)mr(0124' a 024' (014) F" (4) 

== (- 1)mr(a12S' a 025' (015)F,.(5). (16) 

This means that altogether 60 of 3F~'s in the C"ol­
lection of Fp(O), Fp(l), Fp(2), F,.(3), F.\4), and F,,(5), 
called Set I, are mutually proportional. By re-

versing the signs of r's in Eq. (16), we obtain 
similar relations in which F. (0), F" (1), F" (2), Fp(3), 
Fp (4), and Fp (5), called Set n, are involved. 

Based on Whipple's theory, let us list 120 of the 
3~2'S, starting with J<j,(O;~, 5) ex: 3F2[a,b, C; e,j; 1] 
WIth a = 1 + S + M, b = J + 1, C == - S + M, e == 
1, and I == n + M + 2. An inspection of the list 
reveals that Fp(O; 2, 4) == ~(4; 0,2) ex: C2, Fp(O; 4,5) 
= 1)(4; 0,5) ex: Cl, Fp(4; 0, 3) = ~(O; 3, 4) ex: C7, 
Fp(:>; 0,1) == Fp(5; 1, 4) ex: C6, Fn\O; 1, 4) = F,,(4; 0,1) 
ex: C3, F,,(1; 3, 5) ex: C5, and F,,(3; 1, 2) ex: C4. 

For these representative C's, we observe that (i) 
C1 == C2 = C7 == Fp(O), (ii) C1 = C3 = C4 from 
proportionality of members of Set I, and (iii) C3 = 
C5 == C6 from the corresponding property for Set 
n. The fact that C1, C2, and C7 appear concur­
rently in Sets I and n as Fp(O) and F (4), respec­
tively, for example, leads us to conc{ude that 120 
3F2'S that correspond to the totality of Sets I and 
n are in fact all proportional to each other. 

This shows that one can generate a large number 
of equivalent 3F2 forms for SPC by starting from 
C1 that follows directly from Eq. (1). These 
forms include in particular C5 and C3 that cor­
respond to the Sasaki-Ohno and the Smith repre­
sentations, respectively. In the light of Whipple's 
theory, then, the equivalence of these representa­
tions is an immediate consequence of the theory. 

Note that the present case of integer values for 
parameters a, b, c, e, and I represents a deviation 
from the general conditions assumed for the 
Whipple's theory. A consequence of this is that 
some of the 120 3F2 's are degenerate [e.g., 
Fp(O; 2,4) = Fp(4; 0, 2)] or may not be defined, 
resulting in reduction of the total number of dif­
ferent 3F2 forms for SPC. 

Finally, we will make two remarks. The first is 
that each C is valid under a certain condition, 
such as n - j + M + 1 > 0 for C1. Equivalence of 
a pair of C's implies, then, that it holds in the 
overlapping portion of the validity region for the 
two. The second refers to the utility of selecting 
the most convenient form for actual evaluation of 
SPC. In particular, selecting one with the form 
3F2[0, .•• ; ••• ; 1] or 3F2[a, .•• ; a, ... ; 1], if any, 
will obviously be desirable. In the latter case, it 
reduces to a 2F1 for which Gauss' or Vander­
monde's theorem may be available. 

IV. CONCLUSION 

It has been shown that numerous equivalent 3F 2 
forms for SPC can be generated by the use of 
Whipple's theory. Included are those correspond­
ing to the Sasaki-Ohno and the Smith representa­
tions. It has been shown, therefore, that the equi­
valence of the two representations is an immediate 
consequence of Whipple's theory, once they are 
reexpressed in terms of 3F2' 
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The axioms of measurements introduced by LudWig are formulated and studied in the framework of 
operator algebras. It is shown that a concrete C*-algebra with identity satisfies the axiom of sensitiVity 
increase of effects if and only if it is a von Neumann algebra; although a von Neumann algebra satisfies 
the axiom of decompossability of ensembles, however, the axiom of components of the mixtures of two 
ensembles is true only if a von Neumann algebra is a factor of type I,,(n < + ro). It is also verified that 
the set of decision effecfs, which is proved to be a subset of prOjectiOns of a von Neumann algebra, has 
similar lattice structure of quantum mechaniCS, and its connection with quantum logic in the sense of 
Varadarjan 'is also figured out. 

INTRODUCfION 

The most remarkable structure of quantum mech­
aniCS is described by the Hilbert space, which has 
been widely studied and developed by both mathe­
maticians and physiCists to understand this funda­
mental structure of the whole theory. In a series 
of papers, Ludwig l - 5 introduced, from the physical 
point of view, an axiomatic system of measure­
ments to characterize the structure of Hilbert 
space in quantum theory. Instead of observables 
and states in quantum mechaniCS, effects and en­
sembles, which are more general and abstract but 
still physically interpretable, have been assumed 
as starting point of the whole theory. From some 
physically heuristic aspects, a system of axioms of 
measurements is established in terms of effects 
and ensembles. 1 ,2 Some consequences from this 
axiomatic system have been investigated, in particu­
lar, a similar lattice structure of quantum system 
has been figured out. 4 

In this paper we shall study and formulate Ludwig's 
axioms in terms of operator algebras, espeCially, 
C*-algebra and von Neumann algebra, which plays 
an important role in the algebraic approach of 
quantum field theory, quantum mechanics, and sta­
tistical physics. 

Our first task is to investigate the validity of these 
axioms for operator algebras. We have shown that 
a concrete C*-algebra with identity satisfies the 
axiom of sensitivity increase of effects if and only 
if it is a von Neumann algebra; the axiom of decom­
possability and relationships of effects holds for 
a von Neumann algebra; and the axiom of the com­
ponents of the mixture of two ensembles is true 
only for a finite degree of freedom. 

Like Ludwig,1,2 we have also shown the existence 
of decision effects, whi~h are now projections of a 
von Neumann algebra. We have proved that the set 
of decision effects is an orthocomplemented, com­
pleted lattice satisfying orthomodular condition. 
Furthermore, we find that the set of decision effects 
is a logic in the sense of Varadarajan,6 and it can 
be a standard logic if a von Neumann algebra is 
discrete and finite. 

Indeed, Ludwig's axioms are only restricted in the 
case of finite-dimensional Hilbert space. Hence, a 
further development of this theory to the infinite­
dimensional case will be more interesting. This 
work may be considered as a tentative approach in 
this direction. 

In Sec. 1 the axioms of measurements will be given 
only in mathematical forms, without any physical 
interpretations, which can be found very detailed 
in Refs. 1 and 2. Following that, Axioms 2-4 will 
be formulated in terms of operators and studied 
separately in the subsequent sections. Section 2 is 
the axiom of sensitivity increase of effects, and its 
validity for a concrete C*-algebra (Theorem 2.1). 
Section 3 deals with the decision effects, its lattice 
structure is given (Theorem 3.10), and its con­
nection with Varadarajan' s approach is investigated 
(Theorem 3.12). Axiom 3 is studied in Sec. 4, a 
modified form is proposed (Axiom 3'), which will be 
more essential for a C*-algebra. Section 5 deals 
with Axiom 4 and some properties of extremal sets 
(see definition in Sec. 1) are given. The main con­
sequence of this axiom is the modularity of the 
standard logic (Theorem 5.6), which implies that 
this axiom is true only for the case of a finite de­
gree of freedom. In Sec. 6, we give some examples 
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INTRODUCfION 

The most remarkable structure of quantum mech­
aniCS is described by the Hilbert space, which has 
been widely studied and developed by both mathe­
maticians and physiCists to understand this funda­
mental structure of the whole theory. In a series 
of papers, Ludwig l - 5 introduced, from the physical 
point of view, an axiomatic system of measure­
ments to characterize the structure of Hilbert 
space in quantum theory. Instead of observables 
and states in quantum mechaniCS, effects and en­
sembles, which are more general and abstract but 
still physically interpretable, have been assumed 
as starting point of the whole theory. From some 
physically heuristic aspects, a system of axioms of 
measurements is established in terms of effects 
and ensembles. 1 ,2 Some consequences from this 
axiomatic system have been investigated, in particu­
lar, a similar lattice structure of quantum system 
has been figured out. 4 

In this paper we shall study and formulate Ludwig's 
axioms in terms of operator algebras, espeCially, 
C*-algebra and von Neumann algebra, which plays 
an important role in the algebraic approach of 
quantum field theory, quantum mechanics, and sta­
tistical physics. 

Our first task is to investigate the validity of these 
axioms for operator algebras. We have shown that 
a concrete C*-algebra with identity satisfies the 
axiom of sensitivity increase of effects if and only 
if it is a von Neumann algebra; the axiom of decom­
possability and relationships of effects holds for 
a von Neumann algebra; and the axiom of the com­
ponents of the mixture of two ensembles is true 
only for a finite degree of freedom. 

Like Ludwig,1,2 we have also shown the existence 
of decision effects, whi~h are now projections of a 
von Neumann algebra. We have proved that the set 
of decision effects is an orthocomplemented, com­
pleted lattice satisfying orthomodular condition. 
Furthermore, we find that the set of decision effects 
is a logic in the sense of Varadarajan,6 and it can 
be a standard logic if a von Neumann algebra is 
discrete and finite. 

Indeed, Ludwig's axioms are only restricted in the 
case of finite-dimensional Hilbert space. Hence, a 
further development of this theory to the infinite­
dimensional case will be more interesting. This 
work may be considered as a tentative approach in 
this direction. 

In Sec. 1 the axioms of measurements will be given 
only in mathematical forms, without any physical 
interpretations, which can be found very detailed 
in Refs. 1 and 2. Following that, Axioms 2-4 will 
be formulated in terms of operators and studied 
separately in the subsequent sections. Section 2 is 
the axiom of sensitivity increase of effects, and its 
validity for a concrete C*-algebra (Theorem 2.1). 
Section 3 deals with the decision effects, its lattice 
structure is given (Theorem 3.10), and its con­
nection with Varadarajan' s approach is investigated 
(Theorem 3.12). Axiom 3 is studied in Sec. 4, a 
modified form is proposed (Axiom 3'), which will be 
more essential for a C*-algebra. Section 5 deals 
with Axiom 4 and some properties of extremal sets 
(see definition in Sec. 1) are given. The main con­
sequence of this axiom is the modularity of the 
standard logic (Theorem 5.6), which implies that 
this axiom is true only for the case of a finite de­
gree of freedom. In Sec. 6, we give some examples 
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of operator algebras in mathematical physics~ some 
of them satisfy Axiom 2, but some of them do not. 

1. LUDWIG'S AXIOMS OF MEASUREMENT 

We give a brief summary of Ludwig's axioms with­
out any specification about their physical back­
grounds to which we refer. 1 ,2 

Let K and L be the sets of ensembles and effects, 
respectively. A map /J. of K x L into (0, 1] is de­
fined such that 

Axiom 1; 
(a) /J.(Vl' F) = /J.(V2 , F) for all F E L implies V1 

= V2 • 
(b) /J.(V, F1 ) = /J.O', F2) for all V E K implies F1 

= Fa-
(c) There exists an element ° E L such that 

/J.(V,O) = 0 for all V EK. 
(d) There exists an element F such that /J.(V, F) = 

1 for all V E K • 

Let II 

X(F) = E ai/J.(VpF) 
i=1 

for Vi E K, with a i E R, then X is a linear functional 
of L. The real vector space generated by all X of 
L is denoted by B. K is a subset of B by setting 
X(F) = /J.(V, F). B is a normed vector space, with a 
norm defined as 

Ilxll = sup{IX(F)I;F EL} for all X EB. 

Then /J. can be extended to B x L by setting X(F) = 
/J.(X, F). For a fixed F, /J.(X, F) = X(F) can be con­
sidered as a linear functional of B; hence L can be 
identified as a subset of the dual space B' of B. 
The norm-closed convex hull of K in B is denoted 
by X, and the norm-closed convex hull of L in B' 
is denoted by £. B' is a partially ordered vector 
space with positive cone C = {Y E B' ,/J.(V, Y) ? 0 
for all V EX}. 

Furthermore, we denote by Lo(k) andKQ( t) the anni­
hilators of h S. X and l S. £, respectively, i.e., 

Lo(h) = {F E £; /J.(V, F) = 0 for all V E k}, 
Ko(t) = {V E X;/J.(V,F) = 0 for allF E t}. 

In particular, the annihilator of a singleton {V} 
[resp.,{F}],iS denoted by Lo(V) [resp.,Ko(F)]. 
Then the first axiom of measurement can be formu­
lated. 

Axiom 2 (the sensitivity increase of effects); 
For any F l' F 2 E £ there exists an effect F 3 E £ 
such that F 3 ? F l' F 3 ? F 2' and Ko(F 3) :2 Ko(F 1) 
n K o(F2 ). 

In Ref. 4 this axiom has been developed, for tech­
nical reasons, to an additional part. However, the 
above portion of this axiom is more interesting for 
our present study. 

Given a nonempty convex subset M of B', a non­
empty convex subset S of M is called an extremal 

setifforY1 ,Y2 ,Y3 EM'Y1 =mY2 +(1-m)Y2 , 

with m E (0,1); then Y 1 E S implies Y 2' Y 3 E S. 
For each V E :Ie the norm closure of the extremal 
set generated by V is denoted by C(V). Indeed,C(V) 
is the smallest norm-closed extremal set contain­
ing V. C( V) has its very interesting physical back­
grounds. 2 The next axiom of measurements con­
cerns C(V). 

Axiom 3 (decompossabiZity and relationship of 
effects); L_Q(V 1) = Lo(V 2) implies C(V 1) = C(V 2) 
for all V!' V 2 E :Ie. 

The last axiom of measurements is formulated 
about the mixture of two ensembles. 

Axiom 4 (the components of the mixture of two 
ensembles): For all V l' V 2' V 3 E :Ie, C(V 1) n 
C(V2 ) = 0, C(~ V 1.+ ~ Vf );;2 C(Y3) '" (Z'J,and 
d(Vv V2 ) = 11mphes Cb V 1 +"2 V 3 ) n C(V,2) '" (/; 
where d(Vv V 2 ) = sup{I/J.(V1,F) -/J.(V2 ,F)I; 
FE £}. 

One of the most important consequences from these 
axioms is that each annihilator Lp(h) has a unique 
maximal element E, called the deczsion effect.1 The 
set of all decision effects forms a completed lattice 
with an orthocomplementation, which is the charac­
teristic structure in quantum mechanics. Moreover, 
each C(V) is lattice-theoretically isomorphic to a 
decision effect E.3 Therefore, Axiom 4 can be for­
mulated in a lattice-theoretical version. (In this 
paper the lattice-theoretical intersection and union 
will be denoted by II, v; and n, U denote the set­
theoretical intersection and union.) 

Axiom 4': a/\ b =0, c =::;aV b, a.Lc, and 
(a V c) /\ b = 0 implies c = 0, where C(V 1) = a, 
C(V 2) = b, C(V 3) = c, and d(V l' V 2) = 1 is equiva­
lent to a.L c, Le., a and c are orthogonal. Adetailed 
discussion of this axiom in lattice form is referred 
to in Ref. 4. 

We shall use this lattice form to study its validity 
for operator algebras in Sec. 5. 

It is easy to verify that Axiom 1 is true for C *­
algebras and von Neumann algebras whenever £ 
and:Ie are properly chosen. Hence, we start to study 
Axiom 2 in Sec. 2 and other axioms in the subse­
quent sections. 

2. AXIOM OF SENSITIVITY INCREASE OF 
EFFECTS 

Given a C*-algebra ~ with identity on a Hilbert 
space .p. Let ~+ and ~l be the positive cone and 
unit sphere of ~, respectively. The von Neumann 
algebra generated by ~ will be denoted by <R. 

In this section we assume the set of efff;lcts £ = 
~+ n ~v and the set of ensembles :Ie is the set of 
vector states of ~. Hence

1 
each ensemble V E :Ie 

will be denoted by w with Iwll = 1, and w(F) = 
(Fx,x) for F E.2 and x E .p. As in Sec. 1, Lo(w) 
[resp., Lo(/')] denotes the annihilator of w E :Ie 
[resp., h S; J<: 1 consisting of all those effects in £ 
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which vanish on w [resp., each w E h]. Ko (F) and 
Ko(l) denote the annihilators of FE .£ and 1 ~.£, 
respectively. 

Axiom 2: For any F l' F 2 E .£, there exists 
F 3 E.£ such that F 3 ~ F l' F 3 ~ F 2' and Ko(F 3):2 
Ko(F 1) n Ko(F 2)· 

This axiom has exactly the same form as in Sec. 1; 
however,'£ and :JC are now visualized as positive 
operators of unit sphere and vector state of W, 
respectively. 

We call that a C*-algebraWwith identity on a 
Hilbert space ~,satisfies the axiom of sensitivity 
increase of effects whenever Axiom 2 holds for 
.£. 

The main result of this section is formulated as 
the following theorem. 

Theorem 2.1: A C*-algebra W with identity 
on a Hilbert space ~ satisfies the axiom of sen­
sitivity increase of effects if and only if W = (R, 

the von Neumann algebra generated by W. 

We need some preliminary lemmas to show the 
necessary condition of the theorem. The first 
lemma is an equivalent form of Axiom 2. 

Lemma 2.2 (Ludwig): .£ satisfies Axiom 
2 if and only if LoU?) for h ~ X is. a bounded, 
monotone-increasing directed sequence of .£. 

Proof (See Ref. 4.). 
We shall show that each bounded, monotone-in­
creaSing directed sequence of .£ appears in this 
way, whenever Axiom 2 holds for.£. 

Lemma 2.3: For each FE .£, Ko(F) is non­
empty if.£ satisfies Axiom 2. 

Proof: Suppose that Ko(F 1) = Cb and Ko(F 2) '" Cb 
for some F l' F 2 E .£. Then by the given assump­
tion, there exists F 3 E .£ such that F 3 ~ F l' 
F 3 ~ F 2' and Ko(F 3) ~ Ko(F 1) n Ko(F 2) = Ko(F 2)' 
which implies F 3 ~ F 2. 

Lemma 2.4: Let 5' be a bounded, monotone­
increasing sequence of.£. If Ko(F) '" (/; for each 
FE .£, then 5' ~ Lo(h) for some nonvoid subset h 
of X. 

Proof: Since 5' is bounded, there is an effect 
FOE .£ such that F 0 ~ F for all F E 5'. Hence 
Ko(F 0) ~ Ko(F.) for all F E 5'. Let h = Ko(F 0)' 
which is nonempty by assumption. Then, to each 
W E h we have w(F) = 0 for all F E 5', because 
w E Ko(F). Hence 5' ~ Lo(h) for some nonvoid 
subset II. of X. 

Lemma 2.5: Let 5' be a bounded, monotone­
increasing directed sequence of'£. If 5' ~ Lo(h) 
for some nonvoid h ~ 3C, then the least upper bound 
(l.u.b.) of 5' lies in W. 

Proof: The existence of l.u.b. F 0 of 5' is well 
known; indeed, F 0 belongs to the strong-closure of 
5' (Ref. 7, p. 331). Since 5' £:. Lo(h), F 0 is also in 
the strong-closure (hence weak-closure) of Lo(h). 
But, Lo(h.) is weakly closed, Lnerefore F 0 is in 
Lo(h), and hence in W. 

We are now able to prove Theorem 2. 1. 

Proof of Theorem 2. 1: Let 5' be a bounded, 
monotone-increasing directed sequence of self­
adjoint elements of W. Without loss of generality, 
we may assume 5' .1:..£; viz. 0 ~ F :=; I for each 
FE 5'. 

If we consider W is a subset of its double dual W**, 
which is a von Neumann algebra,8 then 5' con­
verges strongly to its l.u.b.F o. Since W satisfies 
the axiom of sensitivity increase of effects, it 
follows from Lemmas 2.3-2.5 that Fo E W. 
Therefore, the strong-limit of 5' lies in W, then 
W = (R from Ref. 9. 

Conversely, if W = CR, let F 1,F 2 E .£, with corres­
ponding spectralprojectionsP1'P2 • If we assume 
that WX (F 1) = 0 [resp., wy(F2 ) = 0] for each x E P1~. 
(resp.,y E P2~). Let Pf) = P1~ n P 2q, then PEW. 
in fact P E .£, since P 1, P 2 E Wand P1 /\ P 2 E W. 
Therefore, there exists F:i E .£, e.g.,F 3 = I -P, 
such that F:} ~ F l' F 3 ~ F 2' and WX (F 3) = 
wx(F 2) = wx~F 1) = 0 for each x E P~; and the proof 
of theorem is complete. 

3. THE LATTICE STRUCTURE OF DECISION 
EFFECTS 

In Sec. 2 we have seen that the annihilator of cp E X 
(resp., h S :JC) Lo(cp) [resp., LoUd] is a directed 
set whenever it satisfies the axiom of sensitivity 
increase of effects. It has been shown that in each 
directed set there exists a maximum element, 
which is called the decision effect. 1 The set of de­
cision effect has very interesting lattice struc­
tures,4 which fulfill the basic structures of quan­
tum theory. This is the most attractive aspect in 
the whole theory of Ludwig's axioms. In this sec­
tion we shall study decision effects in terms of 
operator algebra. We shall show that the decision 
effect is identified to the projection of a von Neu­
mann algebra, and the set of all decision effects 
has also similar lattice structure which one can 
expect for a quantum system. At the end of this 
section we shall show some connection between 
decision effects and Varadarajan's approach of 
quantum logic. 6 

From Theorem 2.1, we may conSider only the 
case of von Neumann algebra (R. Hence, in this 
section we assume that the set of effects'£ is the 
positive portion of unit sphere of (R, Le.,.£ = 
(R+ n (R1' and the set of ensembles 3C is the set of 
all positive normal states of (R, i.e., 3C = (R~ n 0, 
where ~ is the predual of (R, and 0 the set of all 
normalized positive linear functional of (R, for 
which i1cpil = 1 if cp E O. We shall use hereafter 
rB"Jlt] to denote the closure of the set of vectors 
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{Tx; T E ff',x E '.JIL}, where ff' is a family of opera­
tors of <R and 'lit a set of vectors in S>. We denote 
by this same notation the orthogonal projection on 
that subspace. As usual way, <S(.\) denotes the set 
of all bounded operators on S> 

As in Sec. 1, let Lo(k) be the annihilator of a sub­
set k of Je, i.e., Lo(!?) = {T E .e. cp(T} = 0 for all 
cp Ek }; and for a singleton!? = {cpt, we denote by 
L o(</» the annihilator of {</>}. 

For each cp E Je, there is a least projection E¢ E.e, 
called the support of </>, such that L o(</» = <R(f - E¢J 
and </>(E¢) = </>(1) = 1 (Ref. 7, p. 61). Let E = I - E</J, 
then E is a projection of <R, with <RE = L o(</»' For 
any T E L o(</»' one has T = TE, hence T* = (TE)* = 
ET, thus T = TE = ET, which implies E 2: T for all 
T E L o(</».10 It is easy to see that E E Lo(cp), 
Hence, we have verified that there is a maximum 
element in L o(</»' 

Lemma 3.1: For any </> E Je, if Ecp is the 
support of cp, then E = f - E¢ is the maximum ele­
ment of Lo(cp). 

To any arbitrary subset k. of Je, one also can show 
the existence of a maximum element in L o(!?)' 

Lemma 3.2: For any subset k. of Je, there 
exists a maximum projection E in Lo(k). 

Proof: We follow a similar proof given in Ref. 
7, p. 61. First, we note that Lo(k.) is ultraweakly 
closed, since it is weakly cl.2sed in <R1• To each 
</> E k, there is Xi E S>, with E IIxill2 < + 00, such 

00 i=1 
that </> = E wx ' Hence, for each T E Lo(k), we have 

;=1 i 

00 00 00 

</>(T2) = E WX (T2) = E II Tx;1I2 $ 6 IITl/2x;IIZ 
;=1 i t=l ;=1 

00 

= E (Tx"x;) = </>(T) = 0; 
,=1 

And, by the Cauchy-Schwartz inequality, 

I cp(A*T) I 2 $ I</>(A*A)\ \ </>(T2) \ = 0 

for each A E <R, T E Lo(k), and cp E k. Therefore, 
Lo(h.) is an ultraweakly closed left ideal of ffi. 
Moreover, since Lo(k) is self-adjoint LoCk) is also 
a two-side ideal of <R. From Ref. 7,p.45, there 
exists a projection E E ffi such that Lo(k) = <RE 
and T = TE = ET for T E Lo(k). Hence, E 2: T for 
all T E L o(k).10 

On the other hand, 

and from Lemma 3.1, LO(</>i) = <REi' with the 
maximum element -& E Lo(CPt). Hence we have 
E = /\ -&, where each -& is corresponding to LQ(CPt) 
for CPt E h. Therefore, E $ E; and CPt(E) $ CPt(-&J = 0 
for all CPt E h, which implies that E E Loth), and the 
proof of lemma is complete. 

The maximum element in Lo(h) is therefore a 
projection E in <R, hence in .c. We call E the 
decision effect, and denote by 9 the set of all 
decision effects. In the rest of this section we 
shall study some lattice structures of 9 which are 
similar to Ludwig's results.4 

We note that Lemmas 3.1 and 3.2 are different 
from Ludwig's results,4 because there is no 
assumption about the axiom of sensitivity increase 
of effects, which is the main hypothesis for the 
existence of decision effects in Ludwig's work. 
Hence for a von Neumann algebra, the annihilators 
of h or {</>} always have decision effects, even when 
they are not directed sets. 

The next lemma is a characterization of Lo(k) for 
a von Neumann algebra, which is possible only for 
operator algebras. 

Lemma 3.3: Let Lo(h) be the annihilator of h, 
with decision effect E lor any subset k of Je. Then 

Proof: For each T E .c and each cp E k, by 
Cauchy-Schwartz inequality, we have 

I CP(ETE) I 2 = I CP«TE)*E) I 2 

$ I cp«TE)*(TE» \ I cp(E2) I = o. 

Then, </>(ETE) = 0 for each cP E k;hence ETE E 
Lo(k). Conversely, let T E Lo(h), then T $ E, hence 
T = TE = ET = ETE, so that T E E.cE. 

Another version of this lemma was given in Ref. 
10. However, our proof is different, and we restrict 
only on.c instead of on the wl\ole positive cone of 
<R. 

We are now able to investigate the lattice struc­
tures of g. Fir stIy, we shall show the existence of 
the least upper bound of any two decision effects, 
and the orthocomplementation on g. 

Lemma 3.4: If E1 and E2 are two decision 
effects in g, then E1 /\ E2 E g. 

Proof: Let L o(k1 ) [resp., L o(k2 )] be the corres­
ponding annihilators of E1 (resp.,E 2). Then E1E2 
E 1 E L o(k1 ) from Lemma 3.3, and the sequence 
(E1E 2E 1)IIconverges strongly to El/\ E2 as n-+ 
CQ. 1 Since L o(k1) is weakly closed, hence strongly 
closed, then E 1/\ E2 E L o(k1). Similarly, (EzE1 
E 2)" converges strongly to E1/\ E2 and E1/\ E2 E 
L O(k.2 ). Therefore, 

E1 /\ E2 E L o(k1) n L o(k2) = Lo(kl U k.2) = Lo(k), 

where k = k1 U k~. Finally, since E1 2: T for all 
T E L o(k1) n L o(k2) and ~ ~ T for all T E L o(k1) 
n L o(k2), then E1 /\ E2 2: T for all T E Lo(kl ) 
n L o(k2 ) from Ref. 6, p.164. Therefore E /\ E2 is 
the decision effect of Lo(k.) = L o(k1) n Lolk2) and 
E1/\ E2 E g. 
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A slight extension of this lemma will be given 
later to show the completeness of lattice g. In the 
next lemmas we shall show the orthocomplementa­
tion of g. It is well known that the orthocomple­
ment of projection E is 1- E, hence our next task 
is to show the following: 

Lemma 3 .. 5: If E is a decision effect in g, 
then 1- E E g.. 

Proof: Since E is a decision effect, without 
restriction of generality, we may assume 
1- E = E"" the support of some cp E JC. Then 

"" 00 

E", =:: [ffi'.xJ with cP =:: 6 Wx. and 6 IIxj ll2 =:: 1 for 
;=1' ;=1 00 

Xi E $j. For Yi E (1 - E",) $j, we define 1/1 = 6 W ., 
00 "" ;=1 Y, 

with 611 Yi 112 == 1; then I/I(E) == 6 (Eyi' Yj) = 1. In 
j~ j~ 

fact, E = [ffi'yd, i.e., E is the support of 1/1. Hence, 
1- E is the maximum element of. Lo(l/I) (Lemma 
3.1), and I - E E g. 
From Lemmas 3.4 and 3. 5 we obtain the following 
result: 

Lem'J'fla 3.6: S is a orthocomplemented 
lattice. 

If E and F are two decision effects of g, and 
E :s F, then F(I - E) =:: (I - E)F and F 1\ (I - E) =:: 

F - E. Furthermore, E(F - E) = (F - E)E. 
Hence, E v (F 1\ (1 - E» =:: E v (F - E) =:: 

E + (F - E) - E(F - E) =:: F. Therefore, we have 
verified the following. 

Lemma 3, 7: 9 satisfies the orthomodular 
identity; for E, F E 9 

E :s F implies F =:: E (F 1\ (I - E». 

The other equivalent forms of orthomodularity 
will be given in Sec. 5, where the axiom of the 
components of two ensembles will be given so that 
9 can be modular, which is true only in the case of 
finite-dimensional Hilbert space. 

In the arguments of Lemma 3. 2, we have seen 
that Lo(h) =:: ffi E, Lo(cpj} == ffi E j for all rf>j E k; hence 
ffi E == ffi (I' E j ) and E = 1\ E j E Lo(h) for all CPj E k. 
Thus,1\ E; E g. A slight generalization of this 
statement enables us to prove the next result. 

Lemma 3.8: Let E j be the decision effect 
corresponding to Lo(h) for any i E 1, then 1\ E j is 
the decision effect of ntE1 Lo(l?j). 

Proof: We note that niEIL~. (ki ) == LO(UiE~i)' 
Moreover, Lo(k;) and LO(UjE j) are ultraweakly 
closed two-side ideals of ffi Lemma 3.2, then 
there exists maximum projections E j and E, res­
pectively, such that Lo(k j ) == ffi E j and LO(UiElki) 
== ffiE. Hence, ffi(l\jElEj) == ffiE, and I\jEIEi = E. 
Indeed, Lo(UiE/k j ) is a subset of £ containing those 
operators T with ET:S E, where Ex is the support 

of T.12 Thus T:s Ex:S E for all T E LO(UiE~i)' 
and E =:: l\iEIEi is the decision effect of niE/Lo(k j ). 

The proof of the above lemma is different from 
Lemma 3.4, where we applied Varadarajan's 
lemma. 6 In fact one can easily extend Varadara­
jan's lemma to our form, which we give as follows. 

Lemma 3.9 (Varadarjan): Let S E .c, and 
{Ei}iEI a set of projections on ffi. If S :S Ei for all 
i E I, then S :s l\iEIEi' 

Proof: Since S :S E j for all i E I and 0 :S S :S I, 
then S == SEi =:: E;S for all i E 1,10 which implies 
that S leaves Ei $j invariant for all i E I. Hence S 
leaves niE1Ei $j invariant, i.e., Sx =:: S(I\ Ej)x == 
(1\ Ej)Sx for all x E n E j $j and all i E I. Therefore, 
S == ,S(/\ E) =:: (1\ Ej)S, which implies that S :S E j for 
all Z E [. 

We now summarize our results in the following 
theorem. 

Theorem 3.10: 9 is a complete orthocomple­
mented lattice satisfying the orthomodular identity: 

F :S F implies F = E (F 1\ (J - E» 

for E,F E g. 
A final remark about the lattice structure of 9 will 
be given here to compare with Varadarajan's 
approach. 6 Given a lattice S with zero element 0 
and unit element e, S equipped with an orthocom­
plementation x -4 Xi is said to be a logic, if (i) for 
any countably infinite sequence x l' X 2' • •• of ele­
ments of S, Vnx nand I\nxn exists in S, (ii) if x 1> 

x 2 E S and xl < x 2 ' there exists an element x 3 E ~ 
such that x 3 < xi and x 3 V xl = X 2' Indeed, the 
existence of x 3 in (ii) is unique, one can show that 
x 3 ::: xi /\ x 2 • 6 It is easy to verify that the set of 
all projections Is: in a Hilbert space .. , is a logic. 
We call (f the standard logic, A subset S of (f is a 
sublogic of the standard logic if S itself is a logic. 

We now return to the set of decision effects g. 
From Theorem 3.10, S is a complete ortho­
complemented lattice with zero element 0 and unit 
element I. Obviously, Ssatisfies (i). If E 1 , E2 E 9 
and E1 :S E2 , let E3 =:: (1 - E) /\ E 2 , which is an 
element of g, hence (ii) also holds for g. There­
fore, we have the following consequence from the 
previous theorem. 

Corollary 3.11: 9 is a logic, or more pre­
cisely, a sub logic of the standard logic. 

We note that each E E g can be identified as the 
support of some cP E JC, i.e., E = [ffi'xtJ, with 

00 00 

cP = 6 Wx and L; IIXj 112 < + 00. On the other hand, 
£=1 i £=1 

let S = {F E ffi; F = [ffi~) for ~.c. ~ }, then S is 
also a sublogic of (f. We have the relation; g .c. s 
~ Is:. However, if g = S = (f, then ffi ::: <B(~), hence 
ffi is a factor of type I. Conversely, if ffi is a factor 
of type 4. (n < + 00) on Hilbert space $j, then the 
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dimension of ~ is n < + to. And, to any F E S, 
F = [(R'~] for ~ C ~. Since ~ is finite-dimen­
sional, we can define a positive normal state ¢ 

m 

such that ¢ = 6 wx . with Xi E ~ m ~n, then F is 
i=1 ' 

the 'support of ¢. Therefore we have proved the 
following theorem. 

Theorem 3.12: If 9 is a standard logic, then 
<Ris a factor of type ['. Conversely, if <R is a fac­
tor· of type ~ (Ii < + to) then 9 is a standard logic. 

4. AXIOM OF DECOMPOSSABILITY AND 
RELATIONSlllP OF EFFECTS 

We defined extremal sets of :Je in Sec. 1, and for­
mulated the axiom of decompossability of ensem­
bles and relationship of effects. In this section we 
will formulate this axiom in terms of operator 
algebras and show that this axiom is always true 
for a von Neumann algebra. 

First, we give a preliminary remark about the 
extremal set on a partially ordered vector space. 
Let X be a partially ordered Banach space and P 
the positive cone. Then a convex subset S of P is 
an extremal set of P if and only if S is a subcone 
of P such that for all x, YEP, XES, and Y ~ x 
implies YES. An order ideal of X is a subspace 
J such that x, Y E J implies Z E J whenever 
x ~ Z ~ y, Z EX. A subspace J is an order ideal 
if and only if J n P is an extremal set of P .10 

In the first part of this section we assume that 
:Je = <Ri, the positive portion of predual m *, and .2 
is the same as in Sec. 3, although the set of effects 
will not be used explicitely in the subsequent dis­
cussion. The smallest norm-closed extremal set 
containing P E :Je is denoted by C(P), as in Sec. 1, 
then the axiom of decompossability of ensembles 
can be formulated as follows: 

Axiom 3: For any p, r E Je, 

Lo(P) = Lo(r) implies C(p) = C(r). 

If B E <R and ¢ E ~R *' we define B¢ and ¢B by 

(B¢)(T) = ¢(BT) and (¢B)(T) = ¢(TB) 

for T E <R. In particular,B*¢B is denoted by ¢B' 
With this notation..1 E"" the support of ¢, is the 
smallest projection in <R such that ¢ = ¢E", = E",¢ 
= cfJE • Then the smallest norm-closed extremal 
set ctntaining p E Je can be characterized as 
C(p) = {cfJE; ¢ E :Je}, where Ep is the support of 
p.lO p 

Let p be the smallest norm-closed order ideal in 
<Ri containing p, then p = {¢ E :Je; E", ~ Ep} = 
Lo (Ko (P», where Ep (resp., E",) is the support of p 
(resp., ¢).12 From the preliminary remark, it is 
easy to verify that C(P) is also an order ideal con­
taining p,hence p £. C(P). If ¢E E C(P) and the support 
of CPE is F, then Ep = [<R'x]wfthP = L;wx , XE~, and 
F = [<R'y],withY E Epf). 

Therefore,EpF = Ep [<R'Y] = [<R'yJ =F. Similarly, 
FEp = F. Hence Ep ~ F which implies ¢E E p, 
and C(p) ~ p. We have, therefore, the follJwing 
lemma from Ref. 12. 

Lemma 4. 1: For p E :Je, 

C(P) = Lo(Ko(p» 

={¢ E :Je;E", ~ Ep} 

={¢Ep;¢E:Je} 

=p. 

Some further properties about norm-closed 
extremal sets will be given in Sec. 5. Axiom 3 is 
now trivial for a von Neumann algebra. 

Corollary 4.2: Axiom 3 is true for a von 
Neumann algebra <R. 

If we consider a C*-algebra Was a subalgebra of 
W**, the double dual of W, which is again a von 
Neumann algebra, then W *, the dual of W, coincide 
with the predual of W ** . S H.ence, we may take :Je as 
wt the positive part of W*, and Lemma 4.1 still 
holds. However, we shall modify Axiom 3 so that 
it will be more essential for a C*-algebra. 

A subset S of the dual W * of a C* algebra W is 
invariant if for all PES and T E W , Pi- is in S, 
where p~A) = p(T*AT) for any A E W. We denote 
by p the smallest norm-closed invariant extremal 
set of Je containing p, where Je = W + and.2 = 
W+ n W l' Then we may enlarge.C(p) to p, and 
modify Axiom 3 to the following form. 

Axiom 3': For any p, r E :Je 

Let 1T P and 1T T denote representations of W defined 
~y p_and r on ~ p and .pT' respectively. Then 
p = r ~mplie}l1T p and 1TT are quasi-equivalent, 12 
since p and r are also norm -closed invariant­
order ideals in W *. Lo(P) = Lo(r) implies 1TJ! and 
1TT are weak-equivalent1 3 (or physically equlva­
lent. 14 Therefore Axiom 3' claims that if 1f P and 
1fT are weak-equivalentthen they are quasi-equiva­
lent. This is not true in the case of C*-algebras, 
but it holds for von Neumann algebras. s 

5. AXIOM OF THE COMPONENTS OF THE 
MIXTURE OF 'IWO ENSEMBLES 

As in Sec. 4, we assume :Je = <Rt and note that C(p), 
the smallest norm-closed extremal set of :Je con­
taining p, can be characterized by the support of 
p, E p' viz. C(P) = {cp E Je; Eq, ~ Ep}. Hence, we 
can study some properties of norm-closed extre­
mal sets from their corresponding supports. 

Lemma 5.1: C(P) C C(r) if and only if 
Ep ~ ET • 
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Proof: A straightforward verification. 

Lemma 5.2: C(P) n C(T) =:: {4> E :K:; 
E", :S Ep 1\ Er} 

Proof: Let N = {4> E :K:; E", :S Ee 1\ Er}. For 
each 4> E C(p) n C(T), E¢ :S Ep and E",:s Er; thus 
E", :S Ep 1\ Er and 4> E N. Conversely, let 4> E N, 
E", :S Ep 1\ ET, then E", :S Ep and E", :S Er, so that 
4> E C(jJ) n C(T). 

A trivial corollary of this lemma: C(P) nC(T) = 4> 
implies Ep 1\ ET = O. 

For a subset k of :1<:, let C(k) be the least norm­
closed extremal set containing k. Then we can 
also characterize C(k) in the following way. 

Lemma 5.3: 

c(k) =::{4> E :1<:;E",:s E,,} 

= {4>E ; 4> E :K:}, 
h 

where 

E" = V Ep for all p E k. 

Proof: Since C(k) is a norm-closed extremal 
set in X, then Lo(C(k) is an ultraweakly closed 
extremal set in ffi. Hence there exists a unique 
projection Ek in ffi such that Lo(C(k» =: ffi(I - E,,). 
E" is the least projection in ffi such that 4> =: E ,,4> 
= 4>E" for each 4> E C(k). From a similar argu­
ment in Ref. 12, p. 405, 4> E X lies in C(k) if and 
only if E¢ :S E". The second part of the lemma 
follows directly from Lemma 3.9 of Ref. 10. 

Furthermore, for any p E k, p E C(k), then El' :S E", 
therefore V Ep :S E" for all p E k. On the other 
hand, since 4> = 4>(V Ep) =: (v Ep)4> for each 
4> E C(k) and p E k, but E is the smallest projec­
tion with the same property, indeed E" is the 
support of C(k) (Ref. 10, p.14), hence V Ep ~ E" for 
all p E k. Therefore 

Ep =: V Ep for all p E k. 

Corollary 5.4: If {Ep} for all p E k are pair­
wire orthogonal, then 

For the axiom of the components of the mixture of 
two ensembles, we are more interested in the case 
of k =:: {p, T}. If we denote C({P, T}} by C(p, T}, then 
from the above lemma we have the following. 

Corollary 5.5: 

C(p, T} =:: C[mp + (1 - m}T], 

where 

mE (0, I}. 

Proof: We note that 

where w =: mp + (l-mh. Since p,T E C(p,T), 
hence W E C(p, T) and Ew:S Ep V E

t 
from the above 

lemma. Therefore C[mp + (1 - m}T] ~ C(p, i). 
Conversely, W E C[mp + (1 - m)T J implies that 
p, T E C[mp + (1 - m);]j hence Ep :S E w' ET:S Ew' 
Therefore, Ep V ET :s E w' and C(p, T) s;;. 
C[mp + (1- m}T]. 

From the above results, each C(p) and C(k) are 
characterized by projections Ep and E" of ffi, 
respectively; consequently, we can formulate this 
axiom in terms of decision effects defined in Sec. 
3. As in Axiom 4' in Sec. 1 we adopt the following 
lattice version. 

Axiom 4: For each Ev E 2, E3 E g, if El 1\ E2 
= 0, E 3 :s El V E 2, with E3 .l El and (E1 V E 3) 
1\ E2 = 0, then E3 = O. 

As we have shown in Sec. 3, g satisfies the ortho­
modular condition. For El' E3 E g 

It is easy to show that this condition is equivalent 
to the following version of orthomodularity: For 
E 1 , E 2 ,E3 E g 

if El :s E 3, El.l E 2 , then E3 1\ (E 1 V E 2) 

= El V (E3 1\ E 2). (2) 

In fact, if we let E2 =:: 1- E 1 , then (1) follows 
immediately from (2). Conversely, if El :S E3 and 
E3 =: E V (E3 1\ (I - E 1 }), then E3 1\ (E V (I - E 1 }) 

= El V tE3 1\ (1 - E 1 }), which implies (2) by setting 
E2 =:: 1- E 1 • 

Let El V E2 = Ej in (2), then E3 ~ E2 and E3 1\ E2 
= E 2 ; (2) implies E3 = El V E 2. Hence we have 
another form of orthomodularity: For El' E3 E S, 

if El :S E 3, then there exists E2 E S such that 

El.l E~ and E3 =: El V E 2 • (3) 

Obviously, (3) implies (2). 

If we omit the orthogonal condition in (2), then we 
have the modularity; i.e., El :s E 3 , then E3 1\ 

(E1 V E2 ) = El V (E3 /\ E 2 ). In general, g is not 
modular, unless S satisfies Axiom 4, which.is the 
main purpose of axiom 4 in Ref.4. We verify this 
result in the next theorem. 

Theorem 5.6: The set of decision effects S is 
modular if and only if it satisfies Axiom 4. 

Proof: Let El'E2, E3 E S, and El 1\ E2 == 0, 
E3 :s El V E 2, with El .1 E3 and (E1 V E 3) /\ E2 
= (E1 + E 3 ) /\ E2 =:: O. Since g is modular, for 
El :s El + E 3, we have El V (E2 /\ (E1 + E 3}) 
= (E1 + E 3 ) /\ (E1 V E 2 ). Hence 
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El = (E1 + E 3) 1\ (E1 \I E2) 

= El V (E3 1\ (E1 V E2» 

= El V E3 = El + E 3, 

which implies E3 = O. 

Conversely, if 9 satisfies Axiom 4, since 9 is 
orthomodular, we can use (3). The modularity of 'Y 
follows from a similar argument given in Ref. 4. 

It is well known that if the dimension of ~ is infi­
nite, then the standard logic (see Sec. 3) (! is not 
necessary modular. Therefore, from Theorem 
3.12 we have a direct consequence of the above 
theorem. 

Corollary 5. 7.' 9 is modular only i:f <R is a 
factor of type In (n < + 00). 

6. DISCUSSION 

In the whole theory of Ludwig's formulation about 
axioms of measurements, the axiom of sensitivity 
increase of effects plays an important role. From 
the proof of Theorem 2. 1 we note that this axiom 
holds for an operator algebra 91 whenever PI 1\ P 2 

lies in 91 for any two projections PI and P ~ of 91 . 
Therefore, the projections of ~ must be a lattice. 
The projections of a von Neumann algebra form a 
complete lattice. The other examples belonging to 
this category are AW*-algebraI5 and JW-alge­
bra.16 An AW*-algebra is a C*-algebra such that 
(i) any set of orthogonal projections has a least 

1 G. Ludwig, Z. Physik 181,233 (1964). 
2 G. Ludwig Z.Naturforsch.22a, 1303 (1967). 

G. Ludwig, Z.Naturforsch.22a, 1324 (1967). 
G. Ludwig, Commun. Math. Phys. 4,331 (1967); 9,1 (1968). 

5 G. LudWig, Grundlegung Physikalischer Theorien, Speziell der 
Quantenmechanik, Teil I, (UniversitlU Marburg, 1968) 
(unpublished). 

6 V. S. Varadarajan, Geometry of Quantum Theory (Van Nos­
trand, Princeton;N.J., (1968), Vol. I. 

7 J. Dixmier, Les Algebres d'Operateurs dans l'Espace Hil­
bertien (Gautheir-Villars, Paris, 1957). 

8 J. Dixmier, Les C"'-algebres et Leurs RePresentations 

upper bound, (ii) any maximal commutative self­
adjoint subalgebra is generated by its projections. 
The set of all projections of an AW*-algebra is 
also a complete lattice.15 A JW-algebra is a 
weakly closed Jordan algebra of bounded self­
adjoint operators. Its projections form a com­
plete lattice with orthocomplementation and ortho­
modularity. Hence, a JW-algebra may be the most 
appropriate algebra for Ludwig's approach. 

Another example satisfying this axiom is E*-sub­
algebras of <B (~).1 7 A E*-subalgebra of <B (~) is a 
a-closed C*-subalgebra of <B(~), which is also a 
von Neumann algebra as pointed out by Kadison in 
the Appendix of Ref. 17 . 

However, the quasilocal algebra of local observ­
abIes in quantum field theory14 can not satisfy the 
axiom of sensitivity increase of effects. Since its 
automorphisms will be inner, if it is a von Neu­
mann algebra.1S It is impossible for a quasilocal 
algebra, e.g., the automorphism induced by in­
homogeneous Lorentz group is not inner.14 An­
other example belonging to this category is the C*­
algebra of compact operators on separable Hil­
bert space.1S 
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Starting with a vacuum space-time (Rab = 0) which admits a Killing vector field K, a study is made of the 
subclass where the Killing bivector (KBV) Ka, b is null. Reference is made to an earlier paper [J. Math. 
Phys.12, 1088 (1971)J by the author which-established some of the general approach and formalism used 
.here. All space-times with the property above turn out to be in the class of expansion-free radiation 
fields, which are necessarily algebraically special. Of these only Petrov types II, D, and N are allowed; 
furthermore, those of type N are the pp waves. A result obtained from applying this approach is that 
expansion-free radiation fields are the only vacuum space-times which admit a geodesic Killing vector 
field; that field is necessarily lightlike. Finally, since the spaces with symmetry studied by R. P. Kerr 
and the author [J. Math Phys. 11, 2807 (1?70)J had nonzero expansion, the associated bivector to each of 
those symmetries must necessarily be nonnull. 

1. INTRODUCTION 

In a previous paper 1 a problem was formulated 
which was designed to classify certain vacuum 
space-times which admit a Killing vector field. 
The basic approach was to divide the problem into 
two basic parts: (1) those vacuum spaces which 
admit a nOIUlull Killing bivector,and (2) those which 
admit a null Killing bivector. 

After the formalism and the basic approach were 
developed, l the nOIUlull case was studied. Some 
general conclusions involving, first, geodesic 
Killing vectors and, second, hypersurface ortho­
gonal Killing vectors were given through a study 
of the invariants made from the Riemann tensor 
and the nOIUlull Killing bivector. 

This paper deals with the null Killing bivector 
cases which, by a theorem proved in Ref. 1, must 
necessarily concern only algebraically special 
spaces. 

2. PRELIMlNARlES AND FORMALlSM 

In Ref. 1 the formalism for a complex null tetrad 
{ea I a = 1,2,3, 4} with its dual {eo I a = 1,2,3, 4} 
was developed. [e1 and e2 are complex conjugates; 
e3 and e4 are real; € a(eb ) = og.J Assuming that 
the metric tensor field g =~" dxl! ® dx v has slg­
nature (+ + + -), the components gab = g(ea, eb) 

can be put into the form 

1 
o 
o 
o 

o 
o 
o 
1 

(2.1) 

locally over the Coo Lorentz 4-manifold. The dual 
~elationship between basis vectors {eli' Qp} and {e:;: 

dXI!} is also expressed by eg E: = og ana e~E~ = 
5':, {Greek indices /J., v, . .. on a kernel letter 
represent components of a tensor with respect to 
some local coordinate system {xII}; latin indices 
a, b, • •• represent tensor components with respect 
to a complex null tetrad.) If T = T~:: :dXII 18>0" ® .•• 
is a tensor field, then it is also true that T = T~: : : 
Ea®e/>® .... 

The set of transformations ea ~ ea , preserving the 
form (2.1) of (gab) is the set of Lorentz transf<;>r­
mations. The proper orthochronous subgroup of 
these is given by 

[

eXP(iB)e11 ] 

exp(- iB)e2, 

exp(A)e31 

exp(- A)e41 

= 11 -'- a{3 I-l(:~ "~ 
-(3-{3 

a a 

-a 

~p) ell -a e2 

1 e ' 3 

-aa e4 
(2.2) 

where A, B, a, and {3 are-parameters; a and i3 are 
complex; A and B are real; ai3 "* 1. (A bar above a 
symbol denotes the complex conjugate.) 

The Lie bracket between any two contravariant 
vector fields is a vector field, [;, YJ == XY - YX. 
Between vectors of the basis {eJ the relationship 

(2.3) 

holds, where the rm all are coefficients of the con­
nection (see A2). Iff is a scalar function, the 
commutation relations 

reb ea]1 =1 all -I ba =f,m (rm
ab - r m

ba) 
, . . (2.4) 

must then hold as integrability conditions on I. 
In the exterior algebra a bivector is any 2-form. 
A well-known invariant classification scheme for 
any bivector Bl!vdxllAdxv is given through the defi­
nition: B is null (or "singular") if and only if 
B vBI!" = 0 = B*"BII";otherwise B is nonnull. In 
tGrms of the sii basis bivectors e: I, € II, •••• e: VI 

introduced in Ref. 1, one sees that B = B A € A (A = I, 
n, ... , VI) is null if and only if BABA = 0 = BAJ3A. 

It was seen in Ref. 1 that a given null bivector 
could be transformed by (2.2) into the canonical 
form 

B. - B e: I11 + R e: VI = 2B €3t\El + 2 R_e:3 t\e:2 
- III -VI III -VI 

= 2 B 31€31\€1 + 2B32 e:3 t\e:2 • (2.5) 

The transformation freedom left preserving (2.5) 
is the subgroup of (2.2) with a == 0, the so-called 
null rotations about e4 • 

2372 
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3. THE NULL KILLING BIVECTOR IN A 
VACUUM SPACE-TIME 

Let 8 be a vacuum space-time (R b = 0) and K = 
Kaea, a Killing vector field. Then (see Eisenhart2) 

Ka;b + Kb;a = 0 (<=;>Ka;b ==K[a;bl) (3.1) 

are Killing's equations and are satisfied locally 
over 8. Suppose also that the Killing bivector 
.(KBV) B == Ea, bEa/\ Eb is null. Then from (2.5) 

(3.2) 

Le., K UI =K3 ;1 and KVI =K3:2 are the only non­
zero covariant derivatives of K. Hence we keep 
the KBV (and consequently Killing's equations) in 
the canonical form (3.2) by any null rotation about 
e4 • 

If Ra bcd are the components of the Riemannian cur­
vature tensor, then the first set of integrability 
conditions for (3.1) is given by (see Eisenhart2 ). 

(3.3) 

Theorem 2 in Ref.1 [using (3.3),(3.2),and the Gold­
berg-Sachs Theorem3] gives us that 8 must 
necessarily be algebraically special and that e4 is 
geodesic and shear-free. 

[It can be mentioned at this point that invariants 
built up from Ka;b and Rabcd could be examined as 
was done in Ref. 1. However, C(5) == C(4) = 0 and B 
null are enough to make all invariants studied 
there equal to zero except d and j, and the latter 
are zero if co) = O. (The C(i) are the conformal 
scalarS. See Appendix A or Ref. 1). Hence, to use 
the invariant approach would only be redundant 
here to the Petrov classification itself.] 

4. KILLING'S EQUATIONS AND INTEGRABILITY 
CONDITIONS IN CANONICAL FORM 

Using the relations Kq = gabKb and r 411 = r 422 = 
r 414 == r 424 == 0 (e4 IS geodesic and shear-free) 
one can write (3.1) as follows: ' 

K1,1=-K1r121+0+ 0 +K4 r 311 , 

K 1 ,2 = - K 1 r 122 + 0 + K3 r 412 + K 4 r 312 , 

KIn = - K 1 r 123 + 0 + K3 r 413 + K 4 r 313 - K 1 , 3' 

K 1 ,4 = - K 1 r 124 + 0 + 0 + K 4 r 314 ; 
(4.1) 

K 2 ,2 = 0 + K 2 r 122 + 0 + K4 r 322' 

K 2 ,1 =0+K2 r 121 +K3 r 421 +K4 r 32 1> 

Klll =0 +K2T 123 +K3 r 423 +K4r323-K2,3' 

K 2 ,4 = 0 + K 2 r 124 + ·0 + K 4 r 324 ; (4.2) 

KIll 

KIll 

-K3 ,3 

-K3 ,4 

-Kr Kr - 1 321 + 2 311 + K3 r 341 + 0 + K 3 , l' 

= K 1 r 322 + K 2 r 312 + K3r342 + 0 + K3,2, 

= K 1 r 323 + K 2 r 313 + K 3 r 343 + 0, 

= K 1 r 324 + K 2 r 314 + K3r344 + 0; 
(4.3) 

-K4 ,1 = K1 r 421 + K 2 r 411 + 0 - K4 r 341> 

-K4 ,2 =K1 r 422 +K2 r 412 +0-K4 r 342 , 

-K4 ,3 = K 1 r 423 + K 2 r 413 + 0 - K4 r 343' 

-K4 ,4 = K 1 r 424 + K 2 r 414 + 0 - K4 r 344' 

Equations (3.3) take the form 

(4.4) 

(4.5) 

(4.6) 

RllIcmKm = KIll c + 2Kmr IIc' (4.7) , 
Since C(5) = C(4) = 0, Eqs. (4. 5) are identically 
sati.sfied. The fact that r 424 = r 422 = 0 (the geo­
deSIC and shear-free conditions on e4) implies that 
Eqs. (4.6) become 

(4.6' a) 

C(3)K1 + 0 + 0 - C(2)K4 = 2Km r 421 , 

(4.6'b) 

o + ~)K2 + C(3)K3 + 0 = 2Km r 423 . 

(4.6' c) 

~ecall that!' 421 is th~ complex expansion and r42 3 
IS the rolalwn of the hghtlike geodesic congruence 
e4 (see, for example, the optical scalars defined by 
Sachs4 or Newman and Penrose5 ). Two cases can 
now be considered: (A) C(3) ¢. 0 and (B) C(3) = O. 
This means that study of A is concerned only with 
Petrov type-II and type-D spaces, whereas B is 
concerned only with Petrov types ITI and N. We ex­
clude flat space (CU) = 0) for the rest of this 
discussion. 

5. CASE A: TYPE II AND D SPACES ADMITTING 
A NULL KBV 

Let C(3) ¢. O. Then (4. 6' a) implies that K4 (== K3) 
== 0 and K1 = K2 = O. In this case we are also 
assuming KIll ¢. O. If KIll = 0, then C(3) ¢. 0 =;> K3 

== 0 = K == O. Hence 

(5.1) 

it is evidently lightlike. Equation (4. 6'b) now must 
have 

r 421 = 0 (5.2) 

so that case A is in the class of spaces studied by 
Kundt. 6 

Using a null rotation about e4' one can transform 
KIll into a real function, a. Furthermore K (== K4) 
may be transformed to 1 so that K = e4• ~e sub­
group of (2.2) left after this transformation is now 
that for which A = B = O. Killing's equations 
become 

a=r413=r423' 

0= r 343 = r 344, 

a = r 341 =r342 • 
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Hence (4.6' c) gives 

CO) = 2a 2 = CO). 

Equations (4.7) now take the form 

a 1 + a 2 + a r 121 = 0, , 
a 2 +a2 +af122=-~C(3), , 
Q,3 + af123 = ic(2), 

a 4 + af 124 = 0, , 
plus their complex conjugates. It is a simple 
matter to show that these together give 

(5.3) 

(5.4a) 

(5.4b) 

(5.4c) 

(5.4d) 

a 1 = a 2 = - i a 2 , a 4 = 0, a,3 = iRe(C<2», " , 
f121=f212=~a, f124 =0, 

f 123 = (2a)-li Im(C(2». (5.5) 

Through the relationship - fabc = eafl.~lJe,r e~ it can 
be shown that a Lorentz transformation (2.2) with 
A = B = 0 and parameter (3 has the effect 

3 -
f 1'2':r' = f123 + 2" a(J3 - J3 ). 

Since f123 = f213 = - f123 it.!.ollows that f123 
is pure imaginary. Setting (3 - J3 = - (2/3a) f 123 
transforms f 123 to zero. Hence 

C(2) = c<z) and a, 3 = i 0 2) 

modifies the relationships in (5.5). 

(5.6) 

The first of the structure equations, (A3a), takes 
the form 

df42 + f 42 /\(f 12 + f 34) = i 0 3)£3/\£1 

and is satisfied identically. We note here that 

df 42 = - ~ a 2 (£3/\£1 + £3/\£2). (5.7) 

The second of the set, (A3b), is 

d(f 12 + f 34) + 2f 42/\f 31 
::: 03)(£1/\£2 + £3/\£4) + C(2)£31\E1 (5.8) 

and yields the following results on the connection 
coefficients: 

C~l) + ~ aC(2)- 4a2f312 = 0, 

C(~) + 2a3 - 2a2f314 = o. , 
(5. 11) 

The commutation relations (2.4) together with 
(5.11) result in 

f 312 ::: f322 ::: f3ll ::: f321' a::: f 314 ::: f324' 

C (2) = 4af 312' C,(~) = - 14a2 f 312' 

C,(~) = 0 = f312, 4' (5.12) 

The identity (A4c) then gives 

C(2)= 0 = f3117 

C~l) ::: 0 = f 313,4' 

C~V + 2aC(l) = 6a2 f 313' 

(5.13) 

Since the group (2.2) still can be used to trans­
form f 313 to a pure imaginary function, consider 
(5.10) with f 313 pure imaginary. Together with 
the results from the Bianchi identities above, this 
yields 

C(1)::: - 6af 313' 

C,(p::: C,(~)::: 18a2 f 313 , (5.14) 

r 313, 1 = - i af 313 = f 313, 2' 

Notice that f 313 ::: 0 implies that the space is Pet­
rov type D. This is no surprise since f313 = 0 = 
f 322 is equivalent to stating that the congruence 
e3 is also geodesic and shear-free. All conditions 
and equations would then be satisfied. 

Assuming that f 313 ¢ 0 (and hence Petrov type II), 
one finds the general solution to (5.14) to be 

f 313 = aa, 0=- 0, 

with a, 1 ::: a, 2 = a, 4 ::: O. Therefore 

C(1)::: -6aa2 , 

and all equations are satisfied. 

(5.15) 

(5.16) 

The Lie brackets for the basis tetrad are given by 

[e1, e2] ::: - (a/2) (e1 - e2), 

[e1 , e3 ] ::: - a(2e3 + CJe4 ), 

[e2 , e3 ] = - a(2e3 - CJe4 ), 

rei' e4] = 0 for i = 1,2,3. 
f312 = f322' f3ll ::: f321' f 314 ::: f~2~' 

The third structure equation (A3c) is ( • 9 6. CASE B: TYPE m AND N SPACES ADMITTING 
A NULL KBV. 

df 31 + 2(f 12 + f 34)J\f 31 
= He (3)£4/\ £2 + e (2)( £ 1i\£2 + £ 3/\ £4) 

+ e(1)£3/\E1], (5.10) 

which is not computed in detail at this point. 

Consider the Bianchi identities (A4a)-(A4c). Equa­
tion (A4a) is identically satisfied and (A4b) gives 

Let C (3) = 0 and suppose KIll ¢ O. (KIll::: 0 is a PP 
wave and is discussed briefly in Appendix B.) If 
K3 ¢ 0, then both K1 and K2 may be transformed 
to zero by letting (3 ::: - (K2/K3) in (2.2). Then 
Eq. (4. 6'c) gives f 423 = O. Using A and B of (2. 2) 
to transform KIll to real function and K3 = 1 sim­
plifies Killing's e.quations. From (4.4) one finds 
r 341 ::: f 342 ::: O. But then (4.3) implies K!Il = 
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K 4 r 342 = O. Hence, there is a contradiction, which 
shows that K3 must be zero. 

Suppose next that K 3 = 0 and Kill ;,; o. Then 

(6.1) 

Equation (4. 6'b) gives r 421 = 0, so that each of the 
spaces under consideration again fall into the class 
studied by Kundt.6 A transformation (2.2) can 
make KIll a real function a. 

First assume J(1 = 0 (=:> K2 == 0). Then K = K 4e4 
can be transformed to K = e4. Hence K4 (= K3) 
= 1. Equation (4. 6'c) then necessitates ar 423 = O. 
Killing'S equations (4.2) also give a = r 423. 
Therefore, we obtain a == 0 == KIIlI a contradiction. 
In summary, there is no way for KI~I ;,; 0 to be com­
patible with K = Klel + K 2e2 + K e + K 4e4 
whenever K3 ;,; 0 or whenever Kl == k2 = K3 = o. 
Hence, the only case left to explore (for KIll '# 0) 
is K3 == 0 with Kl ;,; O. 

Next consider (6.1) and assume Kl ¢ O. A trans­
formation (2.2) can now take K4 to zero in addi­
tion to taking KIll to 1. The Killing vector then 
has the form 

(6.2) 

and is spacelike. The Bianchi identities (A4b) be­
come 

- r 423C(2.E3t\Elt\E2 

== (C~i) - 2C(2)r 3l2)E3t\€lt\E2 + 2C(2) 

X r 423E4t\E2t\E3 

coexist in the same type-N space, both having null 
Killing bivectors. 

7. APPUCATIONS TO THE STUDY OF GEOOESIC 
KILLING VECTORS 

In this diSCUSSion, it is still assumed that 8 is a 
vacuum space-time (Rab = 0) and that flat space 
is excluded. 

Theorem 1: Let 8 be a vacuum space-time and 
let K == Kaea be a geodesic Killing vector field. 
Then (1) K is lightlike, (2) K is geodesic and shear­
free, (3) 8 is algebraically special. 

Proof: That K is geodesic implies 

(7.1) 

for some scalar f. If Ka:b defines a null bivector 
over 8, then 8 must be algebraically special by 
Theorem 2 in Ref. 1. The eigenvalue problem for 
a null bivector necessitates f == 0 above. In Sec. 5 
the Killing vector field K is necessarily lightlike, 
geodesic, and shear-free with KIll ¢ O. In Sec.6, 
one possibility for K is K == K4e4, which is light­
like,geodesic,shear-free,with KIl). == 0 = K31!. The 
other possibility here is the spacelike K = K lel + 
K2e2 , with (7.1) implying 

(7.2) 

Equation (7.2) is to be preserved under the sub­
group of (2.2), with a = J3 = 0; i.e., A and Bare 
arbitrary real parameters. Since 

K 3 "1' = exp(- A - iB)K3 ' 1 and I , 

(6.3) K2 , = exp(iB)K2 , 

then 
In particular it is seen that (6.3) implies eAK3;lK2 + e-AK3;2Kl = O. (7.3) 

C (2)r - 0 423 - . 

Equation (4. 6'c) gives 

C(2)Kl == 2r 423. 

(6. 4) Le~ing K3; 1 = ae iB and ~Kei¢, (7.3) is 
equivalent to 

(6.5) 

Hence r 423 == 0 if and only if C (2) == 0 and Eq. (6. 4) 
gives 

C(2) = 0 == r 423. (6.6) 

Consequently the space is Petrov type N. Since 
r 423 (the "rotation" of e4) is zero, this space is 
also a pp wave by Kundt's characterization (Ref. 
6, p. 79). In this case e4 is also a Killing vector 
field, is a principal null vector for the KBV associ­
ated with (6.2), and is tangent to a ray conguence 
which is parallel. 

Case B is then a pp wave: the plane-fronted gravi­
tational wave solution which is Petrov type N and 
has parallel rays. If one continues to examine the 
subcase (6.2), all equations can be satisfied so 
that both K = Klel + K 2e2 and K == K4e4 may 

a == 0 or K == 0 or sin(6 + CP) = cos(O + CP) == 0, 

(7.4) 

since A == 0 is impossible. Clearly, none of (7.4) 
is possible since KIll ;,; 0 and K ¢ 0 are assumed. 
Consequently, the spacelike Killing vector field of 
Sec. 6 is not geodesic. Hence all geodesic Killing 
vector fields with a null KBV are Ughtlike. 

If Ka~b defines a nonnull bivector over 8, then it 
can be shown (see Ref. I) that K being geodesic 
allows only for K to be Ughtlike and tangent to one 
of the principal null congruences of K a1b . Further­
more, K(a;b) = 0 =:> K is shear-free. Hence 8 is 
algebraically special by the Goldberg-Sachs 
theorem; K must then be a multiple Debever vector 
field. QED 

Theorem 2: Let 8 be a vacuum space-time and 
let K == Kae a be a (lightlike) geodesic Killing vector 
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field. Then the associated Killing bivector Ka:b is 
null and the space represents an expansion-free 
radiation field. 6 Furthermore, the only SUCh spaces 
which are not pp waves are those encountered in 
Sec. 5. (That is, there are no geodesic Killing 
vectors in a space-time R ab = 0 which generate 
a nonnull bivector.) 

Proof: -tUter the work of Theorem 1 it is 
necessary only to show that the nonnull KBV stu­
died in Ref. I is incompatible with any geodesic 
Killing vector. It was shown in Ref. 1 that if e3 
and e4 are tangent to principal null congruences 
for the nonnull KBV, theIl-K being geodesic implies 
K = K 3e 3 or K = K4e4• Take first K = K 4e 4 and 
say that e4 " = KIl , so that KIl;v = e41l ;1I' (The argu­
ment for K = J(Je3 is completely analogous.) Then 

(7.5) 

But K<Il;v) = 0, so that r 4ab = r 4fabl and, hence, 

r 4(ab) = O. (7 •. 6) 

So r 411 = r 422 = r 433 = O. Furthermore (7.6) 
implies r 4a4 = 0; therefore r 414 = r 424 = r 434 
= O. Since now C(5) = C(4) = 0 is implied here, 
the integrability conditions on Killing'S equations 
corresponding to (3.3) necessitate r 423 = r 421 = 
r 412 = r 413 = O. Since Kp.;v = Ki:l!lV], these re­
lations all implr ~ 4 a b = O. Therefore, the inde­
pendence of {eaj gives KCIl;vl = 0 and so K,,:v = 0, 
contrary to Ka -b being nonnull. Hence, a nonnull 
KBV (studied tit Ref. 1) excludes completely any 
geodesic Killing vector fields. Theorem 3 of Ref. 
1 can then be stated more strongly: K is a Killing 
vector and Ka:b is a nonnull KBV ~ K is not 
geodesic. QED 

Corollary to Theorem 2: There are no Petrov 
type-ill vacuum space-times admitting a geodesic 
Killing vector field. 

Proof: Sections 5 and 6 exhaust all possibili­
ties fol' geodesic Killing vectors. 

If the geodesic Killing vector belongs to a space 
more general than a pp wave (type N), then it must 
belong to one of the spaces in Sec. 5. QED 

The following global result can now be stated: 

Theorem 3: Let 8- be a vacuum space-time and 
let K be a (lightlike) geodesic Killing vector field. 
Then (as a vector field over 8) K is complete. 

Proof: This follows from results of Boyer." 

8. CONCLUSIONS 

From the present study, it can be seen that "most" 
vacuum space-times with a symmetry (Killing vector 
field) possess a Killing bivector which is nonnull. 
Those space-times admitting a symmetry whose 
associated bivector is null fall into a very narrow 

category.l the algebraically special spaces whose 
Debever vector field is also a Killing vector, and 
consequently is expansion-free. These were called 
the expansion-free radiation fields by Kundt.6 

Further analysis of the null KBV yields the fact 
that both Petrov type-n and type-D spaces are 
allowed. However, types more special than this all 
turn out to be the plane-fronted gravitational waves 
with parallel rays, the pp waves, and are all Petrov 
type N. Hence, no type-lll spaces contain a null 
KBV. 

The earlier work of the authorl plus work in this 
paper go to characterize the geodesic Killing 
vector in a vacuum space-time. Such a Killing 
vector can be found only in those (nonflat) spaces 
which are expansion-free radiation fields. The 
associated Killing bivector for this case is neces­
sarily null. 

Kerr and the authors studied vacuum space-times 
which (1) were algebraically special, (2) possessed 
an expanding multiple Debever vector field, and 
(3) admitted a Killing vector field. Since e4 in 
Secs.5 and 6 of this work is expansion-free. the 
bivector associated with each Killing vector field 
in Ref. 8 must then be nonnull. 

APPENDIX A: STRUCTURE EQUATIONS AND 
BIANCHI IDENTITIES FOR A VACUUM 
SPACE-TIME 

In the complex null tetrad approach, the following 
components of the Riemann tensor are the con­
formal scalars for Rab = 0: 

C (5) - 2R 
- 4242' 

C(4) = R4212 + R 4234• 

C(3) = ~ (R1212 + 2R1234 + R3434 ) = 2R4231 ,(AI) 

C (2) = R3112 + R3l34, 

C(l) = 2R3131 • 

The space is algebraically special if and only if 
there exists a tetrad for which C(5) = C(4) = 0 or 
C(l) = C(2) = O. Related to this, the Goldberg­
Sachs theorem3 states that the space is algebraical­
ly special if and only if there exists a geodesic and 
shear -free lightlike vector field; such a field is 
e4 whenever C (5) = C (4) = () and e 3 whenever 
C(1) = C(2) = O. 

In order to introduce the connection coefficients 
for the space, the first structure equations are 
given by 

(A2) 

where the r a be are the connection coefficients. They 
have the properties r abc = - r btlr.' where r abc == 
g a"}rmbc' and are not necessarily skew symmetric 
in ,be). This also defines the connection I-form 
r ab == r abc€c. 
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The second structure equations are equations in­
volving 2-forms. These are 

It is this latter formulation that is most useful 
for calculations. 

(A3) APPENDIX B: THE PLANE-FRONTED WAVES 

where <Rab == RabcdecAed, the curvature 2-forms. 
In terms of the notation of basis bivectors (see 
Sec. 2 and Ref. 1) these become 

dr 1 + 2rr A r Il == ~ <R 1, 

dr II + rrAr m == ~ <R n , 

drm + 2rn l\rm == ~ <RIll' 

plus their complex conjugates. 

(A3'a) 

(A3'b) 

(A3'c) 

The Bianchi identities are easily obtained by taking 
the exterior derivatives of (A3) above. Hence we 
have 

d<R I == 2<R JAr II - 2rr A<Ru , 

d<Rn == <Rl I\rm - r l A<R nl , 

d<R m == 2<Ru Arm - 2rn A<R lll· 

(A4a) 

(A4b) 

(A4c) 

In a vacuum space-time the curvature 2-forms 
in Eq. (A3) become 

~ <RI == He (5)e4 A e2 

+ e(4)(e1I\e2 + e3Ae 4) + C(3)e3I\e1], (A5a) 

~<Rll == He(4)e4Ae2 

+ e(3)(e1Ae2 + e31\e4) + C(2)e3I\e1], (A5b) 

t<RuF HC(3)e4f\e2 

+ C(2)(e1f\e2 + e31\e4) + C(1)e3f\e1]. (A5c) 

1 G. C.Debney, J. Math. Phys.12, 1086 (1971). 
2 L. P. Eisenhart, Riemannian Geometry, (Princeton U.P., 

Princeton, N.J., 1960). 
3 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13 (1962). 
4 R. K. Sachs, Proc. Roy. Soc.A264, 309 (1961). 
5 E. T. Newman and R. Penrose, J. Math. Phys. 3, 565 (1962). 

A trivial case of the Killing vector field K = 
Kl'o having a null KBV is where KI';v == O. This 
me:ns that K is a parallel vector field and, by an 
argument of Ehlers and Kundt,9 is necessarily 
lightlike. (This case was also mentioned in pas­
sing while setting up the more general problem 
in Ref. 1.) 

Ehlers and Kundt9 define the plane-fronted gravi­
tational waves as being those solutions to the 
vacuum field equations which are of Petrov type 
N and possess a hypersurface orthogonal, shear­
free, expansion-free (Ughtlike) ray congruence. 
The plane-fronted waves with parallel rays, the 
pp waves, have the additional property that the ray 
congruence is recurrent. That is, if k I' is tangent 
to the ray convergence, then k I';V = ykl' kv' where y 
is a scalar. 

Six characterizations for a pp wave are cited in 
Ref. 8, with three actually proved. Furthermore, a 
pp wave has the metric 

ds 2 = dx 2 + dy2 + 2dudv + 2H(x,y,u)du 2, 

where the four coordinates form a (real) harmonic 
system and the scalar H satisfies Hxx + Hyy = O. 
The contravariant vector a v is a covariant con­
stant Killing vector field. 

A result useful for the work in the present paper 
was mentioned by Kundt6 : The expansion-free 
radiation fields with vanishing rotation have par­
allel rays; if the space is also Petrov type N, it is 
necessarily a pp wave. 

6 W. Kundt, Z. Physik 163, 77 (1961). 
R. H. Boyer·, Proc. Roy. Soc. A31l, 245 (1969). 
R. P. Kerr and G. C.Debney, J. Math. Phys.ll, 2807 (1970). 

9 J. Ehlers and W. Kundt, Gravitation edited by L. Witten 
(Wiley, New York, 1962), Chap. 2. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 11 NOVEMBER 1971 

An Explicit Basis for the Reduction Urn + m) t Urn) X U(m) * 
Jouko Mickelssont 

Institute of Theoretical Physics, Fack, 5-40220, Goleborg 5, Sweden 
(Received 8 April 1971) 

We construct lowering operators associated with the multiplicity pattern obtained in a previous paper 
[J.Math. Phys.ll, 2803 (1970)] for the labeling of the basis vectors in the reduction of an irreducible 
representation of U(n + m) with respect to U(n) x U(m). Every basis vector can be written as a product 
of lowering operators acting on the highest-weight vector. 

1. INTRODUCTION 

Nagel and Moshinskyl have some years ago con­
structed a set of operators which can be used for 
lowering the irreducible vector spaces of u(n - 1) 
contained in an irreducible vector space of U '(n). 
With the help of these operators, one can write 
every basis vector as a product of lowering oper­
tors acting on the state of highest weight. 

In this paper we construct a set of operator s which 
can be used for lowering the irreducible vector 
spaces of U(n) x U(m) inanil'reduciblerepresenta­
tion of U(n + m). Here U(rn) is the subgroup of 
U(n + m) which transforms the first m components 
of a vector in the defining representation of U(n + 
m) and correspondingly U(n) transforms the last 
n com{lOnents. For the labeling of the various IR's 
of U(n) x U(m) (which have generally a multiplicity 
bigger than one) in an IR of U(n + rn), we use a 
pattern which we derived in a previous paper. 2 Every 
semimaximal state [= a basis vector of highest 
weight with respect to U(n) x U(m) in an IR of U(n) 
x U(rn)] can be written as a product of lowering 
operators acting on the highest-weight vector. An 
arbitrary basis vector may then be obtained by 
acting with the canonicallowering operators of U(n) 
and U(rn) on the semimaximal states. 

Work on similar lines has previously been done by 
Devi and Venkatarayudu in Ref. 3, where they have 
explicitly constructed the basis vectors using a 
boson operator realization for the cases U( 4) ! U(2) 
x U(2) and U(6)! U(3) x U(3). 

The knowledge of the explicit form of the basis 
vectors is important at least in 

(i) the calculation of the matrix element of the 
generators. 
(ii) the calculation of the Wigner coefficients for 
U(n). 

When reducing the direct product of two irreducible 
representations of U(n) to irreducible constituents, 
one is led to consider representations of U(2n) in 
the chain U(2n) ~ U(n) x U(n).4 

Finally let us mention that the knowledge of the 
explicit form of the IR's of U(n + rn) in the chain 
U(n + rn) ~ U(n) x U(rn) is useful when construct­
ing representations of the noncompact groups 
U(n, m). If one has a UIR (unitary irreducible re­
presentation) of U(n + rn) in this chain, then one 
may find UlR's of the ~roup U(n, m) in the chain 
U(n,m) ~ U(n) x U(m) Wen) x U(m) is the maximal 
compact subgroup] by letting some of the labels 
take complex values. 

2. DEFINITIONOFl'HE LOWERING OPERATORS 

We consider an irreducible representation (IR) of 
U(n + m) characterized by the highest weight (~l' 
~2"" '~n+ m)' According to Ref. 2 the Gel'fand­
Z~tlin (GZ) patterns of the subgroups U(n) and 
U(m) together with the pattern given below can be 
used for labeling of a complete set of basis vec­
tors in the representations space: 

~m ~m+l ~m+2 ••• ;\.m+n 

~ km-1 km-1... km- l 
m-l 1 2 n 

~ km-2 km-2 km-2 
m-2 1 2 n 

(2.1) 

~1 

There are two rules restricting the range of the 
labels (which are all integers): 

(i) Every number in the pattern is less than or 
equal to the number above its left and greater than 
or equal to the number above it; 
(ii) SJ~Srl,j= 1,2 ... ,nandi= 1,2, ... ,m-l 

Si is the sum of the j first numbers on the (i + 1) 
th tow from the bottom minus the sum of numbers 
immediately below right. For example,Sl = ~1 -

11 and S~ = "2 + k¥ + k~ - kl- k2 - k~. When 
reading the pattern (2.1) from left to right in an 
arbitrary row, the numbers never increase, and 
when reading from top to bottom in any column 
the numbers never decrease. (l1' 12 , ••• , In) is a 
highest weight characterizing an ill of U(n) and 
correspondingly (jl,h, ... ,jm) labels the ill's of 
the U(m) subgroup, where 

Because every basis vector can be obtained by 
acting with the known lowering operators 1 of the 
subgroups U(n) and U(m) on a semimaximal basis 
vector, we can restrict our attention from now on 
to these vectors. For the semimaximal states we 
can drop the GZ patterns associated with U(n) and 
U(m) and we can denote them solely by (2.1) 

We denote the generators of U(n + m) by E1, i,} = 
1,2,3, .. ',n + m, E~ = Hi' They fulfill the com­
mutation relations 

(2.3) 

2378 
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The Ht's span the Cartan subalgebra. In unitary 
representation the hermiticity condition 

(2.3') 

is satisfied. Generators Ej with i < j are raising 
generators for the weights and the E~ with i> j are 
lowering generators. The generator~ with the in­
dices less than or equal to m span the algebra of 
the subgroup U(m) and the ones with indices 
greater than m,the algebra of U(n). For any semi­
maximal state Is. m. > one has 

Ej Is.m.>=O, ifi<j 

and i,j = 1, 2, ... , m 

or i,j =m+ l,m+ 2, •.. ,m+n, 

(2.4) 

H j Is.m.> =j; Is.m.>, if i = 1,2, ..• ,m, 
Hi Is.m.> = li_m I s.m.>, 
if i = rn + 1, m + 2, ... , m + n. (2.4') 

For the highest-weight vector 1M> one has 

EJIM> = 0, ifi <j,i,j= 1,2, ... ,m +n, 
(2.5) 

HjIM>=;\jIM>, i=I,2, •.. ,m+n.(2.5') 

Comparing (2.1), (2. 4'), and (2.5') one concludes 

;\m ;\m+1 ;\m+2 ;\m+ n 

;\,....1 "-m+l "-m+2 "-m+n 
(2.6) 

IM>= 

"-1 ;\m+1 "-m+2 "-",+ n' 

"-m+ 1 "-",+2 "-m +n 

Let us now assume that we have found a set of 
operators {Lj,j = 1,2, ... , m and i = m + 1, m + 2, 
... , m + n}, which are polynomials in the genera­
tors and which satisfy the following equations: 

[Et,L~]ls.m.> = 0, if k < 1 

and k, 1 = 1,2, ... , m (2.7) 

or k, 1 = m + 1, m + 2, ... , m + n, 

k=I,2, ...• m+n. 

(2.7') 

Equation (2.7) says that when acting with Lj on a 
semimaximal state the result contains only semi­
maximal states. Because of Eq. (2.7') we call the 
L} the lowering operators. U sing the lowering 
operators one can give an operational definition 
for the general semimaximal state by writing 

~m ;\m+l ;\m+2 ... ;\m+1I 

;\,....1 km-l k1-1 km- 1 
1 n 

;\m-2 k m- 2 
1 

k m- 2 
2 

km-2 
.n 

(However, this basis is in general nonorthogonal.) 
In (2.8) we can choose the following convention for 
the order of the Li with different values of the 
index i but with the same value of j: If one reads 
the formula (2.8) from the left to the right, the 
index i decreases. From (2.8) one can see that 
the effect of a single operator Lj is the following: 

[~. kit k{-m-1 kii- m k{-m+i IlL] Li 1 

j ;\i-1 kill kii:~-l kii:~ k i
i - m .. 1 k,t 

[~. ki
j 

<-1 

kii- m- 1 k{-m kihn+ 1 ~] 
kii1 kJ-l ki- 1 + 1 kJ ••• kj , 

i-m- 1 i-m hn+ 1 

k?= li (2.9) 

The two-rowed pattern in Eq. (2. 9) means the 
subpattern consisting of the rows beginning with 
;\j-1 and "-"j of the pattern (2.1) describing a semi­
~aximal state for which Iv = k ~ = k~ = ... = 
k{-1, V = 1,2, ... ,n. The operators LJ given by the 
formula (3.1) in Sec. 3 satisfy 

[LJ, LJ'JIs.m.> = 0, 

j= 1,2, ••• ,m,i,i'=m+ l,m+ 2, ... ,m+n. 
(2. 10) 

The proof of Eq. (2. 10) for the V given by (3. 1) 
is given in the Appendix. Using (2. 10), one sees 
that these operators have a stronger property than 
(2.9), namely 

ki-m-l kl-m kim+l 
kt!.-1 kl:!. kt!.+1 

k,t J [;\. k{ 
hi,;1 = <-1 ki:L-1 ki-m-1 kl-m ki .... l11+ 1 

kt!._ 1 kl--~+ i.kt~+l 
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3, CONSTRUCTION OF THE LOWERING OPERA­
TORS 

In a similar way as it was done in Ref. 1 for the 
canonical case U(n)::;J U(n - I), we search for a 
polynomial in the generators EJ which satisfies 

(2.7) and (2.7'). If we put L1 equal to a sum of 
terms of the type Ef Ei2 .,' Eitl E~s with some 
unknown coefficients! containing elefuents from the 
Cartan subalgebra, then (2. 7') is automatically 
satisfi-ed. We have found that if we put 

X Ei E IIp E P2 Ell! El} E V2Evl' 1 n .. .. • •• " v v q ••• }., J = ,~, ... m, "P "'P-l ,..1 q 1/""1 VI 
i=m+ 1.m+ 2, ..• m+n, (3.1) 

where 8 kl = H k - H, + 1 - k, 

then also (2.7) is fulfilled. Note that (3.1) is not 
the only solution of Eqs.(2:7) and (2.7') but it 
seems to be the simplest solution. By comparing 
(3.1) with (2. 27b') and (2. 27a") in Ref.l, one notices 
the following: 

(1) TheL,!,+l' s ,j= 1,2, ... m,arethelowering 
operators lor irreducible vector spaces of U(m) in 
an UIR of U(m + 1). 
(2) If the index shifts m + k ~ k and m ~ n + l, 
k = 1,2, ... ,n, are made in the operator L!n, the 
result is a raising operator for the subgroup U(n) 
of the group U(n + 1). 

We now prove that (3.1) indeed satisfies (2.7). 
Considerfirstthecommutators[E~,LJ]for k,l = I, 
2, ... , m and k < l. We take an arbitrary term in 
the sums over p and the Ilk in (3. 1). Because 
E f commutes with the algebra of U(n) , we conclude 
that [El,Lj]ls.m.> = OU 

[Ef,L j (1l1)] Is.m.> = 0, 
h . m were m JlI-} 2J 

L j (#-I1) = JIj + 1 0jv~! v > v -1>; ,". >v1 = j+1 v- q:ll q q 

x (n _l_)Ettl EVq .•. E"2 E~I #-11 ~ m + 1. 
1= 1 8

j
l) I Vq v,,1 VI J' - (3.2) 

We have dropped the elements from the algebra of Un. 
By Is.m.> we again denote an arbitrary semimaxi­
mal state. But L,(#-I1) is the lowering operator for 
the jth weight of a UIR of U(m) in a UIR of 
U(m + 1) (see Eq. (2. 27b') in Ref. 1]. Here the 
(m + l)th component of a basis vector in the de­
fining representation is d~noted by the symbol ILl 
instead of the number m + 1. It then follows from 
Ref. 1 [see Eq. (2.13'» that (3.2) is valid. 

The proof of (2.7) for k,l = 111 + 1, m + 2, ... , 
m + n,k < l,goes on similar lines. We take an 
arbitrary term in the sums over q and the 1) k in 

b).~ 
$" 4 l 1 

FIG 1. The operator L~ when m = 3. 

(3.1). After dropping factors from the algebra of 
U(m) (which commutes with Et), we see that 
[Ef, Lj], Is.m.> = 0 if 

k i 
[Ez,L (vq)]Is.m.>=O, (3.3) 

where 

IJ.i 1l,..1 > ... > IJ.tam+ 1 

(:6 1 )Ei EIJp .,. E iJ2 Ell I Vq:::: m. 
k4 8. _ 1 lip PP-l III V q ' 

'flk 

Using the commutation relations one can write 

£i(v
q

) =(ipy1 ~ Ei Ellp 
~ P:p';' iJp-t> ... >p 1= m+ 1 IIp IJP-l 

X X E~ .EIlI 1. 1 t:J" < 
• • • 11 v 11 - II C>ill' Vq == m. 

1 q.."l 0iIJk iJ=m+l (3.4) 

One can associate with the generators E~,A,B = 
m + I,m + 2, •. . ,m + n - I,m + n,v'i,a group 
U(n + 1). The group U(n) associated WIth the E~ 
with A and B different from v q is the canonical 
subgroup U(n). Comparing (3.4) with (2. 27a") in 
Ref. l,one sees that V(v ) is a raising operator 
for this U(n) subgroup. If then follows that (3.3) is 
fulfilled [see Eq. (2. 13 ft

} in Ref. 1]. We have now 
fully proven (2.7). 

There exists a nice illustration for LJ by means 
of simple diagrams. First draw a straight line 
with i - j + 1 dots labeled by numbers from j to 
i, decreasing from left to right. Choose then k dots 
(0:::: k ~ i - j - 1) between the dots i and j in every 
possible way and connect them to each other and to 
the dots i and j by curves. Associate then with 
every diagram a term in the operator Lj as fol­
lows: With each free dot v associate a factor 0i !) -

1 if v ~ m + 1 and a factor 0jll if v f: m. For each 
curve connecting two dots, say k and l, k > l, write 
a factor E f in the same order from the left to the 
right as in the diagram. As an example, let us find 
L~when m = 3. 

The diagram (a) in Fig. 1 does not contain any 
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free dots and the contribution from the curves is 
equal to E~EjE~, Dot 4 in diagram (b) is free 
and it gives a factor H5 - H4 - 2. The total con­
tribution to q from (b) is then (H5 - H4 - 2) 
E3 E~. After calculating in a similar way (c) and 
(d) one gets 

L5 - E5 E4 E3 + (iT - H - 2)E5 E3 2 - 4 3 2 ''5 4 3 2 

+ (~- H3 + l)E~E~ 
+ (H5 - H4 - 2)(H2 - H3 + 1)E~. 

We finally list all the lowering operators needed 
in the reduction U(4) J. U(2) x U(2) (the simplest 
case possessing nontrivial multiplicity). 

q=Ei, 

L~ = E~E~ + (HI - H2 + 1)E~, 
L~ = E3E~ + (H4 - H3 - 2)E~, 

L1 = E~E~E~ + (HI - H2 + 1)E~E~ 
+(H4-H3-2)E~E~ 

+ (H4 - H3 - 2)(H1 - ~ + 1)Ei· 

The general semimaximal basis vector for U(4) can 
be written as 

= (LVl2-k~(L~)ll - k~ 

X(Q)'4 - A4 (L~) k~-A3In>. 
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APPENDIX: THE COMMUTATOR [Lj,14'] 

We will prove here that 

[Lj,Lj'Jls.m.> = 0, j=1,2, ... m, 

i,i' = m + 1,m + 2, •.. ,m + n, (A1) 

where Is. m.> is any semimaximal state. Because 
of Eqs. (2. 7) and (2.7') the only matrix elements 
which could be different from zero are of the type 

<s:m.1 [Lj, L}'] Is. m.>', 
where 

(A2) 

Hv Is.m.> = hv I s.m.>, (A3) 

Hvls.m.>' = (h" + 25Vj - 5"i- 5vi,)ls.m.>'. 

We can assume that i' < i. Let us first calculate 
<s. m.1 Lj Lj' Is. m. >'. Using the explicit formula 
(3.1) and the fact that the lowering generators of 
U(n) x U(m) give zero when acting to the left, we 
get 

<s.m.ILJLJ'ls.m.>' 
i-I 

= n (hi - h + fJ. - i - 1) 
II = m+l I' 

m 
X n (h j - hv + v - j + 1) 

v=/+1 

X <so m.1 E; LJ' Is.m.>'. (A4) 

Using (3.1) once more and the fact that Ei com­
mutes with the generators contained in Lt, except 
with the elements from the Cartan subalgebra, we 
arrive at 

i-I 
<s.m.ILJiLJi'ls.m.>'= II (hi-h" + lJ.-i-1) 

11 = m+l ,.. 

m 
X U (h

J
, - hv + v - j + 1) 

V=J +1 

j'-1. 

X II (hi' - h" + fJ. - i" - 1) 
1'= m+l .. 

m 
X II (h. - h + v - j + 2) 

v=j+l J v 

x <so m.IEjEj'ls. m.>'. 

For the term <s.m.ILJ'Ljls.m.>' we get 

<s.m.ILj'Ljls.m.>' 

i'-1 
= IT (h. - h + jJ. - i' - 1) 

I'=m+l ' Ii • 

m 
)( U (hj - h + v - j + 1) 

,,=,+1 v 

x <s.m.IEj'LJ Is.m.>'. 

(A4') 

(A5) 

After replacing the Hkin Li by the correspond­
ing eigenvalues according to (A3), the lowering 
generators of U(n) x U(nq can be commuted to the 
left giving zero in the matrix element 
< 5 .m.1 E J'LJ Is.m.>' and we eventually get 

<s.m.IEj'Ljls.m.>' 
i-I 

= Il=rl+l (h.-h li + lJ.-i-1 + 5p ") 

m 
X n (h,' - hv + v - j + 2) 

v=,+1 

x <so m.IEj'Ells.m.>' 

1-1 
- IT (hi - h" + iJ. - i-I + 5 i') 

II = m + 1, p;ti'''' II 

m 
X II (hj - hv + v - j + 2) 

v=j +1 

x <s.m.IEJ'Ej Is.m.>' 

i-I n (h, - h + IJ. - i - 1) 
II =m+l' I' 

m 
X n (h, - h + v - j + 2) 

v=j+l 1 " 

x <s.m. I EjiEJls.m.>'. (A6) 

The matrix element of [Ej',Ej,Ej'] between the 
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states Is.m.> and Is.m.>' is nonzero, therefore 
the second term in (A6). Comparing now (A4') with 
(A5) and (A6) one notices that 
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It is shown that the construction of "democratic· subgroups of03N- 3 in the N-body problem is greatly 
facilitated by the ·proper" choice of relative vectors in the center of mass frame. The word ·proper­
is taken to mean that the set of (N - 1) relative vectors forms a basiS for reduced representations of 
the corresponding democracy subgroup of SN' The imposition of this requirement easily leads us to 
the reduction chains 06 :::J SU3 :::J S0f'tand 0 9 :::J S01 x SO~ x ro~ :::J S0f't in the three- and four-body 
problems, respectively, and to 03N-3 :::J SON-l X SOf in the N> 4 case. 

1. INTRODUCTION 

The democracy concept was first introduced by 
Dragtl in his work on the three-body problem so 
that in solving the problem, he would obtain a set 
of basiS states which treats all of the particles 
on an equal footing. Mathematically, the idea takes 
the form of a condition to be satisfied.by certain 
so-called "democratic" subalgebras of the S06 
Lie algebra. In this way, Dragt obtained the chain 
of subgroups2 06 ::> SU3 ::> S0:f°t • (We use the 
superscript notation "rot" to distinguish the phys­
ical rotation group from other S03 's.) The idea 
was later extended by Levy-Leblond3 who has 
shown that in the four-body problem, the chain 
giving the most highly symmetric basis functions 
is 0 9 ::> so~ x SO~ x SO~ ::> SO,f>t, while for N> 4, 
one has the 03N-3 ::> SON-1 X SO!ot ::> S0:f°t struc­
ture. In both of these works, primary emphasis is 
given to the structure of the democratic Lie alge­
bras involved, while the role of the particular 
realization of the generators of these algebras in 
terms of the laboratory position vectors remains 
unclear. 

The purpose of this paper is to show that the ex­
p!fcit choice of relative vectors should be dictated 
by the specific kind of "democracy" which is be­
ing conSidered, and is not a question to be answer­
ed by ansatz. Indeed, we show that reltative vec­
tors carrying reduced representations of an in­
variant subgroup GN c SN (i.e., GN is the democ­
racy subgroup of the permutation group SN) are 
the "natural" variables for GN democracy. 

2. RELATIVE COORDINATES AND DEMOCRACY 

Let the vectors {ret; 01 = 1, 2, .•. ,N} deSignate the 
laboratory position vectors of a system of N identi­
cal particles. Taken together, the vectors consti-

tute a basis for a real representation of the per­
mutation group of particle indices, SN' This repre­
sentation is known3 to be reducible into the irre­
ducible components {N} EEl {lv-I, l}by an orthogonal 
transformation to the center-of-mass frame 

N 

qet = 2:; a et8 r 8, 
8=1 

O! = 1,2, ... ,N, 

where the {a et8 } are elements of an orthogonal 
matrix A, with 

aN8 = 1V1/2 , {3 = 1,2, ... ,N. 

(1) 

(2) 

Equatiort (2) guarantees that the center-of-mass 
pOSition vector is properly decoupled. The re­
maining (N-I) independent relative vectors {q et: 
01 = 1,2, ... , N-I} are a basis for the {N-I, Ij 
representation of SN' The skew symmetric Hermi­
tian operators 

01, {3 = 1,2, ... , N - 1, j,k=1,2,3 (3) 

form a realization of the S03N-3 generator algebra. 
(Latin indices denote the usual 3-space compo­
nents of the relative vectors.) 

The problem of constructing a complete set of 
commuting observables for the free N -body prob­
lem is equivalent to that of the construction of an 
appropriate chain of nested democratic subgroups 
of 03N-3' with corresponding Casimir-operators. 
Let GN = {gr : T = 1,2, ... , h} be an invariant 
subgroup of ~ = {sp: p = 1,2, ... . N!}. Then the 
set of infinitesimal operators {e (r/} are genera­
tors of a "GN-democratic" subgroup of 03N-3' 
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states Is.m.> and Is.m.>' is nonzero, therefore 
the second term in (A6). Comparing now (A4') with 
(A5) and (A6) one notices that 
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form a realization of the S03N-3 generator algebra. 
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The problem of constructing a complete set of 
commuting observables for the free N -body prob­
lem is equivalent to that of the construction of an 
appropriate chain of nested democratic subgroups 
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denoted L;G ,provided that the following four 
equations hsrid: 

se(o)s-l E {e(o)} 1 2 N' 
P 'J P 'J' P = , , ... , . , 

g e(q)g-l = e(q) T 1 2 h 
T ,j T 11' =., ... , , 

(4) 

(5) 

(6) 

Equation (4) states that the new generator algebra 
must be an invariant subspace with respect to 
SN; Eq. (5) requires that each element of the GN -

democratic algebra must itself be a basis for the 
identity representation of GN ; Eq. (6) is the sub­
group condition specifying the imbedding of the 
new algebra in the parent S03N_3 Lie algebra. 
The coefficients 1):: : are the structure constants 
of the subgroup L;GN' The utility of democracy 
stems from Eq. (5). The observables of the N­
particle kinematic states will be Casimir opera­
tors formed from the eW. Obviously then, Eq. (5) 
guarantees that each sucn Casimir operator will 
commute with the entire group GN , implying that 
basis functions diagonalizing such observables 
will be highly symmetric. 

We must now consider a fixed GN C S N and deter­
mine: the appropriate c.m. transformation matrix 
A(GN ), the matrix A(GN ) giving the embedding in 
S03N_3' and the structure constants 1): : : of the 
L;G group. Clearly the best choice of relative 
vectors -{qct} will render the matrix A Simplest. 

Let r{r-1 .1} be the (N-1) x (N-1) orthogonal matrix 
representative of operator gr E GN in the {N-1, 1} 
m of SN carried by a set of relative vectors {qct: 
a = 1,2, ... , N-1}. Then Eqs. (5) and (6) and defi­
nition (3) give the matrix relation 

r {N-l.l} A = A r{N-l.l} = 1 2 h 
T T' T " ••• ,' (8) 

as a necessary condition for GN democracy. It 
now follows directly from Schur's Lemma that 
whenever the representation (gT ~ rT{N-l.ll) of 
GN is in reduced form, the matrix A will be diag­
onal. Hence we arrive at the definition: "Proper" 
N-body relative coordinates for GN democracy are 
those carrying reduced representations of GN. 

It is now ~.bVi~US that for S Ni which is irreducible 
on the {q . a - 1,2, ... ,N-11,one has 

N-l 
e ij = ~ A'tr,i<j=1,2,3, (9) 

a=l 

which are the generators of so~t. For N > 3 it 
is also the case that AN' the alternating group, is 
irreducible4 and therefore 

ESN = EAN = so;'t. (10) 

HenceSN democracy ingeneral. andAN democracy 
jor N> 3, supply no conditions restricting the 
matrix A and give only E = so;'t. 

The representation (gT~ rT{N-l. I}) of GN may be 
reducible (and reduced) in the {qa} basis. In this 
case, A will have the form 

,~ [:~'Il ... ,(.~, (11) 

where the matrices Ik are unit matrices of dimen­
sion equal to the dimension of the corresponding 
GN m, and the A(o) are numbers determined by the 
remaining democracy conditions (4) and (7). We 
now see that the sum on a and {3 of Eq. (6) is to be 
taken only over the indices appearing in the ath 
submatrix of Eq. (11). The number of irreducible 
components of GN carried by the relative vectors 
is ~ust the number of independent operators 
{e ,'~] f : a = 1, 2, .•. ,j} oflike lower indices i' and j' • 
Hence we have the result that if j is the number of 
ms of GN in the representation(gT -+ rjN-l.1», 
then 9j is the maximum number of operators form­
ing the E GN generator algebra. 

It can happen that the orthogonal transformation 
A cannot reduce both SN and GN• This is the case 
when an m of GN contained in the representation 
(gT -+ rjN-l.1}) consists of complex representa­
tion matrices. The representation may however 
always be reduced in terms of a basis of complex 
vectors {za: a = 1,2, ... ,N-1}, defined by the 
matrix equation 

[

ql ] q2 
= U , 

~-l <N-1)Xl 

(12) 

where U is the (N-1) x (N-1) unitary matrix re­
ducing the matrices :qN-l.l} 

UrJ",.l} U.1 ~ rl". 0] 
lo . r~j) , 

T = 1,2, ... ,h. (13) 

It now follows that in the {za} system 

A' = mer-l = [A (1)'1
1
• 0 J 

o . A<i>flj (14) 

Hence, it is always possible to introduce coordin­
ates (real or complex) appropriate for GN democ­
racy. 

3. THE CASES OF 3,4 AND N> 4 PARTICLES 

A. Three-Body Problem 

83 has the sequence of invariant subgroups S3 ::> A3 
::> I. Any of the six elelllents of S3 may be written 



                                                                                                                                    

2384 H A R 0 L D W. GAL BRA I T H 

as products of the permutations 

( 123) (123) (12) = 132' (123) == ~31 . 

The permutation (123) is even and generates the 
cyclic group of order 3,A3: 

As = {(123), (123)2, (123)3 == I}. 

It is one of our-results that 'lJs = SO~°t, so we 
turn immediately to A 3 • The iireducible repre­
sentations of A3 are all one dimensional and are 
realized as third roots of unity. The A3 -demo­
cratic substructure of 06 is therefore best re-' 
vealed in terms of a set of coordinates {ql, q2} 
obeying 

z ie- i9 _ e- i9 0 COM + sioo 
.f6 .f2 

z* _ 1 
- ie i9 _ei9 0 sina cosa 

-..[2 .[6-,f[ 

3 1 
JaReltl 0 0 1 

f3 

where we have made explicit use of the fact that 
the last row of A determines two of the three 
parameters of a 3 X 3 orthogonal matrix. The re­
maining degree of freedom is expressed as an 
angle a. The unitary matrix of Eq. (18) 

_ -..!... ~e -ia -e -i~ 
U - v2 t-iei9 -ew J (19) 

is the most general, such transformation giving z* 
as the second independent complex vector. 

Combining Eq. (18) with the condition of A3 irre­
ducibility, we have from Eq. (16), 

1 
a == 21T, (} = arbitrary. (20) 

This value for a is. just the one required to make 
A coincide with the transformation to the so-called 
"Jacobi" coordinate system. The factor e- i9 

appears as an over-all phase for z having no physi­
cal significance. Jacobi coordinates are given by 

(123)qa = e2Trni/3 qa, a = 1,2. (15) 

It follows that n = 0 gives qa ex Rem' implying ~at 
the {qa} are necessarily complex. It is also not 
hard to see that we must search for only one com­
plex 3-vector z such that 

(123)z == e2 '1fi/3 z, (16) 

then for the other independent vector we have z*, 
satisfying 

(123)z* = e-21!i/3z*. (17) 

The set {z, z*,Rem} are related to the lab vectors 
by 

COM - sina - ml/2 cosa r' 
.f6 '/2 

sioo + cosa 
.f6 ,f[ 

(2)1/2 . 
- 3 sma r2 (18) 

1 1 

13 !3 r3 

The free three-particle Hamiltonian is proportion­
al to llJ.e 6-Laplacian 

(25) 

Obviously the full symmetry group of this operator 
is U3 • The coordinates of Eqs. (23) and (24) were 
first used by Simonov5 and give SU3 representa­
tions automatically. 

We now demonstrate explicitly how the infinitesi­
mal generators of the Dragt- U3 may be obtained. 
Equation (6), which is the defining relation of ~, is, 
in matrix form, 

e(a) = trace (A (0). A .. ) 
'J 'J ' 

(26) 

where Eq. (26) is expressed in the coordinate sys­
tem of the qa. However, the trace is invariant under 
similarity transformations, and we have corres­
pondingly in the z« system 

e(~) = tr(>.(o}/. N .. ) 
'J IJ ' 

(27) 

1 
ql = ..J2{r1 - r2), (

21) where in Eq. (27) A' is diagonal"and [A~j] satisfies 
the relation 

By setting (} = i 1T, we get 

and 

z = .!..(ql + iq2) 
.f2 

(22) 

(23) 

(24) 

A~j == U Ajj U-l. (28) 

We first construct (?'(?1 in terms of the A~f to re­
cover the Dragt-U3 explicitly, and then use Eq. (27) 
to express (?,\~) in terms of the z of Eq. (23). 

Using Eq. (14) with the U of Eq. (19), we have 

>. =! nxW + A(2» i(A(1) - A(2» 1 
L-i(AW- X(2» x(1) + X(2~' (29) 
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where we have set 

Equation (26) then gives 

e .. = ~ [x(1) + X(2»)(AU + A:?7) 
D D D 

- i(X(1) - X(2» (A}l - AV)]. 

Defining the operators 

£ij '= A~l + A~l, i < j = 1,2,3 

N ij ,= AV - A~l, i,j = 1,2,3 

we get 

[£ij' £iljl] 

(30) 

(31) 

(32) 

(33) 

= i(oW£jjl + 0jjl £iit - 0jil£ijl - 0ijl £;1)' (34) 

[£ij' lviljl ] 

= i(ow Njjl - 0jilNijl - ojjlNw + O;jl ~i/)' (35) 

[Nij , N;lj/] 

::;: i(Oiil£jjl + Ojjl£W + 0ijl'£jil + 0jil£ij,)' (36) 

for all indices i, j of Eqs.(32) and (33). Of course 
the £ij are the generators for the rotation group 
SOf't. The algebraic requirement Eq. (7) gives 

X(l)::;: i, X(2)::;: 0, (37) 
and 

e ij = H i£ij + Nij ], i, j = 1,2,3, (38) 

the Dragt result. 

To obtain the generators in terms of z we use 
Eqs.(27),(30), and (19) along with the requirement 
(28). One easily finds 

e .. =z.~ -z.*~ 
'} , 8z. J 8z ~ 

} . (39) 

as the Weyl generators of U3 • 

B. Four-Body Problem 

Here we are dealing with the chain of invariant 
subgroups S4 :J A4 :J V 4 :J 1. As previously noted, 
~s = ~A = so§ot. The first possibility in the 
fout-bodY ~ase is then V4 • It is an Abelian sub­
group of A4 generated by the operations 

(
1 234) (12) (34) = , 
2 1 43 

(
1 234) (13) (24) = • 
341 2 

We also have 

[(12) (34)]2 ::;: [(13) (24)]2 = 1. 

Therefore the representation of A3 carried by the 
{q1, q2, q3} will be reduced provided that 

(12) (34) qIX = ± q IX (40) 
and 

(13) (24) qa= ± qa, a = 1,2,3, (41) 

are satisfied. It is easy to see that the two plus 
signs for any single qa give just R"m' Hence, we 
consider here the 3 IR's of V ~, corresponding to the 
choices (±), (~), (=) in Eqs. ~40) and (41). Further­
more any given choice fixes all but one element 
in row a of the A matrix, the remaining element 
being determined by the orthogonality of that 
matrix. Therefore independence of the {qa.} re­
quires that each vector transform according to a 
different m. We choose 

q1~ (±), 

q2 ~ ('f), 

q3 ~ (=), 

and easily get 

q1 ::;: ± H(r1 + r2) -(r3 + r4)], 

q2 = ± ~ [(r1 + r3) _ (r2 + r 4)], 

q3 = ± H(r1 + r4) - (r2 + r3)]. 

(c1) 

(c2) 

(c3) 

(42) 

(43) 

(44) 

All other choices of (c1), (c2), and (c3) give per­
mutations among Eqs. (42), (43), and (44). Now the 
X-matrix of Eq. (11) has the form 

X =~(l) A(~) ~l 
~ 0 X(:~ (45) 

and from Eq. (26) we have 

e(~)::;: X(a.) A<'!~, 
'} .J 

a = 1,2,3, 

Equation (4) requires that 

A(1) = X(2) = X(3) 

i< j = 1,2,3. (46) 

(47) 

and that the l:'i -democratic algebra be the direct 
sum {eW EI3 eW EI3 e (ll}. These operators are the 
generators of the SO§ x SO~ x SO~ group of L~vy­
Leblond. 

C. (N) 4)-Body Problem 

In this case, where we have only SN :J AN :J I avail­
able, we must consider only democracy with re­
spect to the identity operator for the constructiun 
of subgroups missing from 0 311- 3 :J ••• :J soft. 
This is a serious failure for democracy since Eq. 
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(5) becomes an empty statement. Combining condi­
tions (4), (6), and (7), we arrive at only the S03N-3 
and S0f't generator algebras, indicating that the 
expansion of Eq. (6) should now also involve a 
restriction on the component indices i and j. We 
then obtain the I-democratic algebra of generators 

3 

LaB = ~ ",:,-:, < tl 1 2 N 1 LJ ."i. a jJ = , , ... , - . 
i~l (48) 

The set {LaB} generates a group SO -1' The ele­
ments of this group are then proper~ rotations in 
a Cartesian space whose axes are labeled by the 
indices {a} of the relative vectors {qa; a = 1,2, 
... ,N-l}. 
Since we have 

[LaB of .. ] = 0 
, tJ ' (49) 

~N-1 
where £ij = LJa =l Ait are generators of so~t, 
it follows that the maximal I-democratic sub­
algebra of 03N-3 is the direct sum {LaB El7 £ij}' 
generating the direct product group SON_l x sOft. 
Hence we have for N> 4 the chain 03N-3 :=;i SON-1 
x sort :=;i Sort•6 

4. CONCLUSION 

We have given a simple criterion for the construc­
tion of "natural" relative vectors for the N-body 
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The existence of solutions for the Lippmann-Schwinger (LS) equation for the Coulomb problem is 
studied by investigating whether its kernel belongs to the Hilbert-Schmidt (HS) class. The kernel for 
each partial wave is shown to belong to the HS class for complex energies whereas for real energies it 
becomes unbounded, Unlike the case of short range potentials, e.g., the Yukawa potential, even the suit­
ably symmetrized kernel does not belong to the HS class for real, positive energies. These formal pro­
perties strongly indicate that a unique limit for the partial wave off-sheU Coulomb T matrix as it appro­
aches the unitarity axis may not exist. It is found that exploiting the 0(4) symmetry of the Coulomb 
Hamiltonian (H) in the subspace of the negative spectrum of H and the 0(3, 1) symmetry in the subspace 
of the positive spectrum of H, one can construct the off-sheU Coulomb T matrix in terms of the eigen­
solutions (Sturmians) of the kernel of the Lippmann-Schwinger equation. These foUow from the work of 
Perelemov and Popov, and Schwinger on the Coulomb Green's function. On the ba.sis of the generating 
functions for the Sturmians, various integral, contour integral, and discrete sum representations for the 
complete off-shell Coulomb T matrix are derived. In tllis way, we explicitly demonstrate that indeed the 
T matrix has a nonunique limit as one approaches the unitarity axis. It is also shown that when the 
asymptotic Coulomb distortion is taken into account, .the physical Coulomb amplitude can be deduced 
from this <;:oulomb T matrix. These results incidentally rectify some errors in the earlier works. Sinct' 
for both negative and positive energies the Coulomb T matrix is obtained as the explicit solution of the 
LS equation, the validity of the generalized unitarity-the Low equation-in a certain sense is guaranteed. 
This is proved in a general way, by showing that a generalized Low equation follpws when the energy is 
complex only from the LS equations and some defining relations; in the Coulomb case, the generalized 
unitarity relationship for real energies must be interpreted as the limit when the imaginary part be­
comes zero. 

1. INTRODUCTION 

A detailed knowledge of the complete off- shell 
two-body T matrix for each pair of interacting 
particles is of crucial importance in the Faddeev 
formulation of the three-particle scattering.l,2 
The two-body T operator obeys the well-known 
Lippmann-Schwinger (LS) equation. H the kernel 
K of the LS equation is compact, then the T matrix 
exists and can be shown to be unique. A kernel is 
compact if it belongs to the Hilbert-Schmidt (L2) 
class (but a compact operator need not belong to 
HS class). For complex energies it can be shown 
that K belongs to L2 class if the interaction H' 
does. 3 ,4 Furthermore, an existence theorem 
specifying the class of spherically symmetric 
potentials for which the kernel (K) I of the lth par­
tial wave LS equation is compact when energy is 
held complex is proved recently by the present 
authors.4 It was shown that in the case of Coulomb 
potential, (K)l belongs to the L2 class if the 
energy is held complex even though Tr(Kt K) is 
infinite. However, it was found that for each par­
tial wave, Tr(KtK)z diverges when the energy was 
made real and positive. This raises some ques­
tions about the validity of the full LS equation for 
the two-particle Coulomb T matrix, and the exis­
tence of the off- shell partial wave Coulomb T 
matrix for real positive energies. Such doubts 
were expressed by WestS and Gerjuoy6 based on 
the familiar problems of asymptotic distortion of 
the Coulomb solutions. 

For negative energies, Schwinger7 constructed the 
complete Coulomb Green's function in the momen­
tum space by explicitly solving the LS equation 
after expressing it in a suitable four-dimensional 
space (to be explained later). Nutt8 constructed 
the corresponding two-particle off- shell Coulomb 
T matrix and attempted to continue it analytically 
to positive energies. He tried to verify the off­
shell unitarity relation for his T matrix and ob-

tained zero for the discontinuity across the unit­
arity cut along the positive real axis in the com­
plex energy plane. McDowell and Richards9 and 
Nuttal and Stagatl0 have found errors in Nutt's 
calculations. They found the physically anticipated 
discontinuity, but with an energy dependent factor. 
In this paper we will describe the correct analytic 
continuation for the Coulomb T matrix for positive 
energies and resolve all the troubles faced hither­
to concerning the Coulomb T matrix. 

The special nature of the Coulomb problem has 
two facets to it: the HS nature of the LS kernel 
and its symmetrized form, on the one hand, and 
the hidden symmetry of the Coulomb Hamilton, 
on the other. These two apparently independent 
features show that the Coulomb potential stands 
as a unique case by itself. 

The hidden symmetry of the Coulomb Hamiltonian 
was first exemplified by Fock.ll The Coulomb 
Hamiltonian, besides being invariant under the 
three-dimensional spatial rotations, is also in­
variant under four-dimensional rotation in the 
Euclidean space in the subspace of negative 
energies and in the Minkowski space in the sub­
space of positive energies. Schwinger's7 deriva­
tion uses the 0(4} symmetry explicitly. Hostler's 
work12 on the Coulomb Green's function in the 
configuration space also stresses the importance 
of the hidden symmetry of the Coulomb Hamilton­
ian. The full dynamical symmetry group of the 
Coulomb problem is the homogeneous Lorentz 
group. An excellent exposition of the properties 
of the representations of the Lorentz groups may 
be found in a review article by Bander and 
Itzykson13 (BI). These have been exploited by 
Perelomov and Popov14 (PP) who construct the 
Green's function for the Coulomb problem, thus 
extending the work of Schwinger. By combining 
the works of BI and PP we have derived here the 
corresponding T matrix. We express the T 

2387 
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matrix in two more forms: one, in terms of the 
continuous spectrum eigensolutions of the LS 
kernel and, two, in terms of a one-parameter 
definite integral in an infinite domain. The latter 
follows directly from the work of PP. The last 
mentioned integral can be further evaluated by 
the method of contour integration and the results 
of these correspond to the work of Norcliffe 
et aZ. 15,16 and Roberts, 17, 18 who arrived at.it 
from an elegant analysis of the problem using 
classical patn integral technique. Finally, a con­
tour integral representation of the T matrix is 
obtained by us and this succintly displays the 
troubles with the analytic continuation procedure 
of Nutt. From the infinite integral representa­
tion, we show that, on evaluating the T matrix on 
the mass shell, the familiar Coulomb amplitude 
can be deduced. 

Another aspect is the unitarity of the Coulomb T 
matrix. In two different ways, we demonstrate 
that the generalized unitarity for complex 
energies-the celebrated Low equa,tion-is auto­
matically satisfied by any T operator obeying the 
LS equation. However, in order to obtain the well­
known on-shell unitarity relation, a proof for the 
existence of a unique on-shell limit of the off­
shell T matrix when energy is made real positive 
is needed. 19 We discuss this question here with 
special reference to the Coulomb problem. 
Ford20 analyzed in detail the cutoff Coulomb 
problem and found that the final result depended 
critically on the way one considered the mathe­
maticallimiting procedure. Faddeev21 considers 
the Coulomb potential as a limit of the Yukawa 
potential, but with a difference, that one should 
renormalize the wavefunction associated with the 
Yukawa potential before taking the appropriate 
limit. It is known that a cutoff always destroys 
the original analytic properties of the solutions 3 

and, for some recent remarks concerning such 
effects, one may refer to the work of Nelson 
et aZ. 22 In view of our results in the present 
paper, such an ambivalent approach to the Cou­
lomb problem is found unnecessary. The real 
reason is, of course, the symmetry of the problem 
which is altered when the Coulomb potential is 
screened Or cut off and the interesting aspects of 
the problem are lost. Moreover, the LS kernel for 
the cutoff or Yukawa potential belongs to the HS 
class while in the limit of the Coulomb potential 
it does not. 

The plan of the paper i$ as follows. In Sec. 2 we 
investigate if the kernel of the LS equation for the 
C;oulomb problem belongs to the HS class in order 
to determine the existence and uniqueness of its 
solutions. In Sec. 3, the symmetry of the Coulomb 
Hamiltonian is first briefly reviewed, and various 
expressions for the complete off-shell Coulomb 
T matrix valid in different regions of the four­
dimensional hyperspace are obtained. Section 4 
deals with the question of unitarity. The last 
section summarizes the results. In a separate 
paper, the implication of these results for the 

Faddeev approach to three-particle Coulomb pro­
blems will be discussed. 

2. THE TWO PARTICLE T MATRIX-FORMAL 
RESULTS 

In the time-independent scattering theory, the 
resolvent operator G ± is given by 

G*=(E-H±iO)-1 (2.1) 

and satisfies the Lippmann-Schwinger (LS) 
equation 

G ± = GO + GOH'G ± = Go + GdTGo. (2.2) 

Here H is the Hamiltonian operator given by the 
sum of "kinetic energy" operator Ho and the 
potential energy operator H'; E is the center of 
mass energy and 

(2.3) 

The T operator defined by GoT = G±H' obeys the 
LS equation 

T = H' + !J'G'tT = H' + H'G+H'. (2.4) 

For two-body scattering, the transition amplitude 
is given by 

(2.5) 

where >lto(E, {3) and >lto(E, a) are the eigenstates of 
Ho obeying the final and initial state scattering 
boundary conditions. 

Now we will briefly discuss the existence of solu­
tions for the LS equation (2.4) by examining if the 
kernel of the LS equation belongs to the HS class. 
n should be stressed that this is only a necessary 
condition for the existence of the solution. The 
kernel K is given by 

K=H'G't (2.6) 

and it belongs to the HS class if the trace over 
the operator product J(t K is convergent. For 
spherically symmetric potentials, we may write 

co 

Tr(KtK) = L;(2l + l)tr(KtK)I' 
1=0 

(2.7) 

We have the result4 for the Coulomb potential 
zlz 2e2 / r : 

zIz~e4m r. 2 (E )] 
tr(KtK)z = (2l + 1) 161 Ll + -;tan-1 ill . (2.8) 

This evaluation shows that as long as 15 ¢ 0, how­
ever small, Tr(KtK), exists even for E > 0 but 
the sum (2.7) diverges. However, in order to 
prove the uniqueness and existence of the solu­
tion of the LS equation, it is sufficient if one 
shows that some finite power of the kernel, say 
Km, belongs to the HS class. This can be studied 
in detail for Coulomb-like potentials Vcx(r) = g/rcx 
and one finds that the mth iterate of the kernel K 
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belongs to L2 class if a > 1 + 1/(2m) and 1 < 
a <~. 

In the analysis described above, we had restricted 
to 0 > 0 whenever E was positive. However, this 
does not shed light on the existence of solutions 
for real positive energies with 15 = 0, which is the 
case of physical interest. This point was investi­
gated in general elsewhere by us,19 and we sum­
marize the results. 

Unique solutions exist for the following two 
integral equations: 

T(E + i15) = H' + H'Gt;T(E + i15) (2.9) 
and 
TeE + i15) = 11'1/2 + H'1/2[H'1/2Gt;H'1/2]t(E + i15) 

with (2.10) 

T(E + i15) = H' 1/2 t(E + i1», (2.11) 

if the respective kernels of (2.9), (2. 10) belong to 
the HS class. Furthermore, TeE + i15) has a unique 
limit as 0 ~ 0 am this provides the. analytic con­
tinuation for T(E + i15) on to the real line with 
15 = O. The kernel 

(2. 12) 

was studied in detail for spherically symmetric 
potentials, and it is found that tr(KiK)z is finite for 
a certain class of spherically symmetric poten­
tials. It was found that Km belongs to L2 for Va(r) 
but with 1 < a < 2, if 

a> 1 + l/m. (2. 13) 

Thus the analyses of K and K show that for the 
Coulomb potential, both Km and Km belong to L2 
class only if m ~ \Xl implying iilfinite number of 
iterations. In view of the presence of every power 
of (z1z2e2) in the asymptotic Coulomb distorted 
state, this result is not surprising. Therefore, the 
on- shell limit of the Coulomb amplitude has to be 
defined necessarily with respect to the Coulomb 
distorted asymptotic states. Interestingly enough, 
Green am Lanford23 have established the exis­
tence of M~ller operators and hence the S matrix 
for the same class of potentials defined above, 
showing thatthe time-independent and time-depen­
dent formations of scattering theory are equivalent 
only for such a class of potentials. 

3. SYMMETRY OF THE COULOMB PROBLEM 
AND THE CONSTRUCTION OF THE T 
MATRIX 

Fockll showed that the Hamiltonian of the hydro­
gen atom, besides being invariant under the three­
dimensional rotation group 0(3), also possesses a 
hidden symmetry of a larger group. For the sub­
space where E < 0, this is the four-dimensional 
rotation group 0(4). For the subspace E > 0, it 
has the symmetry of the homogeneous Lorentz 
group 0(1,3). The "complete" dynamical sym­
metry group of the hydrogen atom is the homo-

geneous Lorentz group. The irreducible repre­
sentation of the symmetry groups of the hydrogen 
atoms are obtained from the eigensolutions of the 
corresponding LS kernel, the so-called Sturmian 
solutions used in atomic phYSics. 

These Sturm ian solutions can be constructed by 
solving the eigenvalue problem 

Z1z2e2 J 1 1 
\) - --- d 3 ' 'It ' (P) - 27T2 P Ip- p'12 E- E, + i15 (P). 

"P (3. 1) 
Following PP, we find that for E < 0, the three­
dimensional momentum space can be visualized 
as the stereographic projection of the four­
dimensional hypersphere (E < 0) and hyperboloid 
of two sheets (E > 0) defined by the coordinates 

;i = 2PoPJ(p2 ± p~), i = 1,2,3, (3.2) 

~o == (p~ 'f p2)/(p2 ± p~) (3.3) 
with 

~~ ± I~ 12 = 1, Po = (2m IE 1)1/2. (3.4) 

± here corresponds to E ~ 0, respectively. 

In terms of the; variables, Eq. (3.1) becomes 

1/ d3 ;' 'It(;') 'It(;) ± - 1. - - 0 
27T2 s* ;0' 1;_;'12~ 

with 

I

P2 ±P~ 1
3 

d
3

; 
d

3
p = 2po 1;' 

(3.5) 

(3.6) 

(; _ ;')2 = 2[1- (;;')] = ± 4P~ Ip- p' 12 
(p2 ± p~)(p'2 ± p~) , 

(3.7) 
'Ita') = const (p2 ± p~)'It{p). (3.8) 

The Coulomb parameter is given by 1/ = Z 1 z2e2m/ 
Po' S+ denotes the three-dimensional surface of 
unit hypersphere for E < 0 and S_ denotes the two­
sheeted surface of the unit hyperboloid with upper 
sheet given by 1 <;;; ;0 < + \Xl and the lower sheet 
by - 1 ~ ;0 > - \Xl, for E > O. The ± signs corres­
pond to E < 0 and E> 0, respectively. The nega­
tive energy solutions are given by the four­
dimensional spherical harmonics Y,.Zm (0: 

Y"lmW = y"lm(a, e, cp) = nnz(a)Yzm (e, CP), 

nnl (a) = [i7Tn 2(n 2 - 1) ••• (n 2 - [2)]-1/2 

with 

x (siDa)l/_d d ·)z cosn!l, 
\; cosa 

;0 = cosa, h = sina sine coscp, 

(3.9) 

;2 = sina sine sincp, ;3 = sina cose. 

Y lm(e, cp) is the spherical harmonic. The solutions 
corresponding to E > 0 can be obtained by making 
the replacement 

a ~ ia, n ~ ~ip, 0 <;;; p < \Xl 
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with eosa ~ ± cosha, sina ~ sinha. The ± sign 
here refers, respectively, to the upper and lower 
half of the hyperbola. The three-dimensional 
spherical harmonics form a complete orthonormal 
set: 

fd3~ ( 1";; Ynlm(~)Y,l'l1m' ~) = 0,,,., 0ll'6mm" 

"" n-1 I 

L; L; L; YnlmWY,.~(~') = OP)(~ - ~'), 
n=ll=O m=-l .. 

The correspond~ orthogonality conditions for the 
continuum eigensolutions are obtained by replac­
ing S+ by S_, n by p, and the Kronecker symbol is 
changed by an appropriate delta fUnction. The 
completeness condition is now similarly changed. 

The set of functions ~lm (a, e, cp) with fixed p 
forms a canonical basis for the infinite-dimen­
sional unitary irreducible representation D(O, p) 
of the homogeneous Lorentz group. Thus with a 
given E, the Sturm ian functions form a basis for 
irreducible representations of the homogeneous 
Lorentz group. 

The case with E = 0 is discussed in detail in Refs. 
13, 14. It suffices for our purposes to note that in 
this case the hidden symmetry of the Hamiltonian 
is the nonrelativistic Galilean group. For the 
attractive case, one has square integrable solu­
tions while for the repulsive case, there are only 
unbounded solutions. 

The equation for the Green's function written in 
momentum space is 

(E -C: ± i6)G±(P, p', E) 

z z e2 G±(p" p' E) 
- _1_2_f ' , d3p" = o (3)(P _ p') . 
. 21T2 Ip-p"12 (3.10) 

± io here specifies the boundary condition in the 
usual way. By using G+ = Get + GtTGt, it is 
found that the corresponding T matrix is 

T(p,p', E) = [E + iO - p2/(2m)][G+(p,p', E) 

- Gt(p,p',E)][E + iO - p'2/(2m)] (3.11) 

The complete expression for G±(p,p', E) has been 
derived by pp14 as an explicit solution of (3.10) 
using the wavefunctions just summarized. From 
this, the expressions for T can be derived using 
(3. 11). We thus obtain the following results. 

(i) Eigenfunction expansion: 

E<O: 

"" 1 {(4P3)1/2 Y m } 
T(p, p', E) = 1'/ E1 E n + 1'/ mO (p~l: p2) 

x {(4Pg)1/2 Y";;" (~')} (3.12) 
m (p~ + p'2) 

For the repulsive case, {Y,.Zm(O} are not solutions 

of the corresponding eigenvalue problem and 
hence an expansion of the form (3. 12) is not mean­
ingful in the same sense as in the attractive case 
(See Note added in proof in Ref. 24). 

E>O: 

T(p,p', E) = - 71 fo"" dp[F1±(P) + 271F:{(P)] 

xL;{(4pa)1/2 YplmW}{(4pa)1/2 YehnW } 
1m m (p2 - p~) m (p'2 _ p~) 

(3.13) 

- 1'/pa f"" d . (Px/2) 
4712m(p~ _ p2)(p~ _ p'2) sinhx_ -"" pp sm 

x [Ff'(P) + 21'/Fi(P)] (3.14) 

with 

{ 
- 2/p coth(1Tp/2) 

Ff(P) = + 2/p[sinh(1Tp/2)]-1' (3.15) 

( -1 [up/2 - 71 coth(1TP/2)] 
, p p2/4 - 1'/2 ± io 

) 1'/ 1 
( P sinh(1Tp/2)[p2/4 - 1'/2 ± io] 

(3.16) 

and 
u = + 1 if ~o > 0, ~o > 0, 

u = - 1 if ~(. < 0, ~o < O. 
(3.17) 

From the definitions (3.6)-(3.9), the functions 
specified in { ... } in the above are seen to be the 
Sturmian functions. 

(li) Infinite integral representations: 

E <0: 

, __ 1'/.:....P~o __ _ 
T(P, p , E) = 2 2 / ' /2 m1T p- p 

x (1 _ 4712 1 "" sinh[(1T - x+)k Jdk) 
€ < sin X + 0 sinh1Tk(k2 + 712 ) 

(3. 18) 
with 
cosX+ = (~~,), 

€ < = (p2 + p~)(p'2 + p~)/[p~ Ip _ p' /2]. 

E>O: 

71 Po 1 
T(p,p', E) =-2 2 / '/2 m1T p- p 

41'/ L"" (uk - 71 coth1Tk) sink X -) 

E;. sinhx- ° (k2 - 71 2 ± iO) 
(3.19) with 

coshx_ = (~~,), ~o~o > 0, 
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T(p I E) _ T/Po 
, p , - 2mlT2 1p _ p' 12 

( 
4T/2 (00 sink x- ) 

X 1 - J, dk ----'-'----
€> sinhX_ 0 sinhlTk(k2 - T/2 ± ill) 

(3. 20) 

with coshX_ =- (H'), ~o~o < o. 

In all the above, (~~/) means the scalar product 
defined in conformity with the metric stated 
earlier for the cases E ~ O. Alternatively, for 
later purposes, one could rewrite the integrals 
here in more convenient forms: 

0() sinh(lT - x+)k dk 

fo sinhlTk· k 2 + T/2 

1 00 sinh(lT - X +) dk 
= - 2iT/ Leo sinhlTk k + iT/ ' (3. 21) 

(00 F(k) sinkX_ 1 Joo eikx-

Jo k2 _ T/2 ± ill dk = 2i _00 F(k) k2 _ T/2 ± i6 dk, 

(3.22) 

where F(k) can be identified from comparison 
with the integrals in (3. 19) and (3.20) and is odd 
in k. The signs are here chosen so that when these 
integrals are evaluated by contour integr~tion, the 
closing of the countour is in the upper half k plane. 
The above results follow directly from the work of 
PP.14 

(iii) Contour integral representations: From the 
generating functions given by BI,13 we can derive 
new contour integral representations for the T 
matrix. We will here give a derivation of the 
generating functions for positive energy regions 
given by BI from that valid for negative energies 
given by Schwinger7 andPPby a Watson-Sommer­
feld transformation. It may be shown (PP and 
Schwinger) that 

(3.23) 

x+ is as defined in ~3. 18). Similarly (see PP), 

~ Y (~)Y~W) = ~ Sin(Px-i
2

). (3.24) 
lm plm pl 811'2 sinh x-

x- is as defined in (3. 19) and (3. 20). It was shown 
by Schwinger 7 that 

1 1 ~ sinnx+ 
-------=-u t"---, 
1 - 2t cosx+ + t 2 t >1=0 sinx+ 

(3.25) 

It 1< 1, x+' real. 

Let us now convert the sum on the right-hand side 
into an integral by using the Watson-Sommerfeld 
transformation. To do this, we first set x+ = 
IT + x- and t real and less than 1. Then the sum 
on the right-hand side can be written as a Watson­
Sommerfeld contour integral in the usual way: 

1 = -lIt' sin(x~) dz 

1 + 2t cosX_ + t 2 2it Co sinX_ sinlTZ 
(3.26) 

Co here is a loop surrounding the positive and real 
Z axis. In order to open this contour and convert 
it into a line integral along the imaginary Z axis, 
the contributions from the large quadrants of cir­
cles in the right half-plane must vanish. This hap­
pens if x- is pure imaginary, i x_. Then we obtain 

1 
1 + 2t coshX_ + t 2 . 

1 Joo "1 t sin(~X_) d~ 
=- e'" 11 

2t - 00 sinhX_ Sinh11~ 

1 0() sin(~ x-> d~ 
= -t f. cos(~lnt) inh inh " . o s x- S 11/\. 

(3.27) 

The t here is chosen so that one now has a cut 
from 0 to - <X) in the complex t plane. These 
definitions of x- then correspond to (3.20). We 
must point out that BI have a slight difference in 
their definition of the angle x-, and with that this 
coincides with the result derived by them. We 
may also note that one may set t = 1 in this 
formula in which case, we arrive at an expression 
for 1/(~ - ~/)2 derived bv PP corresponding to 
the case ~P..~o < O. This serves as a check on this 
formula. \pp do not derive the generating func­
tions in the positive energy cases). 

There is another chOice of x+ and t which gives a 
formula of the above structure and this corres­
ponds to the case when ~o~o > 0 and (3. 19). Here 
we set x+ = ix- and t ~ - t. Then 

1 - 1 Q() sinhnX_ 
------- =-~tn(-I)" , 
1 + 2t coshX_ + t 2 t n=1 sinhX_ 

(3.28) 
and the above procedure leads to the form 

1 

1 + 2t coshx_ + t2 

___ 1 (00 cos(~lnt) sin(~ x-> d" 
J, /\. (3.29) 

t 0 Sinh11X sinhx_ 

with coshx_ defined as in (3.19) and the t plane 
now has a cut from 0 to + 00. If we set t ~ e tlr , we 
arrive at an expression for 1/(~ - ~')2 derived by 
PP for ~o% > 0, again serving as a ch~ck on our 
result. If we want the t plane to have the cut from 
o to - 00 as in the first case even for the second 
situation, then one may proceed with COtz11 in­
stead of l/sinZ1J. With the angle x+ now defined as 
ix-. then we obtain the result 

1 

1- 2t coshX_ + t 2 

- 1 00 sin(~ x-) 
= -1 e iAlnt coth(71~)d~ 

2t -00 sinhx_ 
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- 1 1. 00 sin(.\. x-) 
::: - cos(Unt) coth(1T.\.)d.\.. 

t 0 sinh x- (3.30) 

The t plane here has a cut from 0 to - 00; we can 
thus evaluate this for t ::;: 1 and verify that the 
same answer as obtained from the last expression 
is obtained for 1/(~ - ~')2 when ~o~b > O. • 

With this alternative derivation of the generating 
function, the close connection between the regions 
in ~ space and the t plane becomes evident. This 
same fact is reflected in the formulas derived 
below. We may also state that for obtaining 
~o~o > 0 from the result of ~o ~o < 0, one merely 
rotates the complex t plane through an angle 1T in 
the formula for ~o ~b < O. 

The result for the positive energies generalizes 
that given by Nutt8 ,25: 

E<O: 
TlPo 1 

T(P,p', E) =-2 21 '12 m1T p - p 

x (1 - 4 J Pdt ) 
." 8+ £A1- t)2 + 4t' (3.31) 

R+ is a line integral going from 0 to 1(= eot) as 
shown in Fig.!. This is for the repulsive case 
(11 > 0). For the attractive case, this integral re­
presentation holds with T/ replaced by - .", but it 
should not be used to generate the "eigenfunction" 
expansion of the form (3.12) for the repulsive 
case for the reason given earlier. For E > 0, the 
situation is somewhat more complex as is already 
evident. We will give only the results for the 
(E + iii) case and those for (E - io) can be obtain­
ed by a similar procedure. In this case, we have 
to discuss the attractive and repulsive cases 
separately. We give below the results for the re­
pulsive case and those for the attractive case are 
obtained by a formal complex conjugation of the 
corresponding results (notice these are all valid 
for E + i(j only). In doing this, the contours 
change correspondingly; for instance, L+ becomes 
L_ on complex conjugation. 

E> 0 (repulsive case with E + iii): 
T(P,p', E) 

= 0 1- 4i1')e-1f'1f , ."p ( tif/dt ) 

21T2 mlp- p'12 L-£>(1 + t)2 + 4t 

~o > 0, ~b > 0, (3.32) 

e,,"1 L+ R. eOi 

-I >( +1 

e....-I L_ R - e2T'i 

FIG. 1. 
(3.38). 

Contours used in the expressions (3.36). (3.37). and 

= 0 1- 4iTJe lrT/ J TJp ( tiT/dt) 
21T2mlp- p'12 L. £)1 + t)2 + 4t ' 

~o < 0, ~b < 0, (3.33) 

= __ l1,....P....:o::.--_ (1 + 4iTJ J ti7Jdt ), 
21T2mlp- p'12 , 8+£>(1- t)2 - 4t 

~o~b <0. (3.34) 

These follow if we note that 

J dttiT/-l cos(klnt) 
L± 

eflrT/ 
= 2 (k sinh1Tk ± 71 cosh1Tk), 

(71 - k2 )i 

J dttiT/-l cos(klnt) "'. 
R+ (.,,2 _ k2)i 

(3.35) 

The Int is here defined on a cut plane from 0 to 
- 00 along the Ret axis. P~ ~ P~ + i(j in all the 
above. The contours L+, R+ are shown in Fig. 1. 
If one formally expresses the contour integrals in 
(3.32)-(3.34) as real integrals ranging from 0 to 
1, they reduce to the form (3.31). 

All these representations are mutually equivalent. 
Several remarks can now be made. Nutt8 tried to 
analytically continue (3. {U) for E > 0, and essen­
tially he ended up examining only (3.34) and 
missed (3.32) and (3.33) entirely. This is the 
case for all the subsequent troubles he faced. It 
is clear that analytic continuation with respect to 
E does not bring the expression (3. 12) to (3. 13). 
It becomes quite clear if we note that the co­
efficient of expansion of T for negative E are the 
representations D(j,j) with j = (n - 1)/2, and 
those for positive E are the representation D(O, p) 
of the Lorentz group and these are ·not analytic 
continuations of one another. This is after all the 
manifestation of the different topology for E ~ 0 
associated with the surface ~jl~!l = 1 (Ref. 14). 
For £ > = £ < = 0 with no imaginary parts in them, 
the T matrix vanishes identically; for £ ~ 0 how­
ever small, as will be seen from (3. 36), a Taylor 
expansion in £ does not exist. This was Nutt's 
mistake. We must stress that these expressions 
were obtained by explicit solution of the LS equa­
tion following PP who explicitly obtained the 
Green's functions for E > 0 by solving Eq. (3. 10) . 
In our discussion in Sec. 4, we show that these T 
matrices then automatically obey the generalized 
unitarity. It should be mentioned that an analytic 
continuation in E which takes cognizance of the 
above properties also gives (3.32)-(3.34) from 
(3.31). 

We will now demonstrate that the correct Coulomb 
amplitude is obtained from an evaluation of the T 
matrix for positive energies near p~ = p2 = p,2. 
Using (3. 14), the actual evaluation of T near the 
mass shell can be carried out and this displays 
the on- shell behavior of T quite transparently. 
Notice that (3. 14) has explicitly subsumed in it the 
Born term in either set of expressions (3. 18)-
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(3.20) or (3.32)-(3.34). Without making any 
approximations, the integrals (3.14) can be evalu­
ated and the result is 

E> 0, (3.36) 
with 
9(7]) = e-21fTl , sn = 1, for ~o > 0, ~o > 0, 

9(7]) = 1, sn = 1, for ~o < 0, ~o < 0, 

8(7]) = e-1fll , sn = (- l)n, for ~o~' < 0, (3.37) 

T(p , E) _ P87] 
, P , - 1T2m(p2 + p~)(p'2 + p~) 

( 
Sin(1T - X+)1] 

x (1 - cosX )-1_ 7]1T ---:-. -"-'---
+ smX+ 

+ ~ E (- l)m Sin(1T - x+)m) 
sinX+ m=l 7]2 - m2 ' 

E<O. 

(3.38) 

± signs go with ~o~o ~ O. This expression was 
recently derived by Roberts using the classical 
path integral techniques. Very near the points 
p2 = PS and/or p,2 = p~ (and vice versa), (p2 - p~) 
(p'2 - p~) sinhX- remains finite and e-X- becomes 
very small as can be seen from expression (3.17) 
and the definition X _, and so the terms in the 
series can all be ignored compared to the first 
term in (3.36): 

T(p,p', E) 

21j2P89(1])e-iTlx- 1 
R: -------

1Tm I (p2 - p~)(p'2 - p~) I (1 - e-21fTl) sinhx.-' 
(3.39) 

It can be noted that in the case of the off-shell 
Coulomb T ~atrix, the limit as energy becomes 
real exists but at the on- shell point P~ = p2 = p'2, 
e-iTlx- for real 1] oscillates rapidly and does not 
tend to any unique limit. However, th~se oscillat­
ing terms can be isolated in terms of momentum 
space wavefunctions for asymptotic Coulomb dis­
torted states, and the definition of the physical 
Coulomb amplitude is with respect to the Coulomb 
distorted waves. Using the explicit expression 
for x- and the Mullin-Guth wavefunctions8 in the 
Sturmian form (this is equivalent to using a dis­
torted Gt as was done by Schwinger7) 

(p' l4?t(P, E» 
= - 6 (3)(P - p')e-1f1J/2 1 r(1 - i1]) I e2

;; p~r, 
(3.40) 

we obtain the usual Coulomb scattering amplitude. 

In summary, we may state that the nature of the 
Coulomb T matrix near the mass-shell depends on 

the approach to the mass shell; this appears in 
(3.39) as the multiplicative factor 9(1]). This is 
missing in the analysis of Nutt in Ref. 8. The 
second important point is that the Born term 
gets cancelled by a portion of the term VGV on 
the mass- shell, an observation made earlier by 
us22 elsewhere only for short r~e potentials 
obeying the constraint .r: r I V(r) Idr <!Xl. The 
off- shell unitarity relatBmships are obeyed by 
these T matrices by virtue of our general demon­
stration given in the next section. An easy direct 
verification of these can be accomplished by using 
(3. 13) and a transfOrmation to the four-dimen­
sional space. 

In the next section, we will discuss the generalized 
unitarity and its implications to the Coulomb T 
matrix. 

4. OFF-SHELL UNlTARITY 

The erroneous calculation of the discontinuity of 
the Coulomb T matrix8 across the unitarity cut has 
led some authors to investigate validity of on the 
energy shell Low equation for this Tmatrix. 9 ,10 We 
now show that for complex energies, if a unique 
solution of the LS equation for T is obtained, the 
generalized Low equation is guaranteed for com­
plex energies and further study of the unitarity for 
real energies reduces to one of careful limiting 
process. 

We have from the LS equation for complex 
energies, Eq. (2.4), the corresponding one for Tt. 
Then 

T - Tt = H'[G+ - G-]H' (4.1) 

= TG6[(G-)-1 - (G+)-l ]GoTt 

= - 2iOTGtGoTt. 

(4.2) 

(4.3) 

Equation (4.3) is the Low equation for complex 
energies depicting the generalized unitarity 
relation. 

Somewhat more subtle manipulations are needed 
to obtain (4.3) from the LS equation for G+. We 
write from the second expression in Eq. (2. 2) 

T = (E - Ho + iO)[G+ - Gt](E - Ho + iO). (4.4) 

Then ( 
T- Tt =- 2i6 (E- Ho) 1 (E- Ho)\ 

(E- Ho)2 + 112 ~ 

+ 2i6 (E - II) 1 (E - Ho> 
(E - 8)2 + 02 

+ (E - Ho) (E _ ~>2 + 62 (E - 11) ) 

+ 2£6
3 

- 2i6 
(E- 11)2 + 62 (4.5) 

=- 2ill(- H' 1 (E-Ho> 
(E - 11)2 + 62 
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-(E-H) 1 H' 
o (E- H)2 + 62 

+ (E - Ho) (E _ ~)2 + 62 (E - HO») 

+ 2i63 
_ 2i6 

(E - lfP + 62 (4.6) 

= - 2i6(2TGtGOTt + TGtG-(E - H) 

+ (E - H)G+GOTt + 1 _ 6
2 

) 
(E - H)2 + 62 

+ {2i6(E - HO)G+G-(E - Ho}}. (4.7) 

The last line in { ... } can be further simplified to 
give 

{ ... } = 2io (1 + TG+G-Tt _ 62 

o 0 (E _ H)2 + 62 + TGt 

+ GoTt + i6(H'G+G- - G+G-H'»), (4.8) 

Substitutions of this expression in (4.7) immedi­
ately leads to the generalized unitarity relation 
for complex energies. In the above manipulations, 
only the LS equation and the definitions of G±, G6, 
H, and T are used. It is important to stress that 6 
was not set equal to zero anywhere in the deriva­
tion. Roberts18 writes the equation 

T - Tt = - 2i1T(E - Ho)o(E - H)(E - Ho) (4.9) 

to express unitarity. Our above analysis shows 
that this cannot be correct for the usual T oper­
ator. To obtain from (4.3) the on-shell unitarity 
valid for physical energies, it is important to 
prove the existence of the limit 0 --+ 0 for 
T(E + i6). The analysis described in Sec. 2 and 
the explicit expression for the Coulomb T matrix 
obtained in the last section show the on-shell 
limit is not unique for the Coulomb T matrix. One 
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A tetrad vector formulation of Einstein's field equations is developed in which the orthogonality pro­
perties of the tetrad are permitted to vary in any prescribed smooth way from one space-time point to 
another. The components of the Riemann tensor with respect to such a basis are derived by means of 
exterior calculus. The approach facilitates a simple direct derivation of the Harrison-Ernst equations. 

L INTRODUCTION 

Recently, the author developed a formulation of the 
stationary axially symmetric gravitational field 
problem in which a key role was played by a com­
plex potential € related to the metric tensor by 
means of certain integrability conditions.1 In 
terms of this complex potential even the Kerr 
metric2 could be simply described, and a whole set 
of perturbation theory solutions generalizing the 
Kerr metric was found. Subsequently, Harrison 
suggested an extension of the € formulation to the 
case of stationary nonaxially symmetric fields. 3 It 
is the author's desire to find a further generaliza­
tion of the formalism in which even time depend­
ence is taken into account, and in which interior as 
well as vacuum fields may be considered. 

If these desires are to be realized, it will be neces­
sary first to comprehend thoroughly the Harrison­
Ernst field equations. As a step in this direction 
we shall give a simple direct derivation of these 
equations utilizing the methods of exterior calculus. 
Our "approach will differ from that commonly em­
ployed4 in that we shall permit the orthogonality 
properties of the tetrad system to vary from one 
space-time point to another. However, we shall 
assume that the reader is familiar with the general 
properties of p-vectors and p-forms. 

D. THE USE OF A NONORTHONORMAL BASlS 

Let us denote the natural basis for I-forms by dx a 

and the natural basis for I-vectors by aa' Q = 0, I, 
2,3. It is convenient to regard dx as a row matrix 
and a as a column matrix. If b is an arbitrary 
basis for the I-vectors, then a is the correspond­
ing basis induced for the I-forms by requiring that 

ab = dxa. (I) 

For a space with a symmetric connection we then 
immediately have the important formula 

position without necessarily coinCiding with the 
metric tensor. 

A Christoffel matrix 

and a Riemann matrix 

(4) 

(5) 

are now defined, the former consisting of I-forms 
and the latter of 2-forms. Under a change of basis 
e undergoes a linear homogeneous transformation, 
although this is not true for K. We define an object 
with the symmetries of the Riemann tensor as 
follows: 

eall = j Ra/lyoaYao. (6) 

In fact, when the natural baSis is employed Rally6 
is precisely the Riemann tensor. In other cases 
Ra II J 6 is related to the Riemann tensor by a linear 
homogeneous relationship, which may be obtained 
easily from the definition of e. The symmetric 
matrix 

Ray=GII6RaIlY9 (7) 

is equal to the Ricci tensor in the case of a natur­
al basis, and it is related to the Ricci tensor by a 
linear homogeneous relationship otherwise. No 
matter what basis is employed, Einstein's vacuum 
field equations may be written 

(8) 

From Eqs. (2), (3), and (4) it follows directly that 

(da)G = aK 

and that 

dG = K+ K-. 

(9) 

(IO) 

d{ab) = O. 

We shall also introduce a metric matrix 

(2) In practice these two equations are easily sol~ed 
for K.5 Once K is determined, e may be evaluated, 
for from Eqs. (3)-(5), and (IO) it follows that 

(3) 

which reduces to the metric tensor if the natural 
basis is employed. If an orthonormal or quasi­
orthonormal tetrad system is employed, the G 
matrix is a constant matrix. It does not seem to be 
widely realized that there is no need to conSider 
just these extreme points of view. We shall pro­
ceed under the assumption that G may depend upon 

For certain problems it is convenient to write 
this equation in the form 

6G-l =dr-rr, 

where r = KG-l. 

(ll) 

(12) 

We are at liberty to choose the symmetric matrix 

2395 
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G in any convenient way. If G were chosen to be 
the ordinary metric tensor, we would simply have 
an exterior algebraic version of the traditional 
method of calculation involving Christoffel sym­
bols. On the other hand, if G were chosen to be the 
Minkowski metric, we would then have the forma­
lism described in detail in Ref. 4. Rather than 
adopt either one of these extremes, we shall in 
this paper suppose that 

(13·) 

where the three-dimensional symmetric matrix 
y may vary from one point of space-time to 
another. In this case it is fruitful to introduce 
complex three-dimensional matrices 

DX V = d Xv - dx" 6 aov Xli • (24) 

Here 6!v and P"BYo are,respectively,theChristof­
fel symbol and Riemann tensor associated with the 
three-dimensional metric tensor Ya B' 

For any stationary gravitational field such that 
the Ricci tensor component R aD vanishes, Ma can 
be shown to be a gradient. 

(25) 

where E = f + icp. This is demonstrated by looking 
at the terms proportional to 0'00'0 in Re6"B' The 
remaining components of the vacuum field equa­
tions are then found to be given by 

(26) 

KaB = Kaa + i€aBlLy"V(det y)1/2KuO' 

8 aa = 8 aB +·iEaBlLyILV{det y)1/2evo , 

(14) [(Re€)2P"B + t(€."<B + <,,€.B)] = O. (27) 

(15) On the other hand, the integrability condition 

where EaBIL is the Levi-Civita symbol, for one may 
show that 

(16) 

m. DERIVATION OF THE HARRISON-ERNST 
EQUATIONS 

We shall suppose that the coordinate system has 
been chosen so that 

a = 1,2,3, 

(17) 

(18) 

where the ten functions YaB' Wa , and f are inde­
pendent of x<>. A straightforward calculation yields 

KaB = [oa,,8] dx o + €aBlLy/lV(det y)1/2Xv' (19) 

where [oa, f:3] is a Christoffel symbol of the first 
kind for the three-dimensional space with metric 
tensor YaB' and where 

:rc" = ~ f -1/2{E "olLyILV(det y)1/2Mvali - i MauO} (20) 

(21) 

The axial vector Z a may be obtained from the skew 
symmetric tensor 

h" B = - 2w lao B) = E" BIL ylLV {det y)1/2 Z v • (22) 

On the other hand, substitution of Eq. (19) into Eq. 
(16) yields 

e =1. P dxYdx o + e: ylLv(det y)1/2DX aB 2 "Byo "BIL v 

+ X;reB' (23) 

where the new differential operator Dis defined 
so that 

ha B . Y + hBY . a .+ h ya .B = 0, 

implies that 

y aBU-2qJ.,,);B = 0 
or 

1m {(Ree)y"Be .aB - yaBE."E, B} = O. (28) 

In conclusion, the field equations for a stationary 
vacuum metric can be· written in the simple form 

(Ree:)yaBE;aB = yaBE,a E. B ' 

(Ree:)2PaB + t(e:."E.~ + <aE.B) = O. 

Alternatively, these equations may be obtained 
from the variational principle 

(29) 

(30) 

yaB E e:* 
of {p + ~ ,ex .B }(det y)1/2d 3x = o. (31) 

(ReE)2 

Although Harrison and Ernst have developed ana­
logous equations valid in the presence of electro­
static and magnetostatic fields, it is not known at 
present whether or not any fruitful extension ex­
ists for fields inside of matter, or whether one 
can treat time-dependent fields in the same spirit. 6 
It is not likely to be easy to find the desired gen­
eralization, but, if it can be found, the formalism is 
liable to be very useful with regard to astrophysi­
cal applications, because the stationary axially 
symmetric problem has already been made quite 
manageable in terms of this formalism. 
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We describe here how one can obtain upper. and lower bounds of the average value of a function f1£} in 
terms of the bounds of the variable E and E, E2. 

In physics as well as other sciences, sometimes 
we may like to estimate the average value of a 
quantity, even though we have only limited infor­
mations about this quantity; e.g., we may like to 
estimate the higher-order moments of a certain 
(charge, mass, etc.) distribution in terms of some 
known lowest order moments. In theories of poly­
mer solutions, l the averafe/ Of the inverse dis­
tance between monomers 1 r is usually difficult 
to compute directly, and most theories make 
approximate estimation of this number in terms 
of r or;:T. In a previous article,2 by using the 
concave upward property of exponential function, 
we obtain fairly simple bounds for its average 
value. The same reasoning should lead us to 
similar bounds for other concave upward func­
tions. We now would like to investigate what are 
the simplest possible bounds that one can con­
struct for the average value of an arbitrary func­
tion. 

Consider first a real value concave upward func­
tionf(E), Le.,!"(E) ~ 0, or !'(E) is a nondecreasing 
function as we increase E. From Taylor's 
theorem, we have 

j(E) = f(c) + (E - £)!'(£) + (E - £)2 J~ (1 - t) 

x !"[E:+ t(E - E:)]dt. (1) 

We note that the remainder term is nonnegative 
for concave upward function; hence 

f(E) ~ f(£) + (E - €)f'(E:), 

for arbitrary E and £. For concave downward 
function (til 5 0), we have instead 

f(€) + (E - E)f'(E) ~ f(E), 

for arbitrary E and E. 

(2) 

(3) 

The average value of a function f(E) is given by 

f(E) = 6;PJ(Ej ), 

where Pi::::: 0 and "'£jPi = 1, We also denote the 
maximum value of the set {Ei } by Em' and the 
minimum value by Eo. 

(4) 

From Eqs. (2) and (3), USing the same arguments 
as in Ref. 2, we easily find that for concave upward 
function 

l[E) ~f(E). (5a) 

and for concave downward function 

(5b) 

Eq. (5) can easily be generalized to functions of 
several variables. Taylor's theorem for functions 
of N variables gives 

f({x i }) = f({x iO }) + ~i(Xi - xiO)(oj/axj)o + R2, (6) 

where R2 = ~d2j(X iO + e(x. - x. » with 0 < e < 1. 
It is easy to see that if we have'o , 

(7a) 

(7b) 

for all values of all variables, then R2 ~ O. Hence, 
if Eq. (7) holds, we would have 

(8) 

If the inequality sign is reversed in Eq. (7b), then 
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R 2 :S OJ hence the inequality sign in Eq. (8) must 
also be reversed. 

Let us now consider f,.(E) = (E - Eo)n, where n is 
an integer and n ~ 3. Since IR,(E) is concave up­
ward (for E ~ Eo), from Eq. l<l:), we have 

(E - E o)n ~ ( £ - Eo)n + (E - £).f,. (£) 
and 

(9a) 

(E - Eo),.-l ~ (£1 - E o),.-l + (E - £1)/~-1 (£1)' (9b) 

From Eq. (9a), with € = E, we get 

(E - Eo)" ? (E - Eo)". 

Multiplying Eq. (9b) by (Em - E) and setting 

£1 = Em - (Em - E)2j(Em - E), 

(lOa) 

we get the following recursive upper bound for In: 

(Em - Eo)(E - E o}n-1 - (Em - 'E)(£1 - E o)n-1 

? (E - Eo)", (lOb) 

Hence for any function I(E) which has a Taylor ex­
pansion about Eo, or 

00 

j(E) = j(Eo) + ~ (n !)-l(E - Eo)n/~)(Eo), 
,.= 1 

we can in prinCiple find bounds of JrE) in terms of 

• This work was supported by a Faculty Research Fellowship 
from ibe Research Foundation of State University of New 
York. 

1 R. Yeh and A. ISihara, J. Chern. Phys. 51, 1215 (1969). 

00 

~ (n !)-lB ,(nlt<n)(Eo) 
n=3 

5 f(E) - I(Eo) - (E - Eo)! (EoHf2)(EO)(E - EO)2 

00 

sL; ~!)-lBu~)fn)(Eo), 
n=3 

(11) 

where if 1~)(Eo) > 0, then B .. (n) is the upper bound 
of (E - Ei", (Eq.10b) andB ,(n) is the lower 
bound of Eo)" (Eq. lOa). And, if f ~)(Eo) < 0, 
then B «~) is the lower bound of (E - Eo)n, while 
Bz(n) is the upper bound. 

If we have more input information about the func­
tion or about the distribution (e.g., Ei ? 0), then we 
can improve our bounds; e.g., the average value of 
an even function IJ(E).= I( - E)] can be bounded in 
terms of P,Em and lJoI, via 

E~E2n-2 -(E~ - EZ) £~n-2 ~ Wn ~ (E'1)n, 

where £~ = E~ - (E~ - E2)2j(E~ - Pl. Con­
sider the case of Eo = O,Em = 1 andp(E) = 
(s + I)E s with integer s; then we find that E'Zn = 
(s + 1)/(2n + s + 1) and (V)n = [(s + 1)/(s + 3)]n. 
These bounds are poor for large n (n > s), but im· 
prove with increasing s (s > n). 

2 R. H. T. Yeh,J.Math. Phys.ll, 1521 (1970) and references 
iberein. There are mistakes in Ref. 6 of ibis article: F 
should read F - Eo and {~Ie-SH I~) should read 
<~ I e-1l11' I ~). 
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