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A development of the scattering amplitude in potential scattering which is based upon replacing a
smooth potential by a sequence of potential steps is given. The Schridinger equation is solved exactly
in each interval over which the potential is constant and by matching boundary conditions an expression
relating the coefficients of two linearly independent solutions at small radius to those at large radius is
found. From this the scattering amplitude is calculated. The limits of validity are found to be dependent

upon the value of the expression

d 2m
(V/Z)EIn(i—z[E - v]).

Limiting cases of the amplitude are shown to be a modified WKB approximation and the Born approxi-
mation. A particular application to the Yukawa potential is discussed. The discussien is restricted to

attractive potentials,

I. INTRODUCTION

The solution of equations similar to the Schro-
dinger equation by replacing the potential V{r) by
a sequence of step functions has been the subject
of several studies.1™3 In particular, Swan has
used this approach to develop expressions for the
number of bound states of a potential in the Schro-
dinger equation.3 In this paper, this assumption is
used to develop a new approximate expression for
the scattering amplitude for attractive spherically
symmetric potentials., This form of the amplitude
has the following important characteristics: The
scattering matrix is unitary; the amplitude is an
explicit nonlinear function of the potential; the full
high energy limit is identical with the result
obtained by calculating the Jost function.4

I. DEVELOPMENT OF SCATTERING
AMPLITUDE

We consider the radial Schridinger equation with
a spherically symmetric potential V() which is
smooth enough to be written

N
V(’}’) :Z_>1€(’Vn,’r)V(’)’n), (1)
where
0,7<7,,v> 7,.q,
e(r,,r) = "’ nl (2)
Ly, <r<7,.,

and V(r,) is the value of the potential in the nth
subinterval, “Smooth enough” is taken to mean
that the potential has at least first derivatives.
Initially we consider an interval a = » < b to be
divided into N equal subintervals Ar. Eventually
we allow a to approach zero and b to approach
infinity while the size of the subinterval
approaches zero. Thus, we solve the differential
equation

2m

@y _ ﬁl—f’z—i)w +ZHE — Vi) =0

dr2 ¥

@)

in each subinterval and then match y and its first
derivative at the boundaries of each interval. The
solutions to Eq. (3) are

¥, = A,00)rhO(k,7) + B)(n)rh@(k,7), (4)

where #{D and 2{? are spherical Hankel functions
of the first and second kinds, respectively. These
particular forms for the two linearly independent
solutions of Eq. (4) are chosen for the boundary
conditions of a scattering problem since they are
asymptotically spherical waves. In addition, the
wave number %, is given by

2m 1/2
B, =<ﬁ[E - v(r,,)]) . (5)
Satisfying the boundary conditions at », relates
A,(n) and B,(n) to A,(» + 1) and B,(n + 1). Con-
tinuing at each boundary eventually leads to an
expression for A4,(a) and B;(a) in terms of 4,(b)
and B, (b). This is
A,(a)) o o (Al(b)> A (b))
= = M l
(B, @) =0 V" N\B0) %) (B, 0))"
(6)
where Ul(n) is a matrix whose elements are
UL = 7267100 JhED by 17, 82 8, 7,)
k p
B G e,
U120 = 726730 42 7, 2 17,
k +1
— I G G, ®)
kn+1
Uy = 7207 m) {—— k{7 Jp V' (R, . 17,)
- hl(l)'(k,,fn)hl(l)(knq?’n)g s (9)
k +
U, = r?lA‘l(n); 5 L Ok, 7, R (ky 1y 7,)
n
- hl(l)’(knrn)hl(z)(kn+lrn) ] (10)
and
An) = v2[RD (k7 )2 (R, 7,)
— R (k7 VR @R, 7,)] = — 2i/R2. (11)

The prime denotes differentiation with respect to
kr. Now, as the number of intervals N is in-
creased, it is possible to expand these matrix
elements in powers of Ar. The details of this
expansion are given in the Appendix. The products
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in Eq. (6) can then be evaluated to lowest order,
‘and the matrix elements of the product are, in the
limit as Ay approaches zero,

Miy = (M}y)*

i, o dk .,y dk 'y ()
- l_f-{a [,Wza_;h;l) h2 — k2r3% (V'R

— K ,<1>">] ar, (12)
Miy = (M§1)*
_t b dk ’ dk ’
_Efa [_ k28R pop 00 1 k2r3E )2
" "

where the argument of the spherical Hankel func-
tions is the variable wave number

/:
by = [i—'z”(E B ]1 2. (14)

In many physical problems, we are interested in
extending the range from 0 to «. Equations (12)-
(13) provide approximate relations between the
coefficients A4,(0) and B,(0) and A,(«) and B,(w) if
the potential vanishes at infinity faster than 1/7,
and if it is cut off at some minimum radius € so
that V(r) vanishes for v < €. This last condition
may be relaxed if (dV/dr)/V is finite at » = 0.

Since the wavefunction is to be regular at the
origin, we require

A[(O) = BZ(Q), (15)
and, from this condition, we obtain
M, — M}
Afe) =2~ My o) (16)
My, — Mp;

The scattering matrix can now be calculated using
the result of Eq. (16). The wavefunction in the
asymptotic region is

20+ 1
Y =2 4t (——%25 (cos8)
7

M. — Ml
x B, (o) [—IZ—Z——E rh{D + rh}z):l
M§q— Mby
21 +1) ML, — M
= BEiL( P, (cos9) |:—l—22—-——l—1—2- -~ 1] rh{D
l My, — My,
+ Winc, (17)

where B is a normalization constant and ¢ ;. is
the incident plane wave. We have equated B,() to
B for all /.

Thus, if the scattered wave is written

21+ 1)

Vaear = 23 N2 ) Beosorestr, )
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then
H(E) =

Loo— M. — M!
Mby— Mig— My, + Mb,
. .
My, — M,

(19)

Now it is a simple matter to demonstrate the
unitary property of the S matrix, using Eqs. (12),
(13), and the definition5

Mby — MY,

SUE) = 1+ fB) = 2 (20)
11 21
Then we have
SHE) = (Mb,)* — (M],)" _ My — My ey
(M )"~ (Mh)* Mb, — MY, (121)

Turning our attention to the partial wave amplitude
f(E), we find

— 2iN,(E)
ME) = TN EY T RE) (22)
where
NE) =5 7 arkr3SY [ (er)i,y (o) — 70
(23)
R,/E) = —_;7—" * rzdrg[jl(kr)n;(kr)
+ ki, (kr)ny (kr) — ji(kr)nj(kr)}, (24)

and j, and n, are spherical Bessel and Neumann
functions, respectively. We refer to Eqgs. (22)-(24)
as the integral approximation to the scattering
amplitude.

With the expressions for N, and R, given in Egs.
(23)-(24), it is a simple matter to determine their
behavior near » = 0. Specifically, if 2V is finite
at the origin, we see by inspection of Eq. (23) that
the integral for N, exists (keeping in mind the
requirement that llVl < 1/r as r 2 x). The be-
havior of R, is determined by the leading term in
the expansion of the spherical Bessel functions in
Eq. (24) and is

R, = (1 + 1/20n[(E — VO))/E]. (25)
Hence, R, is finite if V{0) is finite. This is a
strong restriction except at high energies. Thus,

we have assumed, for finite E, that V(r) has the
inner cutoff mentioned earlier.

Although N, and R, are too complex to evaluate
analytically even for simple potentials,a numeri-
cal evaluation seems straightforward and is being
undertaken. Even without explicit evaluation, one
important characteristic of the approximation, in
addition to its unitarity, is that it contains known,
nonlinear functions of the potential strength. In
this respect, it is similar to the eikonal and WKB
approximations, and its relation to a modification
of the latter will be given below. However, Egs.
(22)-(24) also lead to the Born approximation in a
high energy limit, so that their validity is not re-
stricted to a semiclassical region of interest. We
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consider this in somewhat more detail in the next
section.

Before considering the limiting forms of Egs.
(22)-(24), it is useful to determine the condition of
validity. This condition may be obtained by form-
ing the solutions y,(r) as given in Eq. (4) with A,(»)
and B,(r) evaluated by calculating the matrix
M(r, ©). Inserting this solution in Eq. (4) gives the
condition (see Appendix for detail)
_1dk :
v |G /e <1 (26)
This may be satisfied if the first derivative of the
potential is small or if 2 is large. It is interesting

to note that the assumption that V is small com-
pared with E is unnecessary.

Il. HIGH ENERGY LIMITS

There are two distinct limits of the integral
approximation—one associated with having & large
compared to 7(d%/dr),and the other being found for
E large compared to V. The first, which resembles
the WKB approximation, is best seen by examining
the wavefunctions for large k7, i.e.,

i1y A, (rh PV kr)

~ [MY,(r,a)A,@@) + Mi,(r,a)B)(a)]ei*”, (27)

where a is some arbitrary radius at which the
wavefunction is assumed to be known. The first
term on the right of Eq. (27) represents the con-
tribution to the outgoing wave at » from the out-
going wave at a—it is a measure of transmission—
while the second term, arising from the incoming
wave at a, describes the contribution of reflection
to the outgoing wave. If we ignore the latter, i.e.,
equate B,(a) to zero, an approximation similar to
the WKB approximation results. If we replace the
spherical Hankel functions by their asymptotic
forms, we have

krA,(v)h D(kr)
~ o1 iky 1.0 (_ . dk (AR,
i""14,(a)e [1 + szr ( Ly T )dr]

d ’
= i"1"14 (a)eitr [1 + z1nk(a)/k(r)
- if: kdr' + iak(a) — i”k(")]
~ 714, (a)e ik exp [%mk(a)/k(r)
+ ifar kdr' + iak(a) — irk(r)
expi f: kdr'
[k(r)/k(@)]172’

where an integration by parts was performed on
the second integrand. The entire expression in

= Al(a)i‘l‘leik(a)a (28)
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brackets has the form (1 + a) and has been re-
placed by expa. This will be valid for small a.
Similar results can be obtained for kvB,(r)h2(kr).

This expression for the wavefunction has the
appearance of a one-dimensional WKB approxi-
mation. It differs from the usual WKB approxi-
mation to the radial wavefunction, since the func-
tion k(r) does not contain the angular momentum
term — (I + 1)r~2, 1t is possible to obtain the
complete WKB approximation from the integral
approximation to the radial wave equation by
including from the outset the term — I (I + 1)r—2
in k(). In this case, the solutions in each interval
¥, = v =7, are chosen to be exp + iK'7, with

K = [%‘(E — V) — l—(l;:—l) ]1/2. (29)

At this point, we should comment that the WKB
approximation and the modified WKB approxi-
mation represented by Eq. (28) are identical in one
dimension (i.e., Cartesian coordinates).

We now examine the second high energy limit of
the integral approximation. This may be obtained
from Eqgs. (23)-(24) by performing integrations by
parts for N, and R, and then equating V to zero in
all 2. The expressions are then

2

N(K) = 2K [ v2arvr)ip ), (30)
RUK) = — 27 1% w20 vy (kv (Kr), (31)

72 Yo

where j, and n; are spherical Bessel and Neumann
functions respectively, and

K = (2mE/h2)1/2, (32)
Using these expressions in Eq. (22),a form for the
partial wave amplitude is obtained which is identi-
cal to that obtained by calculating the high energy
limit of the Jost function and, from that, the scat-
tering amplitude. If the denominator in Eq. (22) is
replaced by unity and Eq. (30) is used to calculate
the numerator, f,(E) is identical with the Born
approximation,

The expression Eq. (31) for R,(K) is evidently less
singular than the original form given in Eq. (24).
The reason for this is that the leading term of Eq.
(24) is proportional to In(1 — V(0)/E), and vanishes
in the high energy approximation. In Eq. (31), there
is a term arising from the integration by parts
which has been attributed to the leading term of
the integral and has been omitted. The basis for
this identification is that all succeeding terms
beyond the first in Eq. (24) and all terms in Eq.
(31) contain physical parameters, while the leading
term in Eq. (24) and the integrated term omitted
from Eq. (31) have purely numerical coefficients.
The expression in Eq. (31) is well defined pro-
vided V72 is bounded at the origin.
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IV. SCATTERING FROM A YUKAWA
POTENTIAL

As a specific example of potential scattering, con~
sider an attractive Yukawa potential

| vemer)/r,r > €,

= 0, (33)

r < €.

The full integral approximation must be evaluated
numerically but there are some interesting
features exhibited by the high energy limit. From
Eqgs. (30)-(31), the s-wave amplitude is

; 2
SdK) = ,. £
; 2
_dmu g Ll + <2K) }__ my -1 2K
272 m 2K m
34

As mentioned earlier, the numerator is identical
with the Born approximation, but the denominator
can be significant, as it can be zero. In particular,
if this amplitude is used to calculate low energy,
singlet proton—-neutron scattering, experiment
requires a coupling constant v/7ic = 0. 14, if y is
the inverse Compton wavelength of the pion. The
strength obtained by a scattering length calculation
is v/hc ~ 0.08, while the Born approximation
gives vB/lic = 11, The origin of the large dis-
crepancy between the Born approximation and the
high energy limit of the integral approximation
arises because, for v/fic = 0. 14, the denominator
of Eq. (34) has a zero on the imaginary K axis at
about — 0. 03 p. This enhances the low energy
amplitude and consequently reduces the coupling
constant necessary to match a given value of the
cross section compared with the Born approxi-
mation.

V. CONCLUSIONS

The principal results of this work are contained
in Egs. (22)-(24), where the integral approxi-
mation to the scattering amplitude is given. I the
condition for the validity of this approximation
[Eq. (26)] is poorly satisfied, a second interation
can be used to calculate the amplitude. The steps
in the iterative process are straightforward: From
Egs. (12)-(13), the matrix M! is calculated for
arbitrary » and used to form the first iterations
for the wavefunctions. These replace the spherical
Hankel functions in the final expressions for the
scattering amplitude, Eqgs. (22)—(28).

The significant characteristics of any order
.iteration are: The amplitude satisfies unitarity;
each order contains explicit, nonlinear functions
of the potential strength; and the validity of the
approximation is not dependent upon the ratio of
potential strength to energy, but is instead deter-
mined by the value of r(dk/dr)/k.

F. J. WOODS
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APPENDIX

In this section we include some mathematical
details of the expansion of the matrix product
appearing in Eq. (6). The expansion and sub-
sequent approximation of this product leads to the
expressions for the matrix elements M;; given in
Eqgs. (12) and (13). Also, details of the determina-
tion of the limiting condition found in Eq. (26) are
included here.

From inspection of the matrix elements in Eqgs.
(7)-(10), it is evident that if V is a smooth
potential &, .4, then all terms containing it can be
expanded ahout 7,. Thus, the steps leading from
Egs. (7)-(11) to Egs. (12)-(13) are the following:
Expand k,,, about r, keeping terms of order zero
and unity in the interval A7, then expand all Bessel
functions about the argument %, 7,, retaining terms
of order zero and unity in Ar. The result for the
matrix U(n) will be a sum of matrices with dia-
gonal elements of order zero and unity in A» and
off-diagonal elements of order unity in this
quantity, The product of the matrices U(n) will be
the unit matrix plus a matrix whose elements are
a sum of terms of order Ar. This last matrix
will, in the limit as Ay approaches zero, have
elements which are the integrals appearing in Eqs.
(12)-(13).

Specifically, we have

k,. = k, + Av(dk/dr),, (A1)
where dk/dr is to be evaluated at »,. With this
result the Hankel functions can be expanded, e.g.,

h§(k, . 7,) = hV[k, 7, + Ar(dk/dr),7,]
= WV (k,r,) + Ar(dk/dr),r, hfV'(k,7,). (A2)

Performing the expansions as indicated for each
term in U;, and using Eq. (11), we obtain

Uyp1) =1+ v2A ) nfV (R, 7, Y2 (B, 7, )dk/dY),
x 1,0v—(dk/dr),(Av/k, A2k, r IRV (2, 7,)
— (dk/dr), 7 h 2 (k7 YV (R, 7, A7}

=1+ W,;;#)Ar. (A3)
The agsumption throughout is that W, ,(n)Ar is
small compared to unity. For scattering from
attractive potentials, this assumption is satisfied
subject to the limitations on the potential dis-
cussed following Eqgs. (14) and (32). Repulsive
potentials and bound states (E < 0) must be dis-
cussed separately and will be considered in a sub-
sequent publication.
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Repeating the expansion outlined above for each of
the matrix elements displayed in Egs. (8)-(10)
gives an approximate expression for U(n),

Ur) ~ 1 + Wn)Ar, (A4)
where 1 represents the unit matrix and W(n)Ar is
a matrix whose elements are all small. Finally,
the product of matrices in Eq. (6) is approximated
by

N N N
Nump)~ M1 +WnAr)=1+ 2, Wh)Ar, (A5)
n:=0 n=0 n=0

where, as previously, products of terms containing
Av have been neglected. As N becomes large and
r approaches zero, the sums in the matrix ele-
ments approximate integrals and the expressions
given in Eqgs. (12)-(13) are obtained.

We now turn to a discussion of the limits of
validity of the integral approximation as expressed
in Eq. (26). The method of obtaining this result is
straightforward. The solution of the Schridinger
equation in the integral approximation is, from Eq.

(4),

R = vy = A,(nhfD(kr) + B,(h{P(kr) = Au + Bu,
(A6)

where the index [ has been dropped and the argu-
ments suppressed in the last step. R is the radial
wavefunction approximant. From Egq. (6) and Eqgs.
(12)-(13), A(») and B(») can be written

Alr) = My (r,b)AB) + M1, (r,5)B0), (A7)

B(r) = My,(r,b)A(D) + My, (7, b)B(b), (A8)
where b is some arbitrary point at which R is
assumed to be known. A(b) and B(b) are coeffici-
ents determined by the boundary conditions on R
and may be considered arbitrary until these con-
ditions are stated explicitly.

The limits of validity are obtained by inserting the
solution for R given in Eq. (A6) in the radial
Schriodinger equation. Since this is an approxi-
mation, there will be a remainder term. The con-
dition that the remainder be small will determine
the limits of validity of the approximation. Thus,
we have

[d2/ar2 + (2/r)d/dr + k2 — I(l + 1)/72]R
= [d2/dr2 + (2/r)d/dr + k2 — (I + 1)/72]

x [A(r)u + B(r)v] = 0. (A9)

Using Eqs. (A7) and (A8) and the expressions in
Eqgs. (12) and (13) for M,, and M,, and perform-
ing the operations indicated in Eq. (A9), we obtain

AMBNM1d2u/dr? + 2(du/dr)dM 1, /dr + ud?
X My /dr2 + (2/r)Mydu/dr + (2u/r)dMy,/dr
+ [k2 — 11 + 1)r™2] My u + My d2v/dr?
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+ 2(dM 4 /dr)dv/dr + vd2Mgy, /dr? + (2/7)
X My dv/dr + (u/r)dMgy, /dr + [k2 — I(I + 1)
x 72JuMy,} = 0. (A10)

The coefficient of B(b) is the complex conjugate of
that of A(b). Since A and B are considered arbi-
trary, each coefficient must vanish separately.

The sense of the approximation is that the devia-
tions of R from the functions » and v is to be
small. Consequently, in the terms in Eq. (A10)
which do not contain derivatives of M;; or M,,,
we write

Mg~ 1, (a11)

My, = 0. (A12)
With this simplification the condition for the
validity of the approximation is

k=2[(4dk/dr + vd2k/dv2)u’ + {2kvdk/dr

+ r2(dk/dr)2lu” + 2(du/dr)dM, /dr

+ ud?M, 1 /dr? + (2dv/dr)dM,,/dr

+ vd2M,  /dr2 + (2u/v)AMy,/dr

+ (2v/7)dM, 1 /dr] = 0. (A13)
The factor £~2 has been included to make the co-
efficient dimensionless. In Eq. (A13) the terms
which do not contain M,,, M, or their derivatives
appear because u satisfies Bessel's equation of
order [ in the variable k7. Performing the differ-
entiations and using the result that the Wronskian
of u and v is

uv’ — u'v = — 2i/(kr)2, (A14)
we obtain (recalling that prime denotes differ-
entiation with respect to kr)

u"(rk~1dk/dr)2 + k~2(dk/dv)u’ = 0. (A15)

Equation (A15) is the condition for the validity of
the approximation.

Finally, Eq. (A15) may be evaluated in the limit of
large k7, where »” approaches — « and «’ approa-
ches iu. Thus, to lowest order in 1/kr, Eq. (A15)
reduces to

[re—ldk/dr| <K 1, (A16)
The condition expressed in Eq. (A16) can be satis-
fied by potentials with small gradients or by
potentials which are small compared with the in-
cident kinetic energy. In the former circumstance
this is similar to the condition for the validity of
the WKB approximation, while in the latter it is
analogous to the requirement for the validity of
the Born approximation.
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INTRODUCTION

The purpose of this paper is to discuss a treatment

of the unitary group U(m) as the symmetry group
of phase space in the absence of any Hamiltonian
information. This is done by obtaining the group
U(m) as 2 symmetry group of a curved phase
space, i.e.,the group of holonomy of phase space,
which implies that the Hamiltonian space is
characterized by a Riemann connection. This is in
analogy to the holonomy group 0(3, 1) of the four-
dimensional space—time of general relativity.

In this context, we shall start in Sec.1 with the
usual “flat-space” description of the group U{m)
and show that the description of this group as the
symmetry group of a 2m-dimensional flat Hamil-
tonian space is possible, provided we consider
those canonical transformations which preserve
the angle between the dynamical variables, i.e.,
provided the Hamiltonian space is endowed with
an orthogonal metric, and:provided we also re-
strict the Hamiltonian (or the generating function)
so as to be at most quadratic in the dynamical
variables.

In Sec. 2, we shall show that another point of view
is possible which does not depend on the ad hoc
introduction of the quadratic Hamiltonian for its
Lie algebra. This is done by deriving the group
U(m) as the symmetry group of a 2n -dimensional
curved phase space, i.e., the group of holonomy of
a Hamiltonian space endowed with a Riemann
metric. In this case the Lie algebra of the group
is seen to arise quite naturally from the g-do—
main of a set of m X m curvature matrices R,

R g, ,d%% A dx) [of the linear Hermitian tangent
space of the curved phase space M, (x )], just as
the Lie algebra of the flat phase space is spanned
by the ¢-dcmain of the initially assumed Hamil-
tonian matrlx H p Of the quadratic Hamiltonian H =
i 52“73 (zo = x2 +ip, ) of the Hermitian flat phase
space M, (2, z9).

1. GEOMETRY OF PHASE SPACE—U(n) AS THE
SYMMETRY GROUP OF FLAT PHASE SPACE

With a view to describing the internal symmetry
group U(m) as a symmetry group of a 2m -dimen-
sional classical phase space M, , we shall first
briefly describe the geometry of the space and in
particular its finite group of canonical transfor-
mations, i.e., the symplectic group SP(m) as Uln)
happens to be a subgroup of this group.

Following Lee,1 we shall begin with a 2n-dimen-
sional manifold M, covered with a system of co-
ordinate neighborhoods xi(i,7,%, ... =1, ... ,2m),
and we shall introduce a; asa skew symmetric
nonsingular covariant tensor in M, ., whose com-
ponents are to be analytic function of the x's. In
terms of exterior calculus, there is associated
with a;; the exterior differential form of degree
two, i.e.,

Q= adxi A dx, (1.1)
which is called the fundamental form of M, .
Application of exterior derivative to © yields

dQ = 3K, ,dxi A dxi A dxt, (1.2
where

day; 4y | 24y
=+ —=+ — (1. 3)
ijk ax” oxi  dxl

is called the “curvature tensor,” although it has
quite a different structure from the Riemann cur-
vature tensor which arises from the Riemann
metric, i.e., the symmetric metric G, is
flat when Kl .» = 0,1.e., whendQ = 0, so that by the
converse of Pomcaré's lemma, 1tse1f is the ex-
terior derivative of a Pfaffian form n = n,dx?, such
that

on;

Q=d =l< 1.4
n 2 Py dx ( )

)dx' A dxi,
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By describing U(n) as the symmetry group of a curved phase space, namely, by describing U(n) as the
group of holonomy of a Hamiltonian space endowed with a Riemannian metric, it is shown that the Lie
algebra of such a group is prior to any explicit Hamiltonian assumption.

INTRODUCTION

The purpose of this paper is to discuss a treatment

of the unitary group U(m) as the symmetry group
of phase space in the absence of any Hamiltonian
information. This is done by obtaining the group
U(m) as 2 symmetry group of a curved phase
space, i.e.,the group of holonomy of phase space,
which implies that the Hamiltonian space is
characterized by a Riemann connection. This is in
analogy to the holonomy group 0(3, 1) of the four-
dimensional space—time of general relativity.

In this context, we shall start in Sec.1 with the
usual “flat-space” description of the group U{m)
and show that the description of this group as the
symmetry group of a 2m-dimensional flat Hamil-
tonian space is possible, provided we consider
those canonical transformations which preserve
the angle between the dynamical variables, i.e.,
provided the Hamiltonian space is endowed with
an orthogonal metric, and:provided we also re-
strict the Hamiltonian (or the generating function)
so as to be at most quadratic in the dynamical
variables.

In Sec. 2, we shall show that another point of view
is possible which does not depend on the ad hoc
introduction of the quadratic Hamiltonian for its
Lie algebra. This is done by deriving the group
U(m) as the symmetry group of a 2n -dimensional
curved phase space, i.e., the group of holonomy of
a Hamiltonian space endowed with a Riemann
metric. In this case the Lie algebra of the group
is seen to arise quite naturally from the g-do—
main of a set of m X m curvature matrices R,

R g, ,d%% A dx) [of the linear Hermitian tangent
space of the curved phase space M, (x )], just as
the Lie algebra of the flat phase space is spanned
by the ¢-dcmain of the initially assumed Hamil-
tonian matrlx H p Of the quadratic Hamiltonian H =
i 52“73 (zo = x2 +ip, ) of the Hermitian flat phase
space M, (2, z9).

1. GEOMETRY OF PHASE SPACE—U(n) AS THE
SYMMETRY GROUP OF FLAT PHASE SPACE

With a view to describing the internal symmetry
group U(m) as a symmetry group of a 2m -dimen-
sional classical phase space M, , we shall first
briefly describe the geometry of the space and in
particular its finite group of canonical transfor-
mations, i.e., the symplectic group SP(m) as Uln)
happens to be a subgroup of this group.

Following Lee,1 we shall begin with a 2n-dimen-
sional manifold M, covered with a system of co-
ordinate neighborhoods xi(i,7,%, ... =1, ... ,2m),
and we shall introduce a; asa skew symmetric
nonsingular covariant tensor in M, ., whose com-
ponents are to be analytic function of the x's. In
terms of exterior calculus, there is associated
with a;; the exterior differential form of degree
two, i.e.,

Q= adxi A dx, (1.1)
which is called the fundamental form of M, .
Application of exterior derivative to © yields

dQ = 3K, ,dxi A dxi A dxt, (1.2
where

day; 4y | 24y
=+ —=+ — (1. 3)
ijk ax” oxi  dxl

is called the “curvature tensor,” although it has
quite a different structure from the Riemann cur-
vature tensor which arises from the Riemann
metric, i.e., the symmetric metric G, is
flat when Kl .» = 0,1.e., whendQ = 0, so that by the
converse of Pomcaré's lemma, 1tse1f is the ex-
terior derivative of a Pfaffian form n = n,dx?, such
that

on;

Q=d =l< 1.4
n 2 Py dx ( )

)dx' A dxi,
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where a; is given by

an; 377]'
x!  ox?
By a change of coordinates, this Pfaffian form can

be put in its well-known canonical form, i.e., on
setting

=) nelp): e

2m = 6,

(1.5)

(1.6
a=m + a«a,

we find that in the new coordinate system the fun-
damental tensor assumes the symplectic form

0 ba
a;; = <"6aB 0 B>: Bl (1.7)
where
a; = ali, aijaik = 6%

A locally flat M, is in particular a Hamiltonian
manifold; for, if we consider a system of curves in
M, ,, defined by a system of ordinary differential
equations of the form

dx'i ;; oH
F—aZJaTj:O, (1.8)

where H is a given function of x¢ and /. This last
equation, on account of (1.7), may be written in the
form

£ = 3H/dpy, P,=— oH/ox", (1.9)
which gives the pair of the well-known Hamilton-
ian equations with x> and p, as canonically conju-
gate dynamical variables.

Consider a dynamical system with Hamiltonian H.
In time 6{, we have
bxx = 6t(cH/op,), 0P, =— 04(oH/0x®),
(1.10)

so that the motion from the position at time /=0
to that at time 6¢ is an infinitesimal canonical
transformation, such that

x'e =xo + 5taH/3p,), bl =p,— 6t(aH/ax),
(1.11)

where x%,p stand for the coordinates and momenta
at time ¢ = 0, while primed quantities refer to time
67. The most general infinitesimal canonical
transformation is, however, given by

x'e=x%+ 85e(0F/dp,), b, =2>D,— 0€(0F/ax%),
(1.12)

where 6¢ is an infinitesimal parameter and F is a
function of (x, p,).

It can be shown that the canonical transformations
form an infinite Lie group if F is a one-valued
analytic function? of (x%,p,).

The change in a function G(x%,p_) as a result of an
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infinitesimal canonical transformation is then
given by

6G = 6€{G, F, (1.13)

where { , }is the Poisson bracket.

An “invariance group” of a dynamical system is
defined as any subgroup of the canonical transfor-
mations, which leave the Hamiltonian invariant;
that is, transformations such that

6H = 6#{H, F} = 0. (1.14)
In such cases, one considers only those systems
whose Hamiltonian is time-independent. The in-
variance dynamical group is then generated by the
one-valued constants of motion,

Now the group of canonical transformations is, so
to speak, the “symmetry group” of classical
mechanics as a whole, before any one explicit sys-
tem is considered. To describe what is meant by
“classical mechanics” in physics, one must focus
attention on the subalgebra of F. For example, in
Newtonian mechanics, one is usually given one
observable (the “energy” or “Hamiltonian”) in a
distinguished role,3 and several other observables,
which have relatively simple commutation rela-
tions with H playing the role of the linear and
angular momenta. Note that the observables,i.e.,
the F's (or the H's)4 that are at most quadratic in
the x* and p_, together, form a Lie algebra,i.e.,
those of the form5

F=Fxi+ Fxixd, (1.15)
where F, F, are constant coefficients with the
following matrix representation

Fi — <§0¢> Fij - <Fot6 chﬂ—>_
& F F

ap Yab

(1.16)

Those with F, = 0, however, generate the real sym-
plectic group SP(2m). They will also generate its
unitary subgroup U(m) provided the angle between
the dynamical variables is preserved.

Let us first consider the symplectic group. If we
substitute F = F;;xx/ in the infinitesimal canoni-
cal transformation (1. 12), which may also be ex-

pressed in terms of a single coordinate xi i.e.,as

x't=xt+ byt

=xi+ dea¥(oF/dx9), (1.17)
we get
x't= (614 eaihF )i
= (6%+ eFixd
= yixd, (1.18)

where for notational reasons we have replaced 6¢
by € and where yi = (6% + €F%) is a 2m X 2m con-
stant matrix with '
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dyi/ex* = 0, (1.19)
Consequently, if there exists a linear motion given
by dx'? = yidxJ, such that the bilinear form © =
a;dxi A dxd'is left invariant (as required by the
group of canonical transformations), we must have

17, :y?’]—yt’ (1. 20)
where ¢! denotes the transpose of the matrix y =
(yi)e

If we write
(A B> A=3),C =), 1.21)
Y= ’ o oL '
CD B = (y3), D = (),
then (1. 20) implies
AlC — CtA = 0,
DB —B'D =0, (1.22)
AD—C!B =1,
The following identity follows easily:
A B\'1 Dt —pB¢
'y—l = < > =( >. (1.23)
C D —Cct  A?

The above matrices define the so-called symplec-
tic group. (See for example Weyl$),

If further y is unitary,

,y"l — (,y*)t

or
t — Bt 1 t
(oo a) = i) .29
one finds, from (1. 24),
A =D, =—C. (1.25)

Hence, of course, we also verify that the following
relations:

& o
Fg:Fci:MB’

- (1.26)
Fg=—F§= NG
or .
Mg — Na Mae=M
Fi = ( § N >, where e ¢ (1.2m
Ng Mg I Ng =— N8
will hold.

The general form of the real unitary matrix is
therefore of the form

) A — B)
i = (1.28)
7] (B A ’
which satisfies
AB—B'A =0
’ (1.29)

AA + BB =1,

S. AL, SOFRONIOU

on account of the relations (1.22)., Hence if we
introduce a constant matrix

1 /i —il
S:—:( >,
EAVER

we can easily verify that the following relations
hold:

s*ls—(A+iB 0)
"= o A—iB) "

(1.30)

(1.31)

The last equation shows that the m X m matrix
(A + iB) is complex unitary, i.e.,

U=A+iB (1.32)
satisfies [by (1.29)]
(UM = UTU =1, (1.33)

It must be noted that the reduction of the group of
canonical transformations SP(2m) to its unitary
subgroup U(m), presupposes the introduction of an
orthogonal metric, i.e., a constant symmetric
metric into the Hamiltonian space. For if

o.A=(6°‘ﬁ 0 >
2,
TON0 B

is the metric tensor which preserves the angle be-
tween the dynamical variables, then under an arbi-
trary coordinate transformation x’¢ = f(x), not only
the volume element but also the line element,i.e,,
both

(1.34)

Q= aijdxi A dxi
and ds2 = Oijdxidxf

(1.35)

remain invariant; from this fact, we deduce that

ox* ox!

axk ax!
ax'i ox'd’

0,.=0

, (1.36)
v M oax't ox'd

’ ——
i = Ay

It is easily verified that the transformations

vivh = 0%,
(3vy/ax*) =0,

v .
Xt =yixd,
x5
7’?7""73"

with o given by the matrix

r=(s ")

satisfying
A'B — BtA =0,
AfA + BIB =1,

can be considered as the most general transforma-
tions satisfying Eq. (1. 36). Needless to say, the
subgroup of the general linear group GL(2m, R)
which leaves invariant a; is, by definition, the sym-
plectic group SP(2m), whilst that leaving invariant
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0; is, by definition, the orthogonal group O(2m).
But the subgroup of the general linear group which
leaves invariant both a;; and O, is the intersection
of the two groups SP(2m) and O(2m), [i.e., Um) =
SP(2m) n O(2m)] and is known as the real repre-
sentation of the unitary group. However, since for
particle physics it is the complex representation of
the group U(m) which plays a fundamental role, we
shall proceed to discuss the complex representa-
tion of the group.

Such a representation is obtained by setting

z0 = xo + ipa!

. (1.37)
2% = x%—ip

o

so that the real phase space M5, is now equivalent
to the complex phase space M, . In terms of the
new variables, the equations of motion equivalent
to (1. 8) assume the complex form

dzt_ 54 2F _ (1.38)
de 927
where
M 1508 —— aF
de azﬂ
(1.39a)
. oF
= — 1 ——
82*
ig_c_x = jdoB — oF
de oz8
. jﬁ (1. 39b)
0z,
is their explicit representation, since
0 — 158 ) 2z
aii=< ' ) z1=< ) (1. 40)
158 0 zo

In Eq. (1. 39), the generating function F has to be
regarded as a function of z¢, 2% satisfying the
reality condition

F(ze, za) = [F(ze, z’&)]"< = F*(zd, zgt). (1. 41)
For the specific case of the quadratic F under

considgration, namely, F = F; x’xJ the function
F(z9, z2) assumes the form

F= faﬂzazs, (1. 42)
where
Fog =My —iNyg = Fi% (1.43)

is a set of m2 linearly independent Hermitian
matrices. When the above special function (1, 42)
is inserted into the equations of motion (1. 39a), we
obtain
dz«

2 - —iFgzs,

de (1.44)
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which is the equation of motion for m coupled
harmonic oscillators.

For an infinitesimal transformation, we have
gl =z + pz
=z%— ie(“)f(g‘)ﬂzﬂ
= (6§ — ie(DFG )28
= Ugz8, (1. 45)

which defines the complex representation of the
real unitary transformatlons i.e,, the transforma-
tions defined by x'? = yixJ w1th F(a)("l indices
suppressed) as a set of m2 Hermitian matrices
spanning the Lie algebra of the complex unitary
group as they satisfy the following commutation
relations

[Py Fio] = 1 (&) rF (orr (1. 46)
2. THE GROUP U(m) AS THE SYMMETRY GROUP
OF THE CURVED PHASE SPACE

We shall now replace the orthogonal metric of the
phase space M,, by a Riemannian metric and thus
show that the Lie algebra of the group U(m) is no
longer dependent on an ad hoc stipulation of the
quadratic generating function. For in our case,
the Lie algebra of the group U(m) (which is the
group of holonomy of M, is spanned by the a4
domain of the anti~-Hermitian curvature tensor
Rg,; of the tangent-bundle of the base manifold
M, . The group U(m) will thus arise as the sym-
metry group of the curved phase space.

We thus begin with a curved phase manifold M, ,
namely, a Hamiltonian manifold endowed with a
Riemannian metric given by the square of the line
element

ds? = G dxidxl. (2.1)

The Riemannian metric gives rise to the Christof-
fel connection
= {1y = 200(Cu 4 S _ )

gk axk ax
which we shall assume to be nonintegrable, i.e.,
nonflat. If we denote by V, the operation of the

covariant derivative of the metric a;; of M,  with
respect to the symmetric connectlon ri ‘i We have

+ G

- (2.2)
oxJ

aa.;
Viay =—2— Tha;; — Thay; (2.3)
ox*k
from which
Kijk=vka + V; ],,+Y7jaki, (2. 4)
where once again
da; da oa
Ky=—2+ 2L =0 (2.5)
oxk ox ¢ oxi
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A phase manifold with the above metrical proper-
ties is known as an almost Kahlerian manifold.?

The nonintegrability of the Riemann connection of

M, ,, will give rise to the Riemann curvature ten-
sor
o', oIt
i= ——ily ryri,— rari 2.6
R 7kl axl axk kT ml> ( )

which will, however, prevent us from obtaining a
group of unitary transformations on such a space
since this would require a coordinate system in
which G, G = =0, i everywhere on a finite domain and
hence R']kl = 0, To remedy this situation, we in-
troduce at each point P of M, , a “tetrad” of 2m
independent vectors

a
1= ()
ef
and their duals
s = (%)
el
o

where the duality is defined by either of the equiva-
lent relations:

efej =06i, efel=20%, 2.7
A,B,C,...=1,...,2m,

with
eﬁe? =O,_ eie} =68}, efe} =0, . 8)
eﬁe} = 6‘.} eﬁel; + eﬁeg 6t

as their equivalent representation.

The 2m independent vectors e4,and their duals,

then serve to define

Oup=ejejGys  anp=ejefay, @.9)
where 5 0 0 5
0 - of > , a — < aﬂ)
AB <0 s AB — 6, O
(2.10)

are the orthogonal and symplectic metric tensors
of the linear tangent space T, attached to each
point P of M, .

If we consider another “tetrad” at the same point
P and put?
e'l = yBet, (2.11)
then |
O45=r580cps

should have again the form (2. 11) from which fact
we conclude that the matrix 4 should be of the form

-

ays=v$5% (2.12)

(2.13)

S. AL, SOFRONIOU

satisfying
A!'B—B!A =0,

2.14
A'A + BB =1, ( )
This means that y is a real representation of the
unitary transformation.

The complex representation of the above group is
obtained, as before, by setting

v, (ef —iel) (2.15)

=

and applying similarity transformation to y,i.e.,

Uo
S8 = *} (2.16)
0 U
where
. * * *
v’v? =58, wiwb =58, wivP =0,
o o o i o o 1 (2. 17)
vips + pipd = 6t
o« i o j
and
U=A+iB (2.18)

and where the latter matrix is unitary since it
obeys the unitarity conditions

Ultv =1 (2.19)
on account of the relations (2. 14). The real unitary
transformations (2. 11) are thus equivalent to

vi=Ugoi, (2.20)
It now remains to show that the Lie algebra of the
above group is spanned by the g-domain of the
curvature of R§,; of the complex tangent-bundle.
For this purpose we must apply covariant deriva-
tion on the “tetrad” »i. Thus, we obtain

Ve vd = (avf/ex®) + Tl = whyof, (2.21)
where w8, is the connection in the tangent-bundle
obeying the following anti-Hermiticity conditions

wﬂ +w§‘ =0. (2.22)

The last relation is a consequence of the fact that

(2.23)

i)
wk, | (2.24)

As covariant derivatives do not commute, in
general, we have
o — ViVila =

Y,V 7, (2. 25)
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where
auo‘?k a“o‘?z
= — 24 A B — g
ngl_ 2 p 5 . w:kwu walwak (2.26)

is the curvature tensor of the tangent-bundle
satisfying

RB
okl

r: =o. @2.27)
Bkl

On the other hand, we have by Ricci's identity®

Vlvkvg(—vkvlvfxz—nglvg, (2.28)
where R%,, is the Riemann curvature tensor of
M2 m .

Hence

8 — Pi yiph
R, = RY w308,

i (2.29)

If we now take a complex tangent vector ¢* =
v$(3/ éx %) around an infinitesimal loop from a point
P of the base space back to itself, we shall arrive
at a new tangent vector ¢« related to the old one
by the infinitesimal transformation

¢ = ¢ + b

2,30
= ¢ — LRg, ,dBdx* A dxl, (2.30)

where dx* A dx! is the oriented surface enclosed
by the loop. The above transformation is, in fact,
a unitary transformation,i.e.,
¢ = (0F — zRg, dx* N dx!)P
= Ug¢ﬂ

(2.31)

on account of the anti-Hermiticity of the curvature
(2. 27). The set of all such transformations con~
stitutes the holonomy group? of M,,,, where the &-
domain of the curvature R§,, spans the Lie alge-
bra of this group. Thus there exists a decomposi-
tion of the curvature

R, = iB@Fg,,, (2.32)
such that F?(a) are the generators of the group U(m),
obeying the bracket operation

(B Fiyl = i {3 oyFes (2.33)
where ¢-indices have been suppressed.
Substituting the expansion of the curvature in the
infinitesimal transformation (2. 31), we obtain

¢ = (5 — ie(DFg),)¢8, (2. 34)
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where

el@ = —é—B(:l)dxk A dxl (2. 35)
is the infinitesimal element of the holonomy group
U(m). The transformation (2. 34) has the form of
the infinitesimal transformation
2’0 = (5§ — icDFE) )28 (2. 36)
of the flat phase space considered earlier. Indeed,

the infinitesimal increment (with €(# replaced by
be(a@),

o =— f@e(a)p’:(o;)ﬂqbﬁ (2.37)
leads to the equations of motion
d¢o/de =— iFgqs, (2. 38)

which are of the same form as the equations of a
coupled harmonic oscillator
dze/de = — iFgz® (2. 39)

of the flat phase space. Moreover, by introducing
the generating function

F = ﬁae‘ba(pg’ (2. 40)

we can see that the equations of motion (2, 38)
assume the form

dge __ . oF
de ~ 00F "’

(2. 41)

which is the same as that of the equations of motion

dze
de

of flat phase space.

. oF

_1—_——_
02X

(2. 42)

The above derivation shows that the generating
function (2, 40) in the curved phase space can play
the role of the quadratic generating function of the
flat phase space. In this approach the generating
function is not introduced as an initial assumption
but has been shown to be a manifestation of the
underlying geometry. This approach has the addi-
tional merit of enabling one to give a geometric
description of the gauge fields as fields arising
from the Christoffel connection of the curved phase
space. In this case the holonomy group is an inter-
nal holonomy group of the space—time as it is
generated through a displacement of a vector
around a loop in the event space, rather than the
curved phase space. The details of this viewpoint
have been expounded elsewhere,10
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generated by H.



2286 S. HESKIA,

5 The generating function F (or H) has the power series expan-
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We demonstrate on a gas model that, if three-body events are neglected, the nonequilibrium correlations
extend over a distance proportional to the relaxation time of the one-body distribution function. For
homogeneous perturbations this correlation length is the mean free path, the relaxation time being the

mean free flight time. In the hydrodynamical limit
bations and the correlation length become infinite.

both the relaxation time of nonhomogeneous pertur-
This resolves the apparent contradistinction between

the recent claim of a finite correlation length for nonequilibrium (but homogeneous) gases and the
occurrence of correlations with an infinite range leading to divergences in the virial expansion of trans-
port coefficients which precisely describe hydrodynamical perturbations.

1. INTRODUCTION

The question of the range of the correlations in
nonequilibrium gases plays a crucial role in the
problem of the virial expansion of transport coef-
ficients.! In fact,the divergences occurring in

this expansion are closely connected to the correla-
tions with an inifinite range appearing at the Boltz-
mann approximation,? namely, when three-body
events are not accounted for. This last point, which
ismoreor lessimplicit inthe previous reference,?
will be wholly confirmed here (Sec. 5). Henceforth,
the recent discovery3 of correlation functions with
a finile range in a modeled kinetic theory of gases
may appear as being in contradistinction with the
results found in the search of a virial expansion
for the collision operator.

In fact the nonequilibrium correlations with an
infinite range appear when one assumes, after
Bogoliubov,4 a “synchronization” between the one-
and two-body distribution functions, the two-body
distribution functions being calculated by consider-
ing the one-body distribution function as stationary,
although a nonequilibrium distribution function is
certainly nonstationary in the absence of any con-
stant external source of disturbance, as usually
assumed. And it is not surprising that the corre-
lation with an infinite range may be removed by
dropping this synchronization assumption, and by
solving simultaneously the equations relating the
one- and two-body distribution functions in the low
density limit. This has been done® for particular
models, and correlations with a finite range have
actually appeared.

However, it may be emphasized that, in these
works, 3,5 the range of the nonequilibrium correla-
tions appears to be roughly proportional to the
relaxation time of the one-body distribution func-

tion, when three-body events are neglected. This
can be understood as follows: When one neglects
three-body events and makes the stosszahlansatz,
two particles which collide become correlated
after the collision in a nonequilibrium gas and re-
main indefinitely correlated after this collision

if the effect of the other particles is neglected. In
this way® binary collisions constitutes in a non-
equilibrium system a “source” of correlations
located at |ry — ry|~ 7y(ry = range of the inter-
molecular forces). If three-body collisions are not
accounted for, there is no “sink” for these non-
equilibrium correlations which, once they have
been created at a relative distance 7, propagate
freely among the rectilinear free motion. That ex-
plains why, in this approximation (with no three-
body events), the undamped peak of correlation
corresponds to a relative distance increasing as
lv; — v, lt, the spatial width of this peak being of
order |vy; —v,lt ,t, being the relaxation time of
the system: In fact, the “source” of correlation
has a lifetime ¢ , since it disappears when the
equilibrium state is reached. Calling “correlation
length” the spatial width of the peak of maximum
correlation, this correlation length is proportional
to the relaxation time of the system. Hence, the
existence of correlations with an infinite range is
connected with the infinite relaxation times which
may appear in nonequilibrium phenomena. When
the nonequilibrium state is homogeneous, namely,
when the one-body distribution function does not
depend on the position, the gas reaches an equili-
brium state with a finite time rate, of order of the
mean free flight time, so that the assumption of
synchronization is incorrect for correlation range
of order or larger than the mean free path. On the
contrary, when one studies the relaxation of a per-
turbed one-body distribution function which depends
on the position, e.g., as ¢ & T, one finds in the hy-
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We demonstrate on a gas model that, if three-body events are neglected, the nonequilibrium correlations
extend over a distance proportional to the relaxation time of the one-body distribution function. For
homogeneous perturbations this correlation length is the mean free path, the relaxation time being the

mean free flight time. In the hydrodynamical limit
bations and the correlation length become infinite.

both the relaxation time of nonhomogeneous pertur-
This resolves the apparent contradistinction between

the recent claim of a finite correlation length for nonequilibrium (but homogeneous) gases and the
occurrence of correlations with an infinite range leading to divergences in the virial expansion of trans-
port coefficients which precisely describe hydrodynamical perturbations.

1. INTRODUCTION

The question of the range of the correlations in
nonequilibrium gases plays a crucial role in the
problem of the virial expansion of transport coef-
ficients.! In fact,the divergences occurring in

this expansion are closely connected to the correla-
tions with an inifinite range appearing at the Boltz-
mann approximation,? namely, when three-body
events are not accounted for. This last point, which
ismoreor lessimplicit inthe previous reference,?
will be wholly confirmed here (Sec. 5). Henceforth,
the recent discovery3 of correlation functions with
a finile range in a modeled kinetic theory of gases
may appear as being in contradistinction with the
results found in the search of a virial expansion
for the collision operator.

In fact the nonequilibrium correlations with an
infinite range appear when one assumes, after
Bogoliubov,4 a “synchronization” between the one-
and two-body distribution functions, the two-body
distribution functions being calculated by consider-
ing the one-body distribution function as stationary,
although a nonequilibrium distribution function is
certainly nonstationary in the absence of any con-
stant external source of disturbance, as usually
assumed. And it is not surprising that the corre-
lation with an infinite range may be removed by
dropping this synchronization assumption, and by
solving simultaneously the equations relating the
one- and two-body distribution functions in the low
density limit. This has been done® for particular
models, and correlations with a finite range have
actually appeared.

However, it may be emphasized that, in these
works, 3,5 the range of the nonequilibrium correla-
tions appears to be roughly proportional to the
relaxation time of the one-body distribution func-

tion, when three-body events are neglected. This
can be understood as follows: When one neglects
three-body events and makes the stosszahlansatz,
two particles which collide become correlated
after the collision in a nonequilibrium gas and re-
main indefinitely correlated after this collision

if the effect of the other particles is neglected. In
this way® binary collisions constitutes in a non-
equilibrium system a “source” of correlations
located at |ry — ry|~ 7y(ry = range of the inter-
molecular forces). If three-body collisions are not
accounted for, there is no “sink” for these non-
equilibrium correlations which, once they have
been created at a relative distance 7, propagate
freely among the rectilinear free motion. That ex-
plains why, in this approximation (with no three-
body events), the undamped peak of correlation
corresponds to a relative distance increasing as
lv; — v, lt, the spatial width of this peak being of
order |vy; —v,lt ,t, being the relaxation time of
the system: In fact, the “source” of correlation
has a lifetime ¢ , since it disappears when the
equilibrium state is reached. Calling “correlation
length” the spatial width of the peak of maximum
correlation, this correlation length is proportional
to the relaxation time of the system. Hence, the
existence of correlations with an infinite range is
connected with the infinite relaxation times which
may appear in nonequilibrium phenomena. When
the nonequilibrium state is homogeneous, namely,
when the one-body distribution function does not
depend on the position, the gas reaches an equili-
brium state with a finite time rate, of order of the
mean free flight time, so that the assumption of
synchronization is incorrect for correlation range
of order or larger than the mean free path. On the
contrary, when one studies the relaxation of a per-
turbed one-body distribution function which depends
on the position, e.g., as ¢ & T, one finds in the hy-
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drodynamical limit (¢ = 0) some relaxation pro-
cesses whose time rate goes to infinity as 22
And in this hydrodynamical limit, the assumption
of synchronization can be considered as valid,
since the one-body distribution function is station-
ary with an accuracy as great as desired. This re-
mark is of a crucial importance for the study of
the transport coefficients, since it can be easily
seen” that one is dealing with a nonequilibrium hy-
drodynamical state when one tries to obtain these
transport coefficients by means of the Chapman-
Enskog method. Hence the synchronization as-
sumption is convenient for this case.

The aim of this paper is twofold: first, the pre-
ceding statements about the range of correlations
at the Boltzmann order are verified on a gas
model both for a homogeneous and a hydro-
dynamic nonequilibrium state; it is shown further
that the divergences of the virial expansion of the
collision operator may be considered as originat-
ing from the correlations with an infinite range
appearing at the Boltzmann order.

Two features of the studied model render it very
suitable for this study:

(1) The interaction law is of the “hard-core”
type, so that, at the Boltzmann approximation, the
collision operator is exactly Markovian and no
“synchronization” assumption is needed to derive
the collision operator in the low density limit;

(2) The correlation function may be readily de-
duced from the one-body distribution function.
Further, in order to minimize difficulties usually
encountered by solving the complete Boltzmann
equation, we have chosen one of the simplest model
of gas;the Lorentz gas of light particles colliding
with fixed hard spheres. This model has been the
subject of detailed investigations®; the transport
equation may be solved for perturbation varying in
space as e k-r _and this solution joins the usual dif-
fusion solution decaying as e~#22¢ in the hydro-
dynamic limit £ — 0. The Boltzmann equation of
this model will be given in Sec. 2,and it will be ex-
plained how to deduce the correlation function from
the one-body distribution functions when three-
body events are neglected.

In Sec. 3, it will be shown that, for homogeneous
perturbations, the correlation length is actually
finite of the order of mean free path.

In Sec. 4, the Boltzmann equation is solved for a
perturbed one-body distribution function varying in
space as e’ T _and it will be shown that, in the
limit 2 — 0, the perturbation decreases at { > © as
e D*t yielding nonequilibrium correlation with an
infinite range.

In Sec. 5, we shall relate the divergences appearing
in the virial expansion of the collision operator
and the infinite range of the Boltzmann order cor-
relations, which actually exists in nonhydrody-
namic nonequilibrium states, as shown in Sec. 4.
For that purpose we shall use a recent derivation?
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of the Ring collision operator, this collision opera-
tor being the sum of the most diverging terms
appearing at each order in the virial expansion of
the collision operator. In particular, we shall be
able to express in a closed form this collision
operator from the Boltzmann order correlation
function, Studying further the density expansion
of this collision operator, we shall find a diver-
gence at the order n3 which is removed when an
upper bound for the range of the Boltzmann order
correlations is arbitrarily introduced.

In the conclusion, we examine briefly the problem
of the actual existence of these infinite-range
correlations, and the question whether the intro-
duction of three- and many-body events do really
cut the nonequilibrium correlation at a micro-
scopic distance.

2. KINETIC THEORY OF A LORENTZ GAS OF
HARD SPHERES

In this section, it will be shown that for a Lorentz
gas of hard spheres, the one-body distribution func-
tion (or distribution function of a light particle) is
given by the solution of a self-consistent Markovian
equation; furthermore, the correlation function will
be given as an explicit function of the distribution
function of a light particle.

Let us consider a system of light particles moving
in an array of N stationary and identical hard
spheres of radius ;. The positions of the hard
spheres are distributed at random, and there is no
mutual interaction between the spheres. Let R,
and R, be the positions of the centers of two hard
spheres (we do not exclude the possibility of an
“overlapping” situation with R, — R.| < 27,).
Furthermore, we assume that there is no mutual
interaction between the light particles, which are
of zero extension. Let Ry,...,R be the positions
of the hard spheres, and r and v the position and
the velocity of a light particle. The Liouville
equation for this system of (N + 1) particles, de-
duced by slightly modifying the Liouville equation
for a system of identical hard spheres? is

<i+ v-i+£xi>D=0, (2.1)

ot or =1

where D is the Gibbs distribution function in phase
space of the light particle and the hard spheres, D
being a function of r,v;R,,...,Ryand {,x; isa
singular operator which acts on D as

k;D(r,v;Ry,...,Ry|#)
= (u*v)5(r — R, + rqu)D(r,v; Ry, ... ’RNl t)
— (*v)8(r — R; — rqu)D(r,v;; Ry, ..., Ryl0).
(2.2)
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In (2.2)
r— R,
u= ’
|l‘ - Ri !
2 2\V2 (2.3)
v*z_v(l _zb_)+ zyv(l _b_> ,
. 73 7o r3
b being the impact parameter:
bzrou—-u'—zvv (2.4)

Since (2.1) is a Liouville equation, D is norma-
lized at any time by

far fav [dR,,.
We shall furthermore suppose that D is a sym-
metrical function of Ry,...,R,. In order to
avoid nonphysical situations in which a light par-
ticle would lie at time ¢ = 0 inside a hard sphere,
we suppose that at ¢ = 0 any light particle lies
outside any hard sphere, that is

.., JdRyD(t=0) = 1.

D(r,v;Ry,...,Rylt=0 =0, (2.5)

if there exists a label i(1 =i = N) such as

lr —R;| < rg.
Solving the Liouville Eq. (2. 1) by the method of
trajectories, we find at once that at any time £ = 0,

the exclusion condition (2. 6) remains fulfilled.
Let us now define the j-body distribution function

fj as

fj(r) \L Rl: L

Q\i-1 N1
=(=)  —2L __ [4R,,,,..., [dR,D,
(N) W —j+ 1)!f i1 SRy .6)

S R;_1lD)

© being the volume of the box containing the
system.

The equations of the BBGKY hierarchy yield for the
lowest orders:

(—a- + v'a%)fl(r,vlt) = nvfdb{fz(r, vir+ rouls)

ot
—folr, vy 7 —roult)l, (2.7)
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J 3 i
—+ ve—+ K r,v;R,|¢
<at ar 1>jz( iRy 10)

= nvfdb{_fs(r, v Ry, T+ roult)

~ fa(r, v; Ry, T — roul o)}, (2.8)
where the integration on the right-hand side of
(2.7) and (2. 8) extends over the impact parameter
b, a vector limited to a circle of radius », in the
plane perpendicular to v; » is the number density
of hard spheres (n = N/Q),u is the function of v
and b defined in

vou=b+ (v/v)(r% —b2)1/2

and v* is the function of b and v defined in Eq.
(2.3).

The system of Eqgs. (2. 7) and (2. 8) is open, since
the function f, cannot yet be calculated from f,
and f.

However, in the low density limit, one may derive
(see Appendix A) from (2. 7) and (2. 8) a Boltzmann
equation for f, which is Markovian. Let us point
out that this can be done without recourse to some
synchronization assumption, and by assuming that
at ¢ = 0, the only correlations present in the gas
stem from the exclusion condition (2. 5). This
Boltzmann kinetic equation reads for ¢ = 0:

= nv [ab[f1(r,v*|t) — f1(r,v]D)]. (2.9)
Furthermore, in the same approximation, the
correlation function g(r, v; R[#) defined by

g, v; Rit) = fo(r,v; RIt) — f1(x,v]t), (2.10a)

may be deduced from f,; in a rather simple way
(see Appendix A). This correlation function at the
Boltzmann order g is a linear functional of f,, the
form of which depends on the domain of phase
space (r,v; R) in which g, takes its value. This
functional can be described as follows:

(i) Let us consider the domain A; (shaded region
in Fig. 1) defined by

veuz=0 (2.10b)
and

7qu*v = V*(r — R) =7rpuev + 02, (2.10c)

u being any vector of the sphere of unit radius.

To any point of A,, there correspond two vectors
u and b and a time 1 such as

b=r—R—!°—(Ej;—R~)v, b2 =7, (2.11)

rou="b+ ‘vL (r§ —b2)1/2, (2.12)
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_v(r—R) u-w

2 > (2.13)
v v

T To-

In A, the value of g, reads:

g5(r, v;RIt) = fi(x —wr,v*|t —7)

—file —vr,vlt— 1) (2.14)
(ii) In the domain A, defined by |r — R| < r(,g is
determined by the exclusion condition which yields
at any order in the density

gr,v; Rl = ~ f1(r,v]H). (2.15)
(iii) In the domain Aj, which is the complement of
A, U A, in phase space (r,v;R):

g5r,v;R(f) = 0. (2.16)
To summarize, we have in the low density limit, a
single Eq. (2. 9) for f; which is both self-consisten/
and Mavkovian. The form of this equation depends
on the value of f; and of its first derivatives at
only one specified time. This equation has been
derived without any recourse to a “time-scaling.”
Because of the simple properties of this model,
we shall be able to derive, in Sec 3, the exact ex-
pressions for f) and g, for both homogeneous per-
turbations (independent of r) and inhomogeneous
perturbations (dependent of r).

3. HOMOGENEOUS PERTURBATIONS IN THE
LORENTZ GAS OF HARD SPHERES

We have demonstrated in Sec 2 that for this model,
fy is determined by the solution of Eq. (2.9) and
that once f; is known, the value of g, can be cal-
culated from (2. 14), (2. 15), and (2. 16).

As it is well known, the classical scattering by a
hard sphere is isotropic,10 and (2.9) may be
written as

0 0
(g; + v'a—;- + nnrgv)fl(r,v\t)

= inov§ [dofi(x,vD). (3.1)

On the right-hand side of (3. 1), the integral ex-
tends over the surface of the unit sphere, since

7=v/v.

To simplify (3.1), one may notice that in the
course of time, the modulus of the velocity of a
light particle is constant, thus one may restrict
oneself to a system in which this modulus has
only one value, say v,. In this case, f;(r, v{{) may
be written as

file,vlt) = (1/03)6(v — vo)fi(r, 518). (3.2)

Putting now v = wnrvy, Eq. (3. 1) yields
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- v -
(—§—+ voﬁ'—aa;‘*' v)fl(r,vlt) = ;1—1; fdvf]_(l‘,vlt).(s.:;)

Let us consider an homogeneous nonequilibrium
state, namely, a function f; which does not depend
on r. The solution of (3. 3) is elementary for this
case,and reads:

AGE
= [f1(B1t = 0) — (1/4n) [asf, (D]t = O)fe~ut
+ (1/4m)[ddf1 (51t = 0), (3.4)
The corresponding value of g, has various forms,

depending on the domain of phase space in which
&g takes its value;

ind;, g;=0, (3. 5a)

in Ay, gz=— (1/oR)o(v — vp)fy(5lt). (3.5D)

The range of the correlations is obviously 7, in
the domains A, and A 5.
In A4, the value of g is obtained from (2. 20) and
(3.4) and reads

} (3.6)

gs= W lt=0) — fi(vlt=0)]
t. (3.7

[ ( (*3 —b2)1/2  §+(r — R)
Xexp|vit+ —

Vg Vg

Let us recall that from the definition of A,
(13 —bV2  fo(r —R) _

Vo Vo

0=t+

For given values of b and 7, the function on the
right-hand side of (3. 6) has an undamped peak
when

oo (r —R) = vot — (r§ — b2)1/2

or, equivalently, when { = 7.
This maximum of g is given by

gylt=1)=f1(v* |t =0) — fi(v|t=0).

The spatial width of this peak is vyv~1 for large
values of {,as it can be checked at once from
(3.6).

One recovers the behavior of g; which has been
already found: g, has an undamped maximum, with
a spatial width of the order of the mean free path,
and this peak is located at a separation distance
increasing as vgt.

However it is clear from (2. 14) and (3. 6), that the
width of the maximum of g, strongly depends on
the relaxation time of f;. This time is v~1 for
homogeneous perturbations, but for a perturbation
which depends on r, another relaxation time
appears, which is as large as desired, and the
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above conclusions about the range of the correla-
tions must be seriously revised.

4. INHOMOGENEOUS PERTURBATIONS IN THE
GAS MODEL

This section is devoted to the study of f; and g,
in the case of a perturbation of f; varying in space
like e’k'T, We shall assume again that the modulus
of the velocity of the light particles takes only one
value, v,. Since the function f, (r, 7 |#) defined in
(3.2) will depend on r like ¢k T, one defines
fk(l;,t) by

(r, 918) = fill¥ | Deikr, (4.1)
Furthermore, let us put y = k- o/k and call ¢ the
angle of ¥ in the plane perpendicular to k. The
function fk(v [¢) depends on ¢ and y,and may be
split as
(4.2)

Ko1) = wu; &) + 8o, u; t),
where

Vs ) = (1/20) &7 dof, (510,

This splitting allows us to deduce from Eq. (3. 3)
two uncoupled equations for & and y, the solution
of the first one being straightforward. These
equations read:

(£+ iKp + V)cp(a; 0 =0, 4.3)

(5% +iKp+ 1/>¢(u; t)= %jflldu Wlp; ), (4.4)

where K= kvo, and where the integral f do- i
occurring in (3. 3) has been written [27 do f_l
d“ (RN

From (4. 4)

®(0;8) = e~ WHiERIG (5t = 0). (4.5)

FIG. 2.
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This solution has the main feature encountered in
the study of homogeneous perturbations: It is
damped as e~¥, and the range of the corresponding
correlation function is the mean free path.

But the situation is quite different for what con-
cerns Y(u;{). Laplace transformed Eq. (4.4) reads

(2 + v+ iKp)Wlus2) = 3v 1 dug(u; 2) + wolp),
(4.6)
where yo(u) = y(p; ¢ = 0) and

Jo dtezty(u; 0.

The choice of Y (1) is submitted to some restric-
tions, as shown in the Appendix B.

Ylu; 2) =

Let us define p(z) by

plz) = [T dudlu;z). (4.7)
From (4. 6)
Ay, (2)
plg) = 2, (4.8)
1—3vAz)
where A, is the linear functional of Y, defined by
ap’ Yolw)
AIP (z): —11 : T (4.9)
0 z+ v+ iy
and where
1 2+ v +iK
AMz)= A, (z =~1n<—~—-——-—). 4.10)
( wet) = I Tk (

Equations (4. 9) and (4.10) define two functions of
z,A,and A, ,with a cut in the z plane; this cut be-
ing the segrient defined by z = — (v + iKp o),—1s=
po real = + 1.

Inverting the Laplace transformation, we have
from (4. 6)
~(vtiKp)¢

Y(u;t)=e Volu) + ' (u; 1), (4.11)
with @)
v [tio dz plz

t) = ezt — 22— (4,12

¥lus ) = f’°° 2 ° z+ v+ iKp (#.12)

In order to calculate y'(u; ¢) from (4. 12), one per-

forms the following contour integral:

ll/l ;t 14 dz 2t B()
p(“ )= f2'rre z+ v+ iy

(4.13)

The contour (C) excludes the cut of the function
p(z), and includes the imaginary axis (Fig. 2).
From (4. 8) the poles of p(z) are either the poles of
A %(z) or the roots of the equation
1—3vANz)=0. (4.14)
It is shown in Appendix B that the poles of A, (z)
are certainly located on the cut; thus they do not
contribute to Y, Iy and the only poles of the integrant
of (4.15) located inside (C) are the roots of (4.186).
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From (4.10), A(z) is real for real values of z, thus
(4. 14) may have root for z real only. From (4.10),

for x real.

2 K
=4 4,15
Alx) - arctanx T (4.15)

v
Thus — 7/K =A(X) =+ 7/K (x real) and (4.14) has
one root, and only one,

Xg=—V +K tanK/v, (4.16)

for K = jvm;if K >4vn, Eq. (4. 14) has no root.

Since xo(K = jvm) =— v,at K =— 37 the root x is
located on the cut; we shall not study this particu-
lar case and proceed from now on with K < jvr. In
this domain of values of K

K2 csc26 /v

£ (4.17)
v (xg + v+ iKpg)

exot A%(xo).

AR

Since x (K = 0) = 0,this contribution to y corres-
ponds to a weakly damped mode in the hydrodynamic
limit (K -» 0). This mode is simply the usual diffu-
sion mode, and it will lead ultimately to corre-
lations with an infinite length, as explained above.

However, before proceeding, we must deduce
V' (u; t) from the contour integral y. This can be
done by cutting out from y// the conf;'ibution of the
cut. We shall not give the details of calculation
and only furnish the result

Yy s 8 = (s 1) — (s 1), (4.18)
where Y/(p; ) is the contribution of the cut to y;
which is given by

Wl t) = — fe’“”*”‘“”[p_(u) + i (W]

i +1  du
— ——p-UtP
dm S T

e ikt [p_(1) — py(w)],
(4.19)
where P means “Cauchy principal part.”

The two functions p t(u) occurring in (4.19) are two
functions of a real variable —1 = p =+ 1 defined
from p(z) by

p (1) = lim p(— (v + iKW £ €). (4.20)
These functions p, can be explicited without dif-
ficulty, but these expressions are unimportant for
what follows.

From (4.19) it is obvious that y/(u;¢) is damped
as e~V for large values of ¢, so that any contribu-~
tion to f,(71¢) is damped like e, except for that
contribution arising from the pole x, which is
damped as e¢®[x, =0 from (4.16)].

Now we are able to calculate the correlation func-
tion g which exists in this inhomogeneous pertur-
bation. As it has been viewed in Sec. 3, the charac-
teristic range of the correlation is the mean free
path when the one-body distribution function is
damped like e~¥t, This result remains true for the
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contribution to fy(71f) damped like e~**, as one may
ensure from Egs, (2.14)~(2.16) which define g, as
a function of f;. Thus the only difference in the
correlation length which may exist, between the
homogeneous perturbations and the inhomogeneous
one, proceeds from the parttof &g linear in the con-
tribution ¥, damped like ™", Let g,  be that con-
tribution to g, proportional to ;. From (2.15) and
(2.16) the range of g, is 7, in the domains of
values of (r,v;R) A, and A3. In the domain A, of
this phase space, g, is given by (2.14) and, from
(3.2) and (4.1),

g5r, v; Ri#) = v526(v — vg) et BXr—vD[f (5% |t — 7)

—f{olt—1)], (4.21)

where * = v*/v, and where 7 is defined in (2.13).

The contribution to (7 [¢) damped like e*o is cal-
culated from Eqs. (4. 2), (4.12), (4.17),and (4.18),
and yields

K%esc®(K/v)e”" [2rag [ dy'f, (31t = 0)
2(xg + v + iKp) ° 1 Xt v+ ik
+ (terms damped like e~ ). (4.22)

L (o18) =

Inserting into (4. 21) the first term on the right-
hand side of (4.22), and taking the limit K — 0, one
obtains for gz ,

%{3—0{2/3v)(t~r)eik.(r—w)
x (. — u*)vg28(v — ) [dif, (Dt = 0),

gs,4T, Vi RI8) o
(4.23)
where p* = k*v*/kuv,.

Now, by inspection of (4.23) and from the definition
(2.13) of 7, it can be easily seen that the correla-
tion function &g, , has an undamped oscillating maxi-
mum for a separation distance along v such as ¢t =
T; the spatial width of this maximum being 3vv,/k?
and its amplitude of order K near K = 0.

Calling again the width of the maximum of g, the
“correlation length,” one concludes that in the
limit K— 0, correlations appear with an infinite
range. That is precisely what has been announced
in the introduction: In the hydrodynamical limit
there exist relaxation processes with a time rate
of order £~2,and during these relaxation processes
correlations appear with a very long range, if
three-body collisions are neglected.

5. LONG-RANGE CORRELATIONS AND
DIVERGENCES OF THE KINETIC THEORY

In this section we shall show that the divergences
occurring in the virial expansion of the collision
operator are closely connected to the correlations
with an infinite range which appear at the Boltz-
mann order in a nonequilibrium gas. In fact, we
have seen that we are allowed to suppose that f;
takes a constant nonequilibrium value when we are
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dealing in a hydrodynamic nonequilibrium state for
which the relaxation time and the scale of inhomo-
geneity are as large as desired. Considering the
value of g, given in Eq. (2. 14), it is obvious from
the definition of 7 that if f; does not depend on
space and time, (actually f; depends on r and ¢, but
as slowly as desired in the hydrodynamic limit)
then g, has a nonzero value in the region A; which
extends up to-infinity in the hydrodynamic limit.

We shall now examine the consequences of the
existence of this long-range correlation on the
virial expansion of the two-body correlation,and of
the collision term in the kinetic equation for f,.
More precisely we shall show that, if we introduce
an arbitrary cut for the range of the correlation
function g5, we remove the first divergence which

appear in the virial expansion of the collision term.

This proof will need an explicit connection between
g5 and the virial expansion of the collision opera-
tor. By means of a method which has been re-
cently explained,? we are able to express the
“Ring collision term” from g ; this Ring collision
term including precisely the most divergent terms
which appear at each order in the virial expansion
of the collision term. We shall only give a brief
outline of this method with a view to its application
in the present model.

First of all, the right-hand side of the second
equation of the BBGKY hierarchy, written in (2. 8),
is replaced by a sort of collision term leading to
a self-consistent system relating f, and f;. In the
present model, this equation for f, is obtained by
putting into the right-hand side of (2. 8) the follow-
ing value for fg:

= f]_(r, V)ﬁb]_(Rl)‘Pl(Rz)

+ g(r,v;Ry) ¢(Ry) + g(r, v; Ry)0; (R,),

f3(r, v;Ry, R,)
(5.1)

g being the above-defined correlation function, and
¢1(R;) the one-body distribution function for hard
spheres Due to the normalizations chosen here
and to the homogeneity of the array of hard
spheres:

¢1(R) =1,

Dealing as in Appendix A, we may deduce the fol-
lowing set of differential equations and of boundary
conditions relating g and f;:

(55; + u)fl(ﬁlt) - Z”;jdﬁfl(ﬁlt)

(5.2)

= 2 Janlg @ roul ) = £8; —7rquln)], (5.3a)
(58; + yove —+ V) 7(7,B18) = ﬁfdﬁg?(ii,ﬁlt), (5. 3b)
and .

£(B,7qu) = f1(D%) + £(5,%ru) (5. 3¢)
for

lul =1 and veu=z=0.

In order to write (5. 3), we have supposed that the
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velocity of the light particle has a well-defined
value v, so that f; and g depend on v only through
0 = v/vqy. Furthermore we have written (5. 3a) and
(j. 3b) as if the system were homogeneous, so that
/1 does not depend on r, and § only depends on &
and on the mutual distance g between the light
particle and the center of the fixed scatterer. How-
ever, we have in mind a nonequilibrium hydro-
dynamlc situation, in which f1 depends very slowly
onr and {: But to sunphfy the formalism we have
dropped this dependence of f, on r. Let us examine
briefly the connection between this assumption and
the c;xistence of a transport theory deduced from
5.3).

By assuming that f, takes a stationary nonequili-
brium value, we shall derive from (5. 3b) a syn-
chroneous value for &, which is the asymptotic
solution of (5.3b), f; being held constant.

Inserting this synchroneous value of ¢ into (5. 3a)
we shall obtain a Markovian collision operator
which reads

= §[0, A7, (5.4)
S being a linear function of fl which only depends
on the value of f; at time {. When we want to study
an inhomogeneous hydrodynamic state; we cannot
rule out the dependence on r and (5. 4) becomes

)
f1 + af
ot

S being in (5. 5) the same funclional as in (5.4). The
recourse to this synchronous functional is legiti-
mate, since in the hydrodynamic limit the (r, ¢) de-
pendence of f; is as slow as desired, and since the
nonlocal effects which could be accounted for
through a nonlocal collision operator have a finite,
microscopic scale of length and time. Further-
more, the existence of this local functional is
needed, if one wants to derive from the kinetic
equation a transport theory in the usual sense,
which would lead to local transport coefficients in
the hydrodynamic limit. However, as it has been
recently shown? there are strong indications

in favor of the nonexistence of this local collision
operator in two-dimensional mono-atomic gases.

- S[vl ifl(t: r)], (5.5)

We have studied in Sec. 4 the low density limit of S,
namely the Boltzmann collision operator. Further-
more, even in the approximation corresponding to
the system (5. 3a), we are not able to derive an
explicit collision operator. In fact we only need the
collision operator which includes the most diverg-
ing terms of the density expansion, or Ring colli-
sion operator.

Since [from (2.16)] £, is equal to zero in the region
A; of phase space, and since the right-hand side of
(5. 3a) involves precisely the value of £ in A3, the
corresponding contribution of £ is equal to zero.
But the Ring correlation function g, is not a priori
equal to zero in A5 and yields a nonvanishing con-
tribution when inserted into (5. 3a).
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Let us solve now (5. 6). For that purpose we use
the Fourier transform of gB which reads from
(2.14)-(2.186)

£50, D) =[5, yea, e B £1(5") — £1(0))
- fm!srodﬁe—ik'ﬂji ().

The domain A; occurring in (5. 6) depends on ¢:
However,as we are looking for a Markovian kinetic
operator, we need the value of the correlation func-
tion for ¢t = o, f, itself being considered as station-
ary. As it merges clearly from (2.13) and (2. 14),
this asymptotic value of g, is constant inthe infinite
domain &, for a given value of ¢ and b: Hence the
Fourier transform of this function must be con-
sidered in the sense of the distributions, and is
singular at £ = 0. This singularity will play a
major role in the occurrence of the divergences

of the virial expansion, this singularity may be
artificially removed as follows: Let us assume that

(5.6)

if 7(8,v) = 6, then g5, 7) = 0, (5.7)

6 being some fixed, positive time.

It may be easily seen from (2. 11) and (2. 12)(recall
that g = r — R) that the assumption (5. 7) yields a
correlation function g8, 17) which vanishes for

1Bl = vob + 7. Define as &, , (B, 7) the correla-
tion function at the Boltzmann order which is equal
to the asymptotic value of §, deduced from (2.14)-
(2. 16) except, that for g the domain A, is restric-
ted by the arbltrary condition (5. 7) thetrue asymp-
totic value of £, being obviously £5.0=0- From (5.6)
the Fourier transform of gB s is given by

£a. o, 9)
~iK.v0O ~-1 )
T ke Ja be X To[f, (%) — £,(5)]-
ey (5.8)

In order to go from (5. 6) to (5. 8), we have neglec-
ted the last term on the right-hand side of (5. 6)
which is well behaved at £ = 0 and does not yield
any trouble in the terms of order »n2 and n3 of the
density expansion of the Ring collision term;in
fact, we shall deal with divergences of the term of
order xn3 in this expansion.

:—-’[)0

Solving now (5. 3) in Fourier transform, with the
initial value gR(ﬁ, vlt =0)=0,we obtaln for the
asymptotic value of gR o9 gB 9 bemg held constant:

) 1+ v/2x(k) 1
v + ikev 1 —y/2x(R) 41

_ v 1
v+ kv 1 —v/2x(k)

Eryo (&, D) = = [dD g, ok, 5)

Mklgpe)

vV

+
v+ ikev

g’}g’e (k; 6)- (5~9)

To derive (5.9) we have used the method outlined
at the beginning of Sec. 4, and we have put
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AE) = Az = 0), (5.10a)
A(z) being defined in (4.10) and
digy ,(k, D)
Aklg, )= — [—B2 7 5. 10b
a £z, o) ]v + zk'vvo ( )

The Ring collision term is obtained by inserting
into the right-hand side of (5. 2a) the value of

gB o deduced from (5.9). Further it can be seen
that since g, 9(k 7) is the Fourier transform of a
function which is null in Ag, then vy o (&, 9)/

(v + ik+v) is the Fourier transform of a function
which is null too in A5;. Hence the last term on
the right-hand side of (5.9) does not contribute to
the Ring collision term, as being null in A, and
this Ring collision term reads:

ak 1 Va2
@13 1— k) [(1 * 2*('3))4"

x [dig, oK, D)

Sayo (0171) = v2

~ ;—A(k IgB,e)}

xfdﬁe“"“’°< LEN— (5.11)

v+ kvt p+ ik-v>'

Starting from this expression of the Ring collision
term, which accounts for the arbitrary cut limiting
the range of the correlation function gy ,, we shall
examine the following statements: The mtegral
over k defining S, o converges at £ = 0 for any
finite value of 6, and for 6 = « the same result
holds for the term of order #2 in the density ex-
pansions of Sgo and S, Ryo=0" ¢ But the term of order
n3 in this density expansion yields a diverging
integral for Sp -« while this divergence does not
appear when § remains finite.

A. Definition and Density Expansion of S R, 6=

The expression of S 6= is obtained by putting in-
to (5.9) the value of g, 8p,e=c0 deduced from (5. 6):

Ea,0 =alk, ) = 21040 (ko) [dbe ™ X PO f, (5*) — 7, ()].
(5.12)

Since near k= 0,8, - (k, 9) ~ k! and since from
(4.15) and (5.10a),1 — (k) ~ k-2,as k > 0, it
may be readily seen that the whole integrand on
the right-hand side of (5.11) is of order 22 near
k= 0,when § = w;and the integral converges at
k = 0 when multiplied by the volume element ex-
pressed in spherical coordinates k2dk.

Let us consider now the lowest-order term in the
virial expansion of S, ... It is calculated by ex-
panding the integrand in powers of » for any finite
value of % (recall that v «cn) and reads:

S gromeo (0171) 2 270

1 1 1
— 2 fasg, -, 5). (5.13
X(ik-v* ik-v>41rf ®s,0= G, ). ( )
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This collision term is again defined by an integral
which converges at £ = 0, since the integrand is of
order k=2 at k= 0.

There are many terms of order »3 in the virial ex-
pansion of S, ,,and we shall consider only one
term among them, since our object is not an ex-
haustive study of the divergences of the virial ex-
pansion of §;, ,. For example,from the density ex-
pansion of

11
v+ kv v+ ikev

a term rather similar to the contribution of order
n2 arises, except that the factor

(v~ )
ikev*  jkev

occurring in the right-hand side of (5.13) is to be
replaced by

_U[ 1 1}
(k*v*)2  (kev)2]’

and the corresponding integrant is of order k =0
(k-2 due to (kev)-2 multiplied by #~! due to &, ,_,

(k, 7)), and the integral diverges logar1thm1caliy
near k= 0.

B. Definition and Density Expansion of S, ; at
Finite 0

The integrand defining S; , depends linearly on
gB g- It may be seen further from (5. 8) and (5.12)
that gB 0=, (U,K) ~ k71 as k= 0, while gB o (0, k) re-
mains finite at £ = 0. More prec1se1y gBe(v k=0)
« §. Henceforth, if the integrand of S, Ry6=00 OT 2
term in its density expansion has been found to be
of order k-« near k = 0, the corresponding quan-
tity in S, , is of order k-a*1 near & = 0. In this
way, one merely deduces that the integrand of Sgre
is of order k-1 near k = 0, that its lowest-order
term in the virial expansion, of order »2, behaves
as k-1 near » = 0, and that its term of order n3 be-
haves as k~2 near k = 0 yielding a convergent con-
tribution of order »3 in the virial expansion S ,,
while the contribution of the same order inn
diverges for Sg ,_ ..

Now the connection between the long-range be-
havior of g, and the divergences of the virial ex-
pansion of Sy, 4., has been established.

6. CONCLUSION

We have shown that, in a nonequilibrium gas, the
occurrence of long-range correlations is no!/ due
to some incorrect assumption about the “syn-
chronization” between f; and g, and that these long-
range correlations exist in the hydrodynamic per-
turbations (k¥ — 0). We have shown further that the
divergences appearing in the virial expansion of
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the collision operator are closely connected with
the correlation with an infinite range appearing at
the Boltzmann order. The Ring collision operator
[its particular form valid for this model is given in
(5.11)] has been constructed in order to eliminate
these divergences. In fact, it accounts for the
“most dangerous divergences.”

In two (and three) dimensions this renormalized
virial expansion is free of divergences?2:11 for the
perfect Lorentz gas, at least for the lowest orders
in n. The infinite correlation length appearing in
the powers virial expansion are cut at the mean
free path by the introduction of these three-body
effects, even when the synchronization between f;
and g is assumed. But the situation is much more
complicated for two-dimensional gases with one
species of particles, and it has been shown2,6 that
by accounting for three-body events as explained
above, one finds a renormalized density expansion
with divergences.

Hence, in this last case the synchronization as-
sumption between g, and f; must be removed. But
it must be pointed out that, even in this case, the
relaxation time for f1 can be taken as long as de-
sired in the hydrodynamic limit.

APPENDIX A

We shall derive in this appendix the Boltzmann
equation for f; and the corresponding value of the
correlation function g;. For that purpose we shall
replace in (2. 8), f3 by its low density value /42
which yields:

7o),
(A1)

u being an unit vector such as veu <0, and ¢>(R )
being the one-body distribution functlon of the
hard spheres. Due to the normalization used
here, and to the homogeneity of the system of hard
spheres:

OR) = 1.

5P, v;Ry,r —rqult) = fi(r,vI)o(Ry)p(r —

(A2)

The condition (Al) expresses that, in the low den-
sity limit, the binary correlations arise from the
direc! interaction between particles only, and that
any effect of the surrounding particles on this
correlation is of a lowest order in n: in fact it may
be shown? that, under this assumption for f3, f, is
correctly described in the low density limit.

Inserting the value (Al) of f5 into (2. 8) and replac-
ing the singular term «,f, by a boundary con-
dition, we obtain

(5 + vr3e)e = oSt 10 = e vioas

for |r — R| > 705
Jolr, vy + voulf) = folr,v*;r + rqulf)  (A3b)

for |ul = 1 andveu = 0,
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folr,v;Rlt) = (A3c)

for |r — R| < .

Condition (A3b) is obtained by integrating (2. 8)
over a small volume element across the surface
Ir — R| = 7,5, and (A3c) stems from the exclusion
condition (2.5). Conditions (A3b) and (A3c) are
valid even outside the low density limit.

Now the problem is how to derive from (2.7) and
(A3) the Boltzmann equation for f; and compute
the corresponding value for f,. For that purpose
we shall make the stosszahlansatz. In fact, we
shall only need an “initial” stosszahlansatz, taking
as an initial condition for f,,

folr,v;R[t=0)=0 for [r—R| <7, (Ada)
fole,v; Rt = 0) = fi(r,v]t = 0)
for ir —R| > 7y, (Adb)

folr,vir —rgult = 0) = fi(r, vt = 0)

foruz=1, (Adc)
and veu =0 and
folr,vir — roult = 0) = fi(r,v*[t = 0)

foruz=1, (A44d)

and veu > 0.

To proceed, we shall suppose that, a priori, (Adc)
which is valid at = 0 remains true at any time

¢t > 0. Partially solving the system relating f; and
Jfo, we shall prove a posieriori that this condition
(Ad4c) remains fulfilled at any time ¢ > 0.

Defining now the correlation function g by

gr, v;Rit) = folr,v; R|t) — f,(r,v; R|1), (A5)
one shows at once from (A3a) and from the stoss-
zahlansatz for f, that g is given at the Boltzmann

order by the solution of

A6
y (A6)
provided that |r — R| >r,. The correlation func-
tion g, is equally defined by an initial conditionde-
duced from (A4a) and (A4b), plus a boundary con-
dition deduced from the stosszahlansatz, namely,

<a + v )gB(r v;Rit) =0,
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from the assumption that (A4c) is valid at any
time { = 0. Integrating now (A6) by the method of
the trajectories, one shows that, the stosszahlan-
satz (Adc) is actually true at any time ¢ = 0, and
that in the regions of phase space (r, v; R) called
A, Ay and Ag,g is actually given by (2.14)-
(2.16).

Further, since (A4c) is true at any time ¢ = 0, (2. 9)
follows at once from (2.7).

APPENDIX B

In this appendix, it is shown that A
any value of z located outside the cut 2=
iKp){—1 = preal =+ 1),

For that purpose one notices that the perturba-
tion f; of the one-body distribution function must
check:

fl(l',

f1 o being the equilibrium value of the distribution
function of the light particles,a constant here. The
condition (B1) expresses simply the fact that the
whole distribution function f; + f1 o must be posi-
tive definite,as usual for a probablhty distri-
bution.

(z) is finite for
—(v+

51+ f1,0 20, (B1)

In Sec. 4, for simplicity, one has used a perturba-
tion e?k-r instead of cosker. In order to obtain
from the results of this section the true physical
quantities, one must add at any place the complex
conjugate, an imaginary distribution function being
meaningless. Thus the function fk(v |£) defined in
(4.1) must be real, and verifies, from (4. 1), by
replacing eik-r by (e1k o + g-ik. r)

+ f1,0 = fi, @18 = — fi,0- (B2)

Integrating (B2) over the angle ¢ and taking { = 0,
S1,0 = ¥olw) = — f1,0.
And the function A, (z) defined by

(B3)

f+1 d“d/o(#)
T+ iKy'

is obviously finite for any value of z outside the
cut.
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Equations which define a “consistent” set of “boundary” conditions, and hence a field, for a given set

of differential equations are derived from a variational principle. The equivalence of functionals
defined over an entire domain and functionals defined over only a subdomain, but with a surface term
“added to account for the contribution of the excluded subdomain, is exploited. The appropriate surface
term is found to satisfy the Hamilton-Jacobi equation. The formalism is specialized to neutron diffu-
sion theory, and it is demonstrated that Stark's double sweep method follows as a natural consequence of
this field theoretic formulation., The relation of this formalism to Pontryagin's Maximum Principle and
Bellman's Dynamic Programming is demonstrated for problems which can be characterized by mini-

mum variational principles.

1. INTRODUCTION

Many problems in mathematical physics are speci-
fied by a set of differential equations defined on an
interval 0 < x < L and an associated set of boun-
dary conditions at x =0 and x = L. It is well
known that if one is interested in the solution only
over some subinterval 0 < x < z < L, and if the
“poundary” conditions can be specified at x = z, it
suffices to solve the equations only within the
interval 0 < x < z. The use of symmetry consi-
derations to provide “boundary” conditions at a
midplane is a familiar example.

If consistent “boundary” conditions could be speci-
fied at each point in the interval 0 < x < L, func-
tions which satisfied these “boundary” conditions
would, by definition, satisfy the original set of
differential equations and the original boundary
conditions at x = 0 and X = L. Such consistent
“pboundary” conditions may be thought of as a field
for the original set of differential equations.?

The purposes of this paper are to derive a con-
sistent set of “boundary” conditions (i.e., field
equations) from a variational argument and to
introduce a field theoretic formulation for neutron
diffusion theory. It is demonstrated that Stark's?2
method for solving the neutron diffusion equations,
which is widely used in one-dimensional problems,
is a natural consequence of this field theoretic
formulation.3

2. VARIATIONAL FIELD THEORY

It is well known from the calculus of variations?
that a variational functional can be associated with
a set of differential equations and associated
boundary conditions. For example, the functional

T = [ dx Fix, 360,5'()] M

defined on the set of functions y,(x) (¢ = 237y y; in

the argument), which have continuous first deriva-
tives4 in 0 < x < L and satisfy prescribed con-
ditions at x = 0 and x = L, is stationary (i.e.,

6J = 0) about the functions j; (x) which satisfy

oF d

e F\ _ .
5};_%<§5f!)_0’ O<sx<L, j=1,,..,N,

)

and the prescribed conditions at x =0 and x = L.
(Prime indicates the total derivative with respect
to the independent variable, x in this case.)

If the appropriate boundary conditions can be
specified at some point x = z < L, the same func-
tions y, (x) can be determmed by solvmg Eqgs. (2)
on the 1nterva1 0 < x < 2, subject to the prescrib-
ed conditions at x = 0 and x = z. The determina-
tion of these boundary conditions is accomplished
by seeking a functional

= [ dx Fx, 30,9 0] = Glz,5()],  ©)

which is equivalent to the functional J in the sense
that J is also stationary about the functions y.(x)
which satisfy Eqgs. (2) on the interval 0 < x <L
and the prescribed conditions at x =0 and x = L.
Thus, we seek to replace a variational functional
defined on the interval 0 < x < L with a functional
defined on the interval 0 < x < z, which has a
surface term to account for the contribution of the
complementary interval z < x < L.

The surface term G is determined from the re-
quirement that 5J = 0 for the functions y (x) which
satisfy Eqs. (2). The general formula for the
variation of J is5

s 2L |aF d [oF
6J = 3 — o (==t
fo Jzzi {ay]. dx (ay]!

> (2
+ AT
7=l ay]

N 9F G 4
+ (b Zi X -3 ol (4)
The requirement 5J = 0 is satisfied if
oF  9G .
5}7—@;: ]_1"'°’N (5)
and
G
—F + E y! (6)
J ayJ

Using Egs. (5), Eq. (6) becomes

2623 @) _ ple,y(),57()]
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N .
+ 2 yy(e) W22 @] o, )
R Yj

where y/ is assumed to be given in terms of 3 and
9G/ay; by Egs. (5). Defining

H (z, y(2), ﬂ%%@) = —Flz,y(2),v'(2)]

N
+ 3 y/(e) PGl 0, (®)
e Yj
Eq.(7) becomes
3G B
S +H =0, (9)

which is the Hamilton~Jacobi equation.®6

If Egs. (5) and (6) are satisfied, the second and
third terms in Eq. (4) vanish. It is now shown that
Eqgs. (5) and (7) being satisfied is sufficient to
ensure that Egs. (2) are satisfied, and hence that
&J = 0. By virtue of Egs. (5)

d [ ?F 4 (3G 26 |, & azg
LY==\ = + !
dx (33’1") dx (ai‘b) 0x0y; lZi 399, Y

I Te IR S Te- .
= {—=—+ = = .
9y <8x zzzi Yi 83‘i)’ J=Leo N

Using Eq. (7), this reduces to

d (eFN _AF -y
-d—x- ay], - ayj’ 3
which are Egs. (2).

A boundary condition for G follows from the re-
quirement that J and J are equivalent for all z,
0 < z < L, and particularly for z = L:
G[L,y(L)] = 0. (10)
Thus, functions 7, which satisfy Egs. (5) and (7) or
(9) also satisfy Iqu. (2). In this sense, Egs. (5) are
referred to as the field equations corresponding
to the variational functional of Eq.(1). Equations
(5) suggest that G has the form of a field potential.

The equivalence of J and J at z = 0 implies
L
—G[0,5(@)] =Jly] = [ dx Flx,5(x),5' ().

Consequently, the stationary value of the variation-
al functional of Eq. (1) can be obtained by solving
Egs. (5) and (7) for G[0, y(0)].

3. MONOENERGETIC NEUTRON DIFFUSION
THEORY

The general results of the preceeding section can
readily be specialized to one-dimensional mono-
energetic neutron diffusion theory,. In this case,
the function F, which is sometimes referred to as
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the Lagrangian density function, is

F(x, ¢, Qb’) =D(¢')? + (Za_ sz)‘bz - 2¢’S, (11)

where D, Z,, v, Z;, and S are the diffusion coeffici-
ent, absorption cross section, neutron yield per
fission, fission cross section, and source, respec-
tively. ¢ is the neutron flux.

For F given by Eq. (11), Eqgs. (2) reduce to the
familiar neutron diffusion equation

—(D¢') + (3, —vZe =, (12)
and the field equations, Egs. (5), reduce to
, _ 9G
209’ = 75+ (13)

The Hamilton-Jacobi equation, Eq. (7) or (9),
becomes

G 1 (9G\? —
o Iﬁ(?@) (%, - vI) @ +205=0,  (19)
where
G =Gz, ¢).
Boundary conditions of the general form
boD¢' (0) = Co¢ (0) + dp, (15)
b DP'(L) = Cyp(L) +d, (16)

are normally associated with the problem, and Eq.
(10) becomes

G[L, ¢ (L)] = 0. (17)
If we seek a solution to Eq. (14) of the form
G(Z, (b) = — (1'(2)(1)2 + 26(2)(1) + Y(Z)’ (18)

Stark's method? for solving Eq. (12) follows im-
mediately. Substituting Eq. (18) into Eq. (14) re-
sults in
4 0202 2089 | B2
—$2a +_DL ~ 2 (3, - vE)e?
+ 20S + 2¢p’ + 4/ = 0.

This equation is satisfied for arbitrary ¢ if

a’(z) — [@2(2)/D] = — (Z,~ VE)), (19)

B'(2) — a(z)8(z)/D =~ S, (20)

y'(z) + B2(z)/D = 0. (21)
Using Eq. (18), Eq. (13) becomes

D¢’ (z) = — a(z)p(z) + B(2). (22)

Comparing Eg. (22) with the boundary condition of
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Eq. (15), for b, # 0, we obtain “initial” conditions
for o and @:

a(0) = — Cy/by,  B(0) =dy/ by, (23)
From Eq. (22) and the boundary condition of Eq.
(16), we obtain a “final” condition for ¢:

b,B(L) —d,
and using Eq. (18) in the boundary condition of
Eq. (17), we obtain a “final” condition for :
v(L) = a(L)p2(L) — 28(L)¢(L). (25)

Thus, Eqgs. (19) and (20) are solved by sweeping
from z = 0 to z = L, using the “initial” conditions
of Eq. (23). Then Eqgs. (21) and (22) are solved by
sweeping from z = L to z = 0, using the “final”
conditions of Egs. (24) and (25).

Note that if only the flux is sought, it is not neces-
sary to solve for y. In this case, the procedure is
identical to the method attributed to Stark,2 and
usually postulated on an ad hoc basis for solving
Eq. (12).7 It is interesting that this powerful and
widely used method is suggested almost immedi-
ately by the field theoretic formulation.

A simple example serves to illustrate some of the
concepts which have been discussed. Consider a
uniform critical slab nuclear reactor of half-
thickness L with the plane of symmetry at z = 0.
For this case, b, =C, =1,C, =d,=5b =d; =0,
and the “1n1t1al” and “fmal” conditions of Egs. (23)

-(25) become a(0) =8(0) = y(L) =¢(L) =0. It is
easy to demonstrate that Eqs. (19)-(22) are satis-
fied by

$(2) = cosyz, (26)

Q(Z)——-—t -2‘-, (27)

B(z) = ¥(z) = 0, (28)
and hence, from Eq. (18),

G(z) = —Gl%) smL (29)

As mentioned previously, G(z) is interpreted as a
“surface” term which accounts for the contribu-
tion to the functional J from the interval z <«

< L. Using Eqs.(26) and (11), with S =0, it is
readily shown that J = 0. On the other hand

2
J= fdx[ (2L> sin2%+(2 vZ;) cos? ZL}

nD 74
+ o=
L 'r-

STACEY,

JR.

Making use of the criticality condition
%, — vE; = —D(n/2L)2,

direct integration yields

:‘74‘17 +%)s1nﬁzo.

Alternatively, it is noted that

jjdx[DGL_) 2 sin g7 + (3, — v3)) cos? ?ﬂfo

wD _
—ESITI———G()

Thus, G(z) is, in fact, the contribution to the func-
tional J from the interval z < x < L.

The stationary value of the variational functional
of Eq. (1), with F given by Eq.(11) and S = 0, is
zero. From Eq.(29), it is seen that G[0, ¢ (0)] = 0,
in agreement with the conclusion of the previous
section.

4. MULTIGROUP NEUTRON DIFFUSION
THEORY

An appropriate bilinear variational functional for
the one-dimensional multigroup neutron diffusion
equations may be constructed from the Lagrangian
density function

F= Zz: < e Dpdg + pAS, — ¢F ngE, Fo by

- ¢g*§ Kog1 9 — bSy — Sg*¢g>’ (30)
where D, A, x, F, and K are the diffusion coefficient,
removal cross section, fission spectrum, fission
cross section times the fission neutron yield, and
the scattering transference cross section, res-
pectively, in the multigroup representation. ¢*

and S*are the adjoint flux and source, respectively.

The field equations, Eqgs. (5), become

, . 0G

. — . f
gg——-—a " —1,..., no. o1 groups, (31)
;= 9G —
D, ¢} =25 g=1,,..,no.of groups, (32)

and the Hamilton-Jacobi equation, Eq. (7) or (9),
becomes

3G 1 /eG oG

7z ? [D;, (ﬁ; §?4)_g> —pA b t ¢;Xg§Fg' 8’
* d);ﬁ,: Kgg'(bg' + ¢;Sg + Sg*d)g} = 33)

where

6 =c(nTepTe,).
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Equations (31) associate the current with the func-
tional derivative of G with respect to the adjoint
flux, while Eqgs. (32) associate the adjoint current
with the functional derivative of G with respect to
the flux.

Analogous to the procedure of the previous section,
we seek a bilinear solution to Eg. (33) of the form

=§[ 05ty (26, + B2} * (a0, *+ e )}
(34)

Substituting Eq. (34) into Eq. (33) results in a single
scalar equation which is, anticipating subsequent
development, written in matrix notation:

[¢*'a’¢ + ¢¥aDlag — p*Ad + p*xFTp + $*Kop|
+ [¢¥B’ + ¢*aD g + $*8)

+[y'T¢ + yIDlap + S¥¢) + [I70' +176] =0, (35)
where ¢*, ¢, B, v, x, F, and @ are column vectors
whose elements are the corresponding group com-
ponents, @ is a column vector whose elements are
the group components Bgyg/D and I is a column
vector with all elements umty a,D, A and K are
square matrices whose elemerits are the corres-
ponding group components. Equation (35) is satis-
fied for arbitrary ¢* and ¢ if the following matrix
equations are satisfied by a, 8, y, and Q:

a’' —aDla =~ [A— xFT - K], (36)
g’ —aD1p =S, 37
y'T—y™Dla = §* (38)
Q +9=0. (39)

The similarity between Eqgs. (36)-(39) and Eqgs. (19)
—(21) suggests that the former may be considered
as a multigroup extension of Stark's method.8

Assuming that a general set of homogeneous
boundary conditions

b3 D5¢4(0) = 25 C5¥ 6, (0), (40)

bIDAL) = 25 C5 9, L) (41)

are associated with the flux, it can be demonstrat-
ed that the appropriate boundary conditions for the
adjoint flux are

g’g
O
g'g

C
Dor(L) =% %
& b1

D;'(0) = (42)

(L),

g =1,...,no0.of groups. (43)
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For G given by Eq. (34), the field equations (31)
and (32) become

Doj2) = 27 a,,(2)b,(2) + B(2), (44)
D¢¥'(2) = gE, a,, (2)0}(2) + v, (2),
g=1,...,no0.of groups. (45)

Comparing Egs. (44) and (45) with Eqs. (40)~(43),
and using the boundary condition of Eq. (10), we
obtain the “initial” conditions

@, (0) = C§'¥/bg,

ﬁg(o) = 'yg(O) =0, g8 =1,...,no0.0f groups
(46)
and the “final™ conditions
¢ (L) =A"1B(L), (47)
¢*(L) = ATy 1y(L), (48)
QL) =— @;; (L) T 0 (L), (L) + BLIGHL)
+ yg(L)tj)g(L)) , & =1,...,n0.0f groups. (49)
The matrix A has elements
AE = C¥/bE — a,, (L),
g£,&" =1,...,no.of groups. (50)

Thus, Eqgs. (36)-(38) are solved by sweeping from

z = 0to z = L, using the “initial” conditions of Eqs.
(46). Then Eqgs. (39), (44), and (45) are solved by
sweeping from z = L to z = 0, using the “final” con-
ditions of Egs. (47) and (48).

The formalism of this section was applied to a two-
group reflected slab model with nuclear properties
characteristic of a pressurized-water reactor.
The model was subcritical, and a uniform source
in the fast group was present in the core. The
thermal-group fission cross section was used as
a thermal-group adjoint source, so the stationary
value of the functional corresponded to the ther-
mal-group fission rate.

Neutron and adjoint fluxes for the problem are
shown in Fig.1, and G is shown in Fig. 2. (x =0
corresponds to the core midplane.) The magnitude
of G decreases rapidly in the reflector, consistent
with the decreasing contribution of the external
parts of the reflector to the functional J. The value
of G at x = 0 agrees with the value of the thermal-
group fission rate (the stationary value of the
functional) to within the numerical accuracy of the
calculation, in agreement with the conclusion of
Sec. 2.
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5. MAXIMUM PRINCIPLE AND DYNAMIC PRO-
GRAMMING

A slight variant of the procedure that was employ-
ed in Sec. 2 can be used to derive the Maximum
Principle? of Pontryagin and the Dynamic Pro-
gramming19 algorithm of Bellman.11 If the varia-
tional function of Eq. (1) represents a minimum

principle, then 6J = 0 when evaluated for the func-
tions y,(x) which satisfy Eqs. (2), and &J > 0 when
evaluaied for any other functions. Making the
same arguments as in Sec. 1, we seek an equivalent
functional

Jy]

~¢le,y @] + [ dx Flxy(), ()] (1)
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Because J, hence J, is 2 minimum principle, we
have

. X [aF a4 [oF\
6J = o4
fz ]Zjl {339 dax <ay].>

_ 5v.
f’ [83] ay:‘ Yj Y-z

N
X , aF | 8G
—(F — + 9=

Jﬁy

by, dx

\%

0. (52)

xX=Z

If we require that Eqgs. (2) be satisfied, and that

aF | 3G

= -—=0, .=1,...,N, 53
a7 j (53)
then, because 6x > 0,12
G aG
+
SETFH Z; ¥j 3 (54)

An argument similar to that given in Sec. 2 leads
to the conclusion that when the equality obtains in
Eq. (54), functions 3,, which satisfy Egs. (53) and
(54), also satisfy Eqs (2). Thus, this development
is completely equivalent to that of Sec. 2, and a
field theory could equally well be based on Egs. (53)
and (54), when the equality obtains in the latter.
Equation (10) would be replaced by G[0,y(0)] =0
in this case, and G[L, y(L)| would correspond to
the stationary value of the functional.

If we define
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G .
Y= —gh J=L. LN,
G
‘PNq(z) = - 3z
then Eq. (54) can be written
N
0 = max <1pN+1 + 7 vy — F) . (55)
y’ j=1

Equation (55) is the Maximum Principle of Pontry-
agin.

An alternate way of writing Eq. (54) is

_dG[z,y(2)] 2 F[z,y(2),3'(2)].

dz (56)

Integrating Eq. (56) over the subintervalz toz + Az,
and approximating F in this subinterval by its
value at z, we obtain

G[z,y(2)]

Glz + Az,y(z + Az)] + AzF[z, y(2), y' (2)].

Because the equality obtains for the functions ij

which satisfy Egs. (2), this may be written

G[z,5(z)] = min {G[z + Az, (z + Az)]
_y?

+ AzF[z,5(2), 5" ()]} (57)

Equation (57) is the Dynamic Programming algo-
rithm.

* Work performed under the auspices of the U.S. Atomic Energy
Commission.

1 I.M. Gelland and S. V. Fomin, Calculus of Varialions (Pren-
tice-Hall, Englewood Cliffs, N.J., 1963).

2 M.K. Butler and J. M. Cook, “One-Dimensional Diffusion
Theory,” in Compuling Methuds in Reactor Physics, edited by
H. Greenspan, C. Kelber, and D. Okrent (Gordon and
Breach, New York, 1968); also R. Ehrlich and H. Hurwitz, Jr.,
Nucleonics 12, 23 (1954).

3 S.Kaplan and E. M. Gelbard [J. Math. Anal. Appl. 11, 538 (1965)]
have shown that Stark's method may be related to invariant
imbedding techniques, which suggests that field theory may
provide a link between conventional diffusion (or transport)
theory and invariant imbedding.

4 The same results obtain when y;(x) have discontinuous first
derivatives at a finite number of points x,, providing that
oF /B}] is continuous at these points. (See Ref 1.) This is
the case for material interfaces in neutron diffusion theory,
where the latter quantity turns out to be the current.

5 This is the general formula for the variation of a functional
with a variable end point at x = z. The point x = 0 is con-
sidered fixed, and only functions which satisfy the prescribed
conditions at x = 0 are considered.

6 H.Rund [the Hamilton-Jacobi theory in the Calculus of Vari-
ations (Van Nostrand, London, 1966)] has discussed the role
of the Hamilton-Jacobi equation in the calculus of variations
in terms of hypersurfaces G{z, v(z)] which are geodesically
equidistant with respect to the function F[z, y(z), y'(z)].
Gelfand and Fomin (Ref. 1) also concluded that Eqgs. (5) define
a “consistent” field if and only if G satisfies the Hamilton—-

Jacobi equation, but arrived at their result by requiring that
the field equations be consistent and self-adjoint for each
point in the domain 0 < x < L. The above development intro-
duces the Hamilton-Jacobi equation from a different point
of view.

7 At first glance it may seem that nothing has been gained by
converting a single linear second-order differential equation
to a coupled set of nonlinear first-order differential equa-
tions. However, the nonlinearity is of no consequence when
the solution is obtained on a digital computer, and the round-
off errors associated with a straightforward numerical
solution of Eq. (12) are generally greater than those associat-
ed with a numerical solution of Egs. (19)-(22). (See Refs.2
and 3.)

8 Stark's method is routinely applied to multigroup problems.

2 L.S.Pontryagin e/ al., The Mathematical Theory of Optimum
Pyocesses (Wiley, New York, 1962).

10 R. Bellman, Dynamic Programming (Princeton U.P,, Princeton
N.J., 1857).

11 A relation among the calculus of variations, the maximum
principle, and dynamic programming has been discussed by
many authors. However, the derivation given in this section,
which is based on the introduction of a surface term in a
variational functional to represent the contribution from a
subinterval, represents a new point of view which provides
a consistent relation among these theories and the Hamilton—
Jacobi theory.

12 If variations 6x < 0 were considered, the sign on the last
term in Eq. (51) would be reversed, and the same conclusion
would result.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 11

NOVEMBER 1971

T-Matrix Analyticity Using Fredholm Theory
Gedaliah R. Shaffer

Joseph Henry Laboratories, Princeton University, Princelon, New Jersey 08540
(Received 12 May 1971)

The behavior of the Regge pole residues for the T matrix analyzed into partial waves is studied as a
function of E for scattering from a Yukawa potential. Using a variational formulation of Fredholm
theory, we explicitly show that the residues on the energy shell have no branch cuts in the left-hand

E plane.

We consider nonrelativistic scattering from a
Yukawa potential. Using Fredholm theory, we con-
template solving the Lippmann-Schwinger equation
for the T matrix expanded into partial waves. If we
go onto the energy shell and consider the behavior
of the partial wave projections as a function of
energy, we find branch cuts appearing in the left-
hand E plane. Superficially, these cuts seem to be
present as well in the residue of the T matrix at

a Regge pole. It is a well-known consequence of
dispersion theory however, that at a Regge pole,
the residue has a right-hand cut only.! In this
paper an explicit demonstration of the extinction
of these left-hand cuts is presented. We use a
formulation of Fredholm theory in which the Fred-
holm resolvent kernel is expressed as a functional
derivative of the Fredholm denominator. Since
this denominator is determined by the traces of
the iterated kernels, with the energy appearing only
in the propagator, it clearly has no left-hand E-
plane branch cuts. This provides the motivation
for anticipating that the functional derivative of
this denominator at a Regge pole has no left-hand
cuts also.

We start fromthe Lippmann-Schwinger equation
for the T matrix2 for scattering from a potential
V, which we choose to be central:

1
T=V+ VmT.

In the momentum representation this becomes (for
incoming momentum k, outgoing momentum k’)

Tk,k’(E) = V(k - k')

1
T AE).
" f(z )3 — q2/2m + i€ g k/(F)

For a Yukawa potential
= g2/(u? + lk— ql2).
We make a partial wave expansion

Ty o AE) = 412, Y7 (k)Y ()T, (E, &, k')

Vik— q)

V(kl gz
9= (u2 +¢q2 +k2—2k*q)

_4mng2
- 2k q Z;lle<

2 +qg2 + k2 ~ "

A2 ) v ) vm@),
where we have used the addition theorems for
Legendre functions and spherical harmonics. This
yields

2 2 4 k2 + 2
TME, b, k g (“ >
i )= YL 2kk’
f qz Q,((n2 + g2 + k2)/2qk)
2 )3 2kq (E — q2/2m + i€)
X T;\(E: q, k’)y (1)

where we have inserted a parameter A, such that
A = 1 gives us the correct equation, i.e.,

T(E,k, k') = TME, k, k).
For any nonhomogeneous equation of the form

(k) = o(k) + X [daN(k, Q) ¥ (a), (2)

where the kernel satisfies certain well-known pro-
perties, the solution3 given by Fredholm theory
may be written

W(E) = ok) + 2 g2 L),

g N o), 3)

where

D\ =1+ E Azﬂ)(z) D)

—ﬁ-———l-Lfds1 -fds,-

N(Sl., Sl) A 'N(Sl, si)

N(sii §y) ***N(s,,s l)

is the Fredholm denominator, and D(k, ¢, 1) is the
Fredholm numerator which satisfies

D(k,k’',A) = N(k, k")D(A) + X [dqD(k, ¢, \)N(q, k')

®

For the special class of nonhomogeneous equations
for which

= N(k, k')/h(E’),

we find by comparing Eq. (2) with Eq. (5),
Y(k) =

Hence if we identify

ang2 ¢q2 Q, ((n2 + g2 + k2)/24k)

@(k)

D(k, k', )/[r(R)D()]. (6)

Nk, q) 2n)3 2k E g/am 1 ic
and

k(g) = (4mq2/(27)3)(E — q2/2m + i€),
we find

TME, &, k') = D(k, k', \)/[h(k")D(N)].

The Regge poles are located at those values of /
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(call one I,) for which D(x) has a zeroat x = 1.
For if D(I,2y) = 0 (where we explicitly write the
I dependence), and4

oD oD

7”0 w0

in some neighborhood of (xq, !y}, we implicitly de-
termine a function x4(I) such that near [,

ax
a ',_,

(I—1g

oD @}
=

= Yolto) = [a_z N,

and [near a simple zero of D()]

DQ) = (A — xgdd(xy)

=1,
If xq(lg) = 1, we have
oD /| oD
1) = oL o _
D(1) = d(1) [(al %) H} (L —1o),

0
i.e ,a Regge pole at I = [;. The residues of the
Regge poles [for a simple zero of D(A), x = 1]
are seen to be proportional to

D(k, k' A\)/[h(R’)], forx=1.

Using the standard expansion of the Fredholm
numerator we have

D(k, k', 2)
[R(%")]
g2 p2 + k2 + R'2
- Ql( + )\j A
2Rk’ 2Rk

If we go onto the energy shell this becomes (with
k2 = k'2 = 2mE)

D(k, k', )
[h(k,)] on shell

i _u? .
= ol ag) S

the first term of which has a branch point at E =
— p2/8m, which superficially seems to remain
even at a Regge pole. To see explicitly how this
branch cut is extinguished, we utilize a variational
form of the Fredholm theory.%

The Fredholm resolvent kernel of Eq. (2) may also
be expressed in the form

-_1 6DQ)  ¢lg)
i) = — Jdq oNg. }) DOV’ (7)
where

8D(A)/6N(q, k)
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is a functional derivative of the Fredholm de-
nominator D()), with respect to the adjoint kernel
N(g, k). As usual, this functional derivative may be
found by replacing N(q’, k') by

N(q’, k') +16(q" — q) 6(k' — k)
and then evaluating the first derivative with
respect to the parameter n at 7 = 0. By com-

paring Egs.(7) and (3), we can relate this kernel
to the usual Fredholm numerator:
D(\) 1 8DQ)

D(k, q,2) = —Tﬁ(k-tI) + 2 m (8)

Near a simple zero of the Fredholm denominator
D) = (A —xg)d(ro),

where 1, depends implicitly on the kernel N(k, q).

Hence
6D (1)
6N (g, k)

8d(ry)
8N (g, k)’

__ 0 drg) + (A — xg)

(9)
6N(q, k)

At X = )\, the second term in (9) vanishes and by
(8) we find

Dk, g,he)  dlrg) B )
[2(9)] A2h(q) BN (g, k)
If we approximate D(\) to the nth order in 2,
D(\) =D () = 25 (A\)iD6), (11)

i=1

evaluate it at a zero of D(x),D,(x,) ® 0,and apply
6/6N(q, k) to this finite sum, we find (collecting
terms)

1 6 o(g—Hnl
— 0 _d(ng) = — g Uil 20 ApD®
h(q) &N(q, k) k(g) =0

n—-2
—23 Nik,q) 27 D (12)
h(g) =0

Na (@)
° k(g

b
where
o0 o0
Nk, q) = [, ds Nk, s1) [ dspN(sq,85) *

X fo ds, yN(s, 3,8,1)N(s, 4,4) (13)

is the nth iterated kernel.
Since the series

n
> )tf)fD(i)
=0

converges to D(A,) = 0, by taking enough terms we
can make the coefficients of any given N,(k, ¢g) as
small as desired. We will show that on the energy
shell, N; has no branch cuts in the left-hand E
plane in the region
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— (#)?u2/8 <E <O. Hence if ! is such that xj = 1, we have shown that

the residue of
Hence the sum of the iterated kernels has only a

finite number of branch points located in the re- T(E,k k') = D(k, k', g = 1)/h(k")D(Ag = 1)
gion (E, 0) for any finite E < 0. Since the coe-

fficients of each of them may be made vanishingly  pa5 no left-hand cuts on the energy shell.

small by taking enough terms in the expansion of ) .

D(xy), we find that in the limit all the branch cuts It remains only to show that the region of analy-

in the left-hand E plane are extinguished for the ticity of the successive iterated kernels expands
function successively to the left. Let
oA D(k, q,7y) U2 + x2 + y2
- 0 d(rg) = — 13 et At R Vi Qlx,y) = @, <— >
h(q) &N (g, k) h{q) 2xy
J
Then from Eq. (13) we have
N, (k, k)
h{k')
4ng2\ "t (k ~ 2_
=( CEA NPT Qk,y,) v [ a5 QUp1)Y52) L o k)
(2m)3 0 E —y3/2m + i€ 2ky, 0 E —y2  /2m + ie 2,1 Y02
k2 1
X —.
2y, k' k2

We introduce the following representation for the Legendre functions®:

(H2+ x2 + y2
l

>: n(ey )12 [ dtemr 1y (et 112 00)
2xy Y

and hence find

A ——— e
';z(k,’) T <(2f)3> g2 Jy i [y dtye M T k)2 Ty gkt M e 2 (R

X f(t]_; tz)f(tZs t3) b f(tn—19 tn))

where?

foo dyiyiJl-rl/z(yiti)Jﬁ-1/2(.’Viti+1)

s bir1) = lim
by tie2) €~ 70 2mE — y? + ie’

m.[Jl+1/2(ti(2mE)1/2)Hl(+li/2(ti+1(2mE)1/2)6(ti+1 —t) }

2+ J1+1/2(ti+1(2mE)1/2)H§-}-)1/2(ti(sz)l/z)g(ti —ti1)

Since we want to evaluate the iterated kernel on the energy shell for E < 0, we set k2 = &' = (2mE)1/2
= ic,c > 0. We can then change all the variables of integration c¢; = s; and find

N (R, k)
h(k')

o B
_ 3]0 ds]-- .. fooo dsne-(p/c)(sl+sz+ s")11+1/2(51)

x I (sn)”ﬁ'l Il+1/2(si)Kl+1/2(Si+1)9(si+1 . Si) }
+1/2 R ,
AU V1 1205,30) K e 17208 )0(s; — Si41)
2\n-1 3
g=(=1r1 dng” " 2¢gmil (2m)r
(27‘)3 zncn+1
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Clearly, the only role the factor of p/c can play is
in damping out the integrals for large s;. Hence we
may Substitute into this expression the asymptotic
forms

Ir1/2(2) ~ €2, Kpyyjp(2) ~ 7.

By judicious manipulation of the theta functions, all
the regions of integration may be made finite ex-
cept for the outermost say for s;. Since in each of
the steps of the integration the growing exponen-
tial is dominated by the decreasing one, at worst
each term contributes as much as

L172(8)K 1720854108054 — ) 2>~ 1,

2s
Lp1/2(s 4y /0(s,)) 2 ~e™ ™,

- ys: .y o u/e)s
e~ (1/)S; 5 o 1

after all but one of the integrations are done. Hence
the existence of the integral is assured if at least

w0 _ —2)s
fO dsle (np/c=2)sy
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is finite, i.e., when nu/c — 2 > 0 or alternatively
when

0>E=—1c¢2/2m > —n2u2/8m.

Clearly, any finite number of derivatives may be
taken with respect to the parameter p/c without
affecting the existence of the integral (since the
exponential factor dominates the powers of s,
which appear). Hence the nth iterated kernel on
the energy shell is analytic on the negative real
axis for 0 > E > — n2u2/8m.

This argument can be extended to show that the
iterated kemel is analytic for 0 > ReE > —n2p2/
8m (a strip in the left-hand E plane).
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1. INTRODUCTION

A finite segment of an infinite chain of coupled
oscillators can be treated as a model of a system
interacting with a heat bath. One of the most easily
treated models of a thermodynamic system is one
composed of weakly interacting individual elements,
with the system interacting weakly with the heat
bath. The usual chain of alternate springs and
masses is inconvenient as such a model because
we are unable to speak of individual-oscillator
energies, but must instead assign energies to
masses and to springs, or else to normal modes.

A model more compatible with the thermodynamic
idea of a system of weakly interacting particles,
each with nearly its own energy, interacting through
its boundaries with a weakly coupled heat bath

may be formed as follows: Each mass m is strongly
bound to its home position by a harmonic spring of
constant K. The oscillators thus formed are set in
a linear array, and the nearest neighbors are
weakly coupled with harmonic springs of constant
k. We consider an infinite linear chain of these
weakly coupled, harmonically bound oscillators,
with a finite segment of N oscillators regarded as
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the system, and the rest of the chain as the heat
bath.

The Hamiltonian of the system is
S <P3 LK 2

H:Em2xn

n=- oo

+%(xn+1—‘xn)2> ’ (1)

and the solutions to the equations of motion have
already been reported 173 to be

©0

2 [x,.,00), @) + P,, (0)g,(t)/me]

r=-o0

x,(t) = (2a)

and

pu(t) = mi, (1), (2b)

where these "bound-oscillator functions” are given
by

f () =171 foﬂdw cosry cos[Qt(1 — 2y cosy) V2]
(3)

(4)
(5)
(6)
(7

&0/ = [, 5 ar,
Q2 = (K + 2k)/m,
w2 = k/m:

and
y = @/Q)% = k/(K + 2k).

In the weak-coupling limit, with y <<1, we have
used the approximate solutions1™3

£, () ~ J,(yQt) cos(Qt — r 7/2) (8a)
and

gr(t) = J,(yt) sin(Qt — rm/2), (8b)

with J, the ordinary Bessel function.

Statistical mechanics is introduced via our assum-
ed knowledge of the initial conditions appearing in
Egs. (2). As already shown,? we can define an
entropy

N
Sy(t) = —ky [py In(h¥py) 1 dx;dp,, (9)

where k, = Boltmann's constant, p,(f) is the re-
duced Liouville function, or probability density in
the 2N-dimensional system-variable space, and

k is a constant with the units of action, introduced
for dimensional purposes but evidently equal to

Plank's constant in a quantum-mechanical treat-
ment of the problem. We have been able to write

py (2) as

oy (1) = (27)N (detW)~1/2exp[— X'W™1X’/2],  (10)
where X’ is a 2N -component column vector, the
transpose of which is ¥’ = (x{xg = **xyP{ " "Py)s
with x! = x/,(t) = x,(¢) — {(x,(¢)), etc., and the
covariance matrix W is given by

(5a)
W= ~ 'Y
G Q,

(11)

HUERTA, ROBERTSON, NEARING

where M = (Mi].), etc., and

M;; = (x5 (8D, (12a)

Q;; = (pi)p}(t), (12b)
and

Gy; = (xj(Op5(e) - (12¢)

When p,, from Eq. (10) is used in Eq. (9), we obtain
the simple expression for the entropy

Sy(t) = NEg + kglnfi~N(detw)1/2), (13)

where # = h/27. Thus the entropy is given entirely
by the covariance matrix, the elements of which
can be calculated directly from the initial probabi-
lity density of the entire chain, by use of Egs. (2).
We have, for example,
o0

@ () = [oox; (1), 1 dx,(0)dp,(0), (14)
where Eq. (2a) is used for x, (£), and p, is the
initial probability density, or Liouville function,
for the entire chain. Then, since x/(f) = x, () —
(x,;(t), we can write

My; = [ogxj(Ox;(8) T dx, (0)dp,(0),

and similarly for the other matrix elements of W.

(15)

We may know the initial values of the system
variables as accurately as measuring techniques
permit, but typically the heat-bath initial condi-
tions are much less well known. As the system
evolves, our knowledge of its variables deterio-
rates, not because the dynamical calculations are
imprecise, but because the values of the variables
become increasingly determined by heat-bath
initial conditions. Our statistical description of
the system, p,(f) of Eq. (10), evolves to a time-
independent one that can only be described as
equilibrium. As we have already shown,!™3
energy is equipartitioned, entropy evolves to its
correct classical value, and the behavior of the
system is generally in accord with expectations.

In this paper we treat the problem exactly, using
the functions defined by Egs. (3) and (4), rather than
the weak-coupling approximations of Egs. (8). In
Sec. 2 we develop the necessary mathematical
properties of the exact function, in Sec. 3 we treat
the evolution of the system to equilibrium with

a canonical initial distribution of heat-bath vari-
ables, and in Sec. 4 we treat a similar problem with
a noncanonical initial heat bath.

2. MATHEMATICAL PROPERTIES
The function of Eq. (3) is rewritten as
fn (Zy '}’) = fn
=71 fowd'e cosng cos[z(1l — 2y cosg)1/2]

= (27)1 f" do exp(ing) cos[z(1 — 2y cosg)1/2],
-

(16)
where we have used z in place of ¢ and 0 <y< 3.
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In the development of mathematical properties of
these functions, reference will frequently be made
to convenient standard sources of material on
transcendental functions.4»5 In this way, for exam-
ple (Ref. 5, Eq. 10. 1. 40, with ¢ = zy cosg), we
obtain the result

cos[z(1 — 2y cosp)1/2]

=z %()) [(yz coso)*/nlli, (2), (17)

where j, (z) = (7/22)1/2J |5 (2) is the spherical
Bessel function of the first kind. The use of Eq.
(17) and the identity

cos®§ cosrf = 27" lzZ-O (t) cos(r +n — 2k)9 (18)
in Eq. (16) leads to the expression

(_élzr +2k .

Ry + BT Jye2p1(2) (19)

f(z,) —ZZ)

Equation (8a) may be obtained, for y<<1, by expand~
ing the square root in Eq. (16) and carrying out the
resultant integration, or for large z, by using the
first term of the asymptotic expansion of j,(z)
(Ref. 4, Eq. 9. 451; Ref. 5, Eq. 10. 1, 8, which is
exact, or Eq. 9.2.1,or 9.2.5, which is equivalent to
10. 1. 8).

The Fourier inverse of Eq. (16) is

Z fn(z,7) exp(— in6)

n=-o00

—fo + 221fn(zv ’Y) cosné,
(

cosz(1 — 2y cosg)1/2] =

20)
since f, = f_,. A power series expression,
obtained from Eq. (19) and the expansion of the
i’s,is

fr(zy 'Y) =

% (=)~ 2k+r( z)27+ 2n+ 4k
o kInl(r + )IT(r +n + 2k + 3)°
21
From either Eq. (19) or Eq. (21), we obtain the

v

recursion relations, with f* = df/dz;
= fr/z + (72/27)01—1 _fr+ 1) (22)
and
f'r':_f,+7(f_1+f,+1); (23)

where Eq. (23) is equivalent to the equation of
motion of the rth oscillator. Elimination of all
terms except those in f, from the recursion re-
lations yields the fourth-order differential equa-
tion

(Leryy = @ —arohs o /e 1 =42, = 0.

For each 7, four independent solutions should
exist. These are (i) f,(z, 7),as defined by Eq. (16);
(¢¢) the functions obtained by replacing

cos[z(l — 2y cos¢)1/2] in Eq. (16) by sin[z(1 — 2
cos¢)l/2); (zzz ) those obtained by replacing cosr¢
by sinr¢; and (iv) those obtained by making both
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of these substitutions. Other related functions can
be obtained by changing 4 to —y, cos¢ to sing, and
combining these changes with the other variations.
Only the set numbered (i—iv) obey the recursion
relations, Eqs. (22) and (23), and satisfy Eq. (24).

Of these functions, f,(z, y) alone is even in z and

7 ; the functions (11) are odd in z, functions (iii) are
odd in 7, and functions (iv) are odd in both.

The Laplace transform of Eq. (16) is
- o0
fr(p’ y) = fO e_pzfn(zr 'Y)dz

_ pl’(p2 + b2)1/2 —_ (pz + aZ)l/Z]Zr
[0 a0 oA )y

wherea = (1 — 2y)Y2 and b = (1 + 2,)1/2, This
result is obtained most easily by first integrating
with respect to z, and then using Ref. 4, No. 3. 613-1
in slightly modified form. From Eq.(25) and a
well-known theorem on Laplace transforms, we
obtain

Ly, (z,y) = Limpf(p,9) = 0, (26)

for all y =
is

3. The function g, (2, y), from Eq. (4),

f £, vz’ (27)

its Laplace transform is g (p, y)
which we find

g 2: 7)
= f;(ﬁ» ‘y)/i’, from

limg (z,y) = llm‘i)gr(p,-y =0, y<3. (28)

2—>00
But when y = 3, the same technique yields

}lrggr (zf %) = 1/‘/53 (29)

a result that is to be expected from the behavior
of f,(z, 3). As may be seen from Eq. (16) or Eq.
(25), 1,z 2) JZT(Z\/_) from which it follows
immediately that g,(2,5) 7 1N2as z- o, Itis
evident, both physically and mathematically, that
the system with < 3 (i.e., K # 0) is intrinsically
different from the simple chain with y = } or

K = 0. Since the simple chain has been treated in
detail by us elsewhere,2:6 we shall assume in
this paper that the inequality y < 3 is strictly
valid.

The inverse Laplace transform, which may be
used to obtain an asymptotic expression for
f,(z,),1is given by
_ 1 c+ioo
fr(Z, 'y) - 27 f—ico

c

dpe f, (b ), (30)

where the path of integration is to the right of all
singularities of f,(p,y). Since these singularities
are all square roots, at p = + iq, + b, the contour
can be shifted infinitely far to the left except for
the path around the four branch cuts, which extend
infinitely to the left of the imaginary p axis, paral-
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lel to the real p axis, starting at the singular
points. The only contributions to the integral of
Eq. (30) come from the sections of path along the
branch cuts. For large z, the only significant parts
of the path correspond to Re p = 0. Therefore the
small-Re p expansion of the integrand along each
of the branch cuts leads to an asymptotic expres-
sion for f,(z, y), as

folz,y) ~ (@my2)"Y2[(— )b cos(bz — im)

+ Va cos(az + i7)], (31)
where a = (1 — 2y)1/2 and b = (1 + 24)1/2, The
asymptotic expression (31) is somewhat more
accurate than that of Eq. (8a), although for small

y the expressions are essentially in agreement.
The principal fault with Eq. (8a) lies in its failure
to represent the phase accurately for large z, and
not in its amplitude behavior. A recent paper by
Agarwal? treats the small-y approximation
quantum mechanically.

In Sec. 3,we shall need certain infinite sums of
products of the functions f, and g, ; these will be
calculated here. The first of these is given by

3% Fules Wy a2 )

n=- 00

- (2m)-2 f_’;def_”"dqs cos[z(1 — 2, cosg)1/2]

x cos[z’(1 — 2y cos¢)1/2] exp(imo)

o0
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to obtain

00

ZI\ f”(z’ '}’)fn+ m(z’7 ’}’) =

m
(27)"1 f_wdqb exp(ima¢)

x cos[z(1 — 2y cos¢)l/2] cos[z’'(1 — 2y cos¢)1/2],
(34)

which may be rewritten by the use of trigonomet-
ric identities as

Z:‘ f (Za')’)fmm(z 7‘)/)

n=-00

= % [fm(z + Zly ‘V) +fm(z - z" '}’)]‘ (35)

Similarly, we can show that

O

D fole W onles /A2 = 31,22, 9) /22, (36)
? f (2 ¥)8nem (20 7) = ;gm (22, ), (37)
and
i gn(z’ Y)gn* m(Z, ')’)

=[(/y) 1 /2(1 — 2n)] — F,(22,y), (38)

1 and F, is defined

where 42 = (1 —79),0< 5 < o

as

)-1 m1df cosmo

Fylz,y) = (2m 0 1—2ycosg

; + @)]. 2
x ,Ew exp[in(6 + o)] (32) x cos[z(1 — 2y cosg)1/2]. (39)
. X . For present purposes, the function F_(z, y) is
We simplify Eq. (32) by the use of the equivalence needed only for z— «, at which limit ’I’f‘m (z,7)- 0,
w and at z = 0, for which we have
3, exp(inx) = 2m6(x), (33) (n/y) ™!
z - M7y
n=-o00 Fm((), ')/) = 2(1 — 21’)- (40)
1 Another type of useful sum is, for |x| < 1,
% . (2y) = ( x )fn do exp(img) cos[z(1 — 2y coss)1/2][exp(ig) — x] (41)

27

which, for x = /(1 — n), can be written as

~ Y

5 (125) "o mls ) = 2P 1(209) = 20F,(2, ).
w1 (42)

Other similar or more complicated sums can be
developed directly from the definitions of the

functions involved by the techniques already shown.

Some of these are available, upon request, as long
as the supply lasts.8

3. EQUILIBRATION WITH CANONICAL INITIAL
CONDITIONS

The entropy of Eq.(13) is obtained from the co-
variance matrix W of Eq.(11) by the use of Eq.(15)

1 — 2x cosp + x2

T
and its counterparts. Since our original treatment
of the problem?2>3 with non-zero-centered initial
distributions of the system variables has shown
that only the variances of these variables enter

the calculation of W, we simplify the notational
difficulties in this paper by choosing zero-center-
ed probability densities, both for system variables
and for the heat bath. In this section, our choice of
the initial probability density for the heat-bath
variables is a slight generalization of the canoni-
cal one, in that we allow for different kinetic and
potential temperatures, in the sense that the kinetic
and potential energies of the heat bath are given
different Boltzmann factors. We write for p({x},

{pLyatt =0
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N — H2 262
o exp(— p2/262)

po({x}, {P}) =

exp(—
1

o(27)

n=

1 8(2m)t/2

X

where I1’ denotes the product over all except the
variables numbered 1-N, v in the last factor is
+1 for » > N, —1 for » < 1, and the normalization
denominator A, is given by

Ay, =A; , = 21/mpQ%a,)V2,7r >0,  (44)
where

a;=1—y, (45)
and the higher q,’s are given by the continued
fraction

a,.1=1—5%;" (46)

In all integrations involving the last factor of Eq.
(43), we have started with the x coordinate just
outside the system (x, or x,, ;) and proceeded,
through successive coordinates, away from the
system variables. By the use of standard definite
integrals, we establish the result, for » > 0 and

s = 0, that

ey Oy o o0 = (mp2)~t I = Qs (4D

where @, is a series, resulting from successive
integrations, defined by

Qr =1+ (Yz/ayar+ l) + (74/arag+ lar*z)

+ (y8/a,a2, a2 . 5a,,3) + > (48)
which satisfies the recursion relation
Q,=1+G%a,a,1)Q,.1. (49)

An identical result is found for (x;_,(0)x;_,_.(0)),
r>0,s=0.

Although the potential energy of an oscillator is
somewhat ambiguous for these coupled systems,
we write the total potential energy of the heat bath
(say » >N) as
0
2

r=N+1

o0
PE = 5 2+ E T (x,.,—x,)?
2 r 2 = r r

= (%sz)[(l - '}’)-79?4»1 - 2'ny+ 1XN+2
+ 5% 2 — 2yXpaX3 T 000 L (50)

from this expression, we define the expectation
value of the initial potential energy of the »th
oscillator,» > N + 1,as

(PE,),

= (sz/z)KxE )0 - 'y((x,_ 1x7>0 + <x,x,4 1)0)]-
(51)

HI
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, exp(—p2/2(2)
c(z.”)I/Z
exp[ — (mBQz/Z){xf(l —2y) + y(x,,, — xn)z}] (43)

A

n

r
By use of Eq. (47) and the recursion relations,
Eqgs. (46) and (49), we directly obtain the result

(PE,) o = =B, (52)

as should be expected.

Also from Egq. (46) we derive an explicit expres-
sion for a, as

Y = v — A —=n)7]=[n*t — (1 -]
R L e (e Lt e P S B L

where 5 appears in Eq. (38). Similarly, from Eq.
(49) we obtain

(53)

Q, =[?/la, —a, e} —a;l,] (54)

where g = ¥1_r)£10 a, =1—mn.
By combining Eqgs. (47), (53), and (54) we obtain

after some manipulation a closed form for expres-
sion (47)

(xN+ r(O)xN+ r+ S(o)>

=9s(1—n)~s[U+ 97-1(1 — 9)1-7]
BmQ2U(1 — 2n)

(55)

’

where U = (1 — 4 — n)/(y — 7). Correlation func-
tions and expectation values other than this one
can be found at ¢ = 0 by inspection from Eq. (43).

We can now use Eq. (2) to find the covariance
matrix at a later time. Using the evident con-
sequence of Eq. (43) that {x_(0)p,,(0)) = 0, we find

(X, (D24 (1))

= kE (x5 (0)x,(0)) £, (s, (D)

+ kE $, (00, (00 g, (08, ., (t)/m2Q2. (56)

By a complicated though elementary series of
computations this can be expressed in a more
readily manipulated form.8 The result is of
specialized interest only and is not written out
here.

CZ

m2Q2

The limiting case of large times is fairly simple,
1
2(1 — 2n)

howevel )
1

' ()
28mQ2(1 —2n) \1—1n/ ~ (57)

(x, (0%, (), =
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Similarly,
(xa(B (1)), = 04 (58)
POy = 8,062 + (m/B))/2. (59)

The average potential energy and average kinetic
energy are readily found and satisfy equipartition
with a temperature given by
kyT = (£2/2m) + 1/28. (60)
The entropy of the N-particle system can be com-
puted from Eq. (13). As a function of time the
entropy approaches its equilibrium value, but it
also exhibits oscillations.® These oscillations
occur because the heat bath is affected by the
system for a finite time and this in turn alters
the way that the heat bath affects the system.

As t — o, the entropy S, approaches a simple
expression. We find by a straightforward calcula-
tion that

Sy(®) = Nk, + Nkgln[k, T/hQ(1 — 1)1/2]

+ (k5 /2)In(1 — n)/(1 — 2n). (61)
For large N, this approximately satisfies S, =
NS, and if 4 = 0 (uncoupled oscillators), this pro-
perty is exact.

4. EQUILIBRATION WITH NONCANONICAL
INITIAL CONDITIONS

Instead of starting from a set of initial conditions
as in Eq. (43), where the masses and springs of
the heat bath are assigned definite temperatures,
we shall now assume an initial distribution that
eliminates the awkward cross terms in the final
exponent of that equation. We write

N exp(— x2/2a02) ¥

_ 2/262
Po({X}, {]5}) = nI=11 exp( pn )

o(2m)l/2 w7l 6(2m)1/2
exp(—p2/2L%) _ exp(—x,/2¢?)
g(zﬂ)l/z €(2,,)1/2 (62)

The factors for the heat bath no longer have the
form exp(— BH), and they are now sufficiently
simple that all of the initial conditions for the
covariance matrix can be read off easily.

When these are time-developed we obtain, for
example,

(x, (%, ()
N o0
= (02 — €2) kzzl JaowSurvon t 62_2 Jo- & Furr-n
. N
HOF =) L g, 48, /mo02

+ €2 T 8a_ 4Brr n/m2Q2. (63)
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The infinite sums in this expression have been
calculated in Egs. (35) and (38).

In the limit as £ «, the finite sums vanish and
the rest leaves us with

O () WS S S (") ’
X, 4 = 5 L .
xn n+r ) 2 r,0 2m292(1 _ 277) Y
(64)
A similar calculation, using the second derivative
of Eq. (35) with respect to z and 2z’ (at z = z'), to-
gether with Eq. (23) yields

@, (O, (N, = 3 (M2Q2e2 + £2)5,

— 2 ym?Q2e2(5, ; +6, ). (65)

Again, using Egs. (36) and (37) we find for -,

<xn(t)pn+ m(t»oo = 0‘ (66)
As in previous calculations using a noncanonical
distribution2:3,6 we see a nearest-neighbor cor-
relation in momentum.

The expression for the entropy of the N-particle
system Eq. (13) does not yield a simple expres-
sion in this case. We can however find an
approximate result for the case of weak coupling
(y < 1). With

kT = 3(€2/m) + }(mQ2e2) (67)
we have
Sy = Nk + Nkgln(k,T/nQ). (68)

For definite, small values of N, the entropy has
been calculated as a function of time® with the
result that S, (f) has the expected increasing ten-
dency with damped oscillations superimposed. The
oscillations are less important as N is increased.

5. CONCLUSION

The harmonically bound chain of coupled oscilla~
tors is of interest principally as model of a
system of weakly interacting particles approach-
ing equilibrium. Even in the case when coupling
is not weak, however, the approach of a finite
segment of the infinite chain to equilibrium can
be treated exactly, with results that agree in most
cases with our expectations. Potential and kinetic
energies are exactly equipartitioned, when the in-
finite-time analog of Eq.(51) is used for the poten-
tial energy, even when the initial description of
the heat bath is not canonical.

Residual nearest-neighbor momentum correla-
tions are found, as in Eq. (65), when the initial
description of the heat bath is not canonical, and
nonextensive terms appear in the equilibrium
entropy. Both of these phenomena have been
discussed, especially in Ref. 6, and the discussion
need not be repeated here.
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function.

I. INTRODUCTION

Previous work!:2 on the f-dimensional nonrelati-
vistic Coulomb Green's function and related func-
tions has been concerned with their coordinate
space representatives. Momentum space repre-
sentatives were treated in the three-dimensional
case3:4 and only for the full Green's function.5 We
will here investigate the momentum space repre-
sentatives of the Coulomb Green's function and
related structures in the general f-dimensional
case.

We begin by indicating briefly the derivation of an
integral representation [Eq. (8)] of the full f-
dimensional Coulomb Green's function in momen-
tum space, along the lines of the previous work of
Hostler.4 By the use of this new integral repre-
sentation we show that a relation derived earlier,®
connecting the coordinate space Coulomb Green's
functions and reduced Green's functions in spaces
of different dimensionality, has a momentum space
counterpart [Eq. (10)] in which differentiation with
respect to the momentum transfer raises the
dimensionality of the momentum space structure
from fto f + 2.

The integral representation Eq.(8) is converted
into an expansion of the f-dimensional momentum
space Coulomb Green's function in a series of
Gegenbauer polynomials (f=2,3,4,...) or Tche-
bichef polynomials (f = 1) [See Egs.(16) and (25),
respectively], by expanding the integrand and inte-
grating term by term. This generalizes to the f-

dimensional case a previous three-dimensional
result due to Schwinger.? In the two-dimensional
case the Gegenbauer expansion becomes a Legen-
dre series expansion [Eq. (27)].

In the one~dimensional case,the Tchebichef expan-
sion is found to lead to a closed-form expression
for the general nth excited state momentum space
reduced Coulomb Green's function [Eq.(71)]. This
structure is remarkable in that it is without hyper-
geometric functions. By successive differentiation
with respect to the momentum transfer, one can
now generate all corresponding structures in a
space of any higher odd dimensionality.

O. INTEGRAL REPRESENTATION AND RE-
CURSION RELATION IN f-DIMENSIONAL
SPACE

The f-dimensional Coulomb Green's function in
momentum space will be defined as the Fourier
transform

Glky,k,y, E) = fdf"'zdf"leikl.rl_ikz.rz Gf(rz’l'l’lE)

of the coordinate space Green's function, defined
as the solution of the differential equation

[V + Qky/7,) + kZ]Gf(rz,rl,E) =6/(ry —1,),
k= (QmE/E2)V2, Im(k) >0 (2)

subject to suitable regularity conditions at the ori-
gin and at infinity. Here V2 denotes the Laplacian
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I. INTRODUCTION

Previous work!:2 on the f-dimensional nonrelati-
vistic Coulomb Green's function and related func-
tions has been concerned with their coordinate
space representatives. Momentum space repre-
sentatives were treated in the three-dimensional
case3:4 and only for the full Green's function.5 We
will here investigate the momentum space repre-
sentatives of the Coulomb Green's function and
related structures in the general f-dimensional
case.

We begin by indicating briefly the derivation of an
integral representation [Eq. (8)] of the full f-
dimensional Coulomb Green's function in momen-
tum space, along the lines of the previous work of
Hostler.4 By the use of this new integral repre-
sentation we show that a relation derived earlier,®
connecting the coordinate space Coulomb Green's
functions and reduced Green's functions in spaces
of different dimensionality, has a momentum space
counterpart [Eq. (10)] in which differentiation with
respect to the momentum transfer raises the
dimensionality of the momentum space structure
from fto f + 2.

The integral representation Eq.(8) is converted
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bichef polynomials (f = 1) [See Egs.(16) and (25),
respectively], by expanding the integrand and inte-
grating term by term. This generalizes to the f-

dimensional case a previous three-dimensional
result due to Schwinger.? In the two-dimensional
case the Gegenbauer expansion becomes a Legen-
dre series expansion [Eq. (27)].

In the one~dimensional case,the Tchebichef expan-
sion is found to lead to a closed-form expression
for the general nth excited state momentum space
reduced Coulomb Green's function [Eq.(71)]. This
structure is remarkable in that it is without hyper-
geometric functions. By successive differentiation
with respect to the momentum transfer, one can
now generate all corresponding structures in a
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The f-dimensional Coulomb Green's function in
momentum space will be defined as the Fourier
transform
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of the coordinate space Green's function, defined
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k= (QmE/E2)V2, Im(k) >0 (2)

subject to suitable regularity conditions at the ori-
gin and at infinity. Here V2 denotes the Laplacian
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operator of the f-dimensional space. The para-
meters % and v are regarded as independent com-
plex parameters, arbitrary except for the condition
Im(k) > 0. An integral representation of the f-
dimensional Coulomb Green's function in momen-
tum space will be obtained here from ‘the integral
representation8

I Gl L) AR liv-{r-1)/2]
Gf(rz:rpE) = (4")(f_1)/2e i
< T
sintfiv — 3 (f — 1)]
1 b L y
o Srrarc o - 0 K + D072
X (§ - 1)-i1/+(f‘3)/2 Df(r2:r13E)9 (33»)
Df(rZ’rlaE)
_ I(s-3y2(— ik(x2 — y2)l/2(¢2 —1)1/2) .
(— 4 ik(x2 — y2)1/2(¢2 — 1)1/2)1/2(-3) s
X=7y+%, y= Iry —r,l,
f=1,2,3,4,... (3b)

of the f-dimensional coordinate space Green's
function, by Fourier transforming the integrand,
Ds(ry,ry, E). This calculation parallels closely
that of earlier work on the three-dimensional case
and will be reported here only briefly, to point out
the new features that enter when one considers the
general case of arbitrary dimensionality.

We give details only for f = 2,3,4,.... The one-
dimensional problem requires special attention
(see remarks at the end of this section), but a
separate calculation verifies that our final result
[Eq. (8)] holds also in the one-dimensional case.

As in the three-dimensional case, one begins with
the integral representation?
.C+ico

I(s-3y28) 1

= . - (r-1y2 gt+(%/40) gy,
(Z/z)(f~3)/2 2mi “e-ico;c>0

f=2,3,4,..., (4)

of the Bessel function. One proceeds as in Ref. 4,
but with the use of the new integral (assumed con-
vergent)10

[ dfre-arBer

= (4m) V2T (F + 1) 24

(A2 — B+B){/*1)/2

(%)

and the integrals obtained from Eq. (5) by differen-
tiation with respect to A or B, respectively. After
performing the r, integration, one obtains a ¢
integral of the form

1 .c+ioo _
), atet(t— a7

1 =&
2mi TR

larc(t — a)!<u/2, ¢ >Re(a), Re(}) >0.(6)
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A point of difference with the previous three-
dimensional calculation is encountered here. In the
previous three-dimensional calculation, Eq. (6) was
needed only for positive integral A and was readily
established by means of the Cauchy residue theo-
rem. This method is still adequate in the general
case of a space of any odd dimensionality;but if the
dimensionality of the space is even, then Eq. (6) is
needed for half-integral A and the method fails.
However, Eq. (6) can be established quite generally
in terms of a standard representation of the reci-
procal gamma function by translating the origin of
the integration variable and deforming the integra-
tion contour.11 The final integration over r, can
be performed using the same integrals, based on
Eq. (), as the first r; integral. The result of this
calculation is

D (ky,ky, E) = — (4m)/ 1T (5 (f + 1)) 2k2

(BB —R2)kF —R2)SE2 1) +R2 [k, k(2 (84 — 1)
(k3 — #2)(k3 — #2) — 2 [ky — K, [2(82 —1)] V32
f=1,2,3,..., (7

where D ((k,,k;, E) is the Fourier transform of
Dy(r,,r,, E), Eq. (3b). A separate treatment of the
one-dimensional case leads to the result that Eq.
(7) holds also for f = 1. Thus as pointed out above,
the following result obtained by using Eq. (7) in
conjunction with Eq.(3a), holds also in the one-
dimensional case. This result is

G kg, k1,0, B) = (— i)/ (4m) U D/2T (3(/ + 1)

x eniiv= (f-1)/2) L

sint[iv — % (f— 1)]
_1,__ A at + 1)iu+(f-3)/2
27 +o0;arc (+1)=0

civr(f3)/2 o g [PRUSL2—1) +q2R2(L4 1))
Xt —1) (f-3)/2 « 3 [Pz — g2k2(E2 — 1)] (F+3y2

b

f:17273>4""; (8)

in which
q= |k, —k,| and p2 = (kZ — k2)(k3 — k2). (9)

This is the desired integral representation of the
f-dimensional nonrelativistic Coulomb Green's
function in momentum space. It generalizes to f-
dimensional space the earlier three-dimensional
result obtained in Ref. 4. It shares with this pre-
vious three-dimensional result the property of
extracting the Z dependence of the Green's func-
tion.12 It is this property of extracting the Z de-
pendence which makes the integral representation
(8) attractive from the point of view of applica-
tions. Although the momentum space Green's
function depends upon k; and k, only through the
two variables g and p2 and not three as allowed
by f-dimensional rotational invariance,we prefer
to write the functional dependence in the form
Gf(kz k1,9, E),inwhichthe entire energy dependence
is explicit. This will be helpful in the subsequent
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calculations in which differentiations with respect
to energy occur. Also, differentiation with respect
to the energy will spoil the functional dependence
upon only the two combinations g and p2, which for
us will undo an apparent advantage in writing the
Green's function as a function of only these two
variables.

It is now a straightforward matter to obtain the
relationship

3G ; (k, ,kq, q, E)
qoq

—2n =G,y (ky, k1, ¢, E),  (10)

which exists between the momentum space Cou-
lomb Green's functions in spaces of different
dimensionality. One merely applies the operation
— 2m9/qdq to both sides of Eq.(8). On the right-
hand side, one takes the derivative under the in-
tegral sign, whereby the integrand for G s 1s con-
verted into the integrand for G,,,. That the re-
sult (10) also applies to the momentum space
reduced Coulomb Green's functions, follows as in
the previous work on the coordinate space repre-
sentatives.13 We have here a prescription for ob-
taining all momentum space Coulomb Green's
functions and reduced Green's functions in f-
dimensional space by differentiating successively
the corresponding functions in the one-dimensional
(f odd) or two-dimensional (f even) case. Among
the results to be obtained in the following will be
the derivation of closed-form expressions for
these structures in the one-dimensional case.

Before proceeding, however, the one-dimensional
problem will be considered in more detail. The
one-dimensional Green's function of Meixner, ob-
tained by substituting f = 1 in Eq.(3a),is defined
only on the semiinfinite line 0 <7 <+, In
order to define a momentum space representative,
we must in some way continue the domain of the
function into the negative half-line and zero.

We adopt the following prescription for this: In-
troduce Cartesian position coordinates x, , in

the one-dimension space,where — © < Xy, < 4+ o,
and interpret the variables x and y of Eq. éb) in
the natural wayasx =7, + v, andy = | x5 — x|,
where 7 , = [x, ,|. One can now Fourier trans-
form and will find that the momentum space repre-
sentative is correctly given by Eq.(8) with f = 1.
The mechanics of obtaining the Fourier transform
are basically the same as in the case f =2,3,4,

. considered above. [The integral representa-
tion for I_,(z)/(32)~1 obtained by substituting
f=11in Eq. (4) does not converge, but by use of
the relation'4 I_,(2) = I,(z),one can express
Dy(ry,r,,E) of Eq.(3b) in terms of I,(2)/(32) for
whichwedo have a convergent integral representa-
tion, Eq. (4) with f = 5.]

A final remark about the one-dimensional Green's
function will be made here for future reference.
The free-particle limit of Meixner's Green's func-
tion takes the form
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CO(xy, 51, E) = (2ik) e lFerilei*bamidy - (qy)
when the domain of his function is continued to en~
compass the whole real line,as described above.
This Green's function is the difference of two ordi-
nary Green's functions over the whole real line,
one corresponding to a delta function source term
at x, = x; of strength unity, and one corresponding
to a delta function source term at x, = 0 of
strength — expikr .

The full one-dimensional Coulomb Green's func-
tion, as defined above on the whole real line, like-
wise has two source terms as evidenced by the

fact that it satisfies the Green's function equationl5

92  2kv .
[5}—2 + 7;—“ +k2] Gl(xz,xl,E) = 6(x2 *xl)

— 8(x,) T(1 —v) Wiu; 12 (— 2ikry),  (12)
in which there are two delta functions instead of
only one. However,no decomposition analogous to
Eq. (11) of the full Coulomb Green's function
G,(x,,%,,E) into two Green's functions corres-
ponding, respectively,to the two source terms of
Eq.(12)isknown. One can check that G{0) (x5, x4, E)
of Eq. (11) satisfies the free-particle limit of Eq.
(12).16 Also the extraneous delta function source
term at the origin in Eq.(12) vanishes in the
domain x, , > 0,where G(xy,,,E) reduces to
Meixner's original Green's function.

II. EXPANSION IN GEGENBAUER/
TCHEBICHEF POLYNOMIALS

By means of the change of variables

t=E -1+ 1), (13)

the integral representation (8) can be brought to
the form

Gf(kzyklyq,E): —_ %(4"7)(}'-1)/2 %{fl
)
sinnfiv — 3(f—1)]

dt v+ (f-3y2

X T (5(f + 1)) eniliv-(s-1/2)

1 oD

2mi lzarc(t)=0
[—(f— 1) +2t2(f +3) — (f — 1)t4—dxi(1 + 12)]

X (1 20x +12)(73)/2 ’
x=1+2k2¢%p72, f=1,2,3,4,..., (14)
in which the generating function17?
00
(1 — 2t + £2)v = Z_}ot"C,’{(x), v =0 ] (15)
=

of the Gegenbauer polynomials appears. One can
expand the integrand of Eq. (14) in a series of
Gegenbauer polynomials and integrate term by
term. One then obtains the infinite series expan-
sion
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G (ky, k1,9, B) =2, — (am)-1y2 (= 2R)
f 2 1 n=1 pf*l
n+ f—3)2cls-n/2
xT((—yy BV ZIEGH PR
—iWW+n+ $(f—3)
f=2,3,4,5,....

(16)

As pointed out before, this result generalizes a
previous three-dimensional result due to
Schwinger.? The functional dependence upon the
nuclear charge Z occurs in the expansion (16) only
in the denominator [— iv + n + 3(f — 3)]"1, the
other factors being the same as in the free-
particle limit 7v = 0. We have here in another
form the property of extracting the Z dependence
of the Green's function. In order to obtain Eq.
(16),a number of reductions were necessary using
the recurrence relations of the Gegenbauer poly-
nomials. Since these reductions are rather lengthy,
we indicate here some of the intermediate steps.
After expanding and integrating term by term, one
finds the following combination of Gegenbauer
polynomials:

—(f— 1)C§f_+13)/z +2(f + 3)C$‘f_33)/2 —(f— 1)0’1([33)/2
—4xCYPr2 —ax P2 (17)

This is reduced to

—4n—1) ~gayz 4 Mt S —2) raye
VT R U o R 5
—(f—)(CLPrz —2cyprz + CYPrz)  (18)

by applying the two identities18

2y[xCrl(x) — CLi(x)] = (n + 1) CL4(x),
v=0,—1, n=0,1,%x2,.... (19a)

and

2v[Cy L (x) —x CL2L ()] = (n + 2v) CY(x),
v=0,—1, n=0%1,22, ..., (19b)

to eliminate the two functions xCY*3¥2 and xC{3V2,
respectively. One now uses the identity1°
v[Cril(x)—Criix) =(n+1+v)Ch. (%),

ntl
y=0,—1, n=0,21,£2,..., (19¢)

to reduce the differences CY*3¥2 — C Y $¥2 and
CYg¥2 — CY*3Y2 occurring in (18). The expres-
sion (18) reduces then to simply

—2[n + 3(f — ) (CY/2 — CYr2),

(20)
which can be further reduced to
n+ z(f—8))2
—4 [_“—;TT_‘ cY-pr2 (21)

by another application of Eq.(19c). We have here
the basic structure occurring in the series expan-
sion (16). The last reduction leading to the ex-
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pression (21) clearly breaks down if f= 1,hence
the restriction of Eq.(16)to f =2,3,4, ... . In
case f = 1,the expression (20) can be reduced to

—4(n— 1) Tpy (22)

by means of the relation20

T,. %) = 3[Cl,x) —Cl x)], ==0,1,2,...,
(23)

between the Gegenbauer polynomials and the
Tchebichef polynomials, defined by the expansion?1

—im( - +2)= 5 D1, (24)
n=1

The resulting expansion of the one-dimensional
momentum space Coulomb Green's function is22

G (ko ke 0. E) 4ik i nT,(x)
1W¥20 ¥ 4 5) = p2 ne1 —iv+n

(25)

This expansion is the momentum space form of
the result

G yloy s B) = 5y (@n)Lik(x? —3?)
5 ei** L1 (—ik(x + y)) L1 (~ ik(x — ) (26)

— v +mn

obtained earlier.23 It is of interest to write out
the two-dimensional special case of Eq.(16) since
in this case the series reduces to an expansion in
Legendre polynomials24

81k2 (n — 3)2P,_,(x)
p3 ;

o0
Golky, ky, 4, E) = 22 Poara—
- - 2

n=1

(27

Born terms can be separated out of these expan-
sions by repeated use of the identity25

1 1 7 1
“wra-ataTwFa: (28)
Thus
Gf(kz?kl’ qu) = Gf(O) + g}l)) (29)
where the free-particle limits are given by
172
G}0)=__(24_”_L_2 T(if) ﬂfi_%, f=2,3,4,5, ...
kg —k q (30)
and .
CO~ —276(q) 2ik 31)

VT kg — k2 (k2 — k(R —k2)]

Eq.(31) being the Fourier transform of Eq.(11).26
The remainder terms 9}1) are given by

o — y(— 2 ik)S
§P =2 ——Ziff—,?—@ (M2 T (3(f — 1)

[t 30— 902
—wv+n+3(f—3)

, F=2,8,4,5,...
(32)
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and

o _ 4ivik  T,(x)

=l p2 —iv+n

(33)

Expressions (32) and (33) are proportional to iv
and contain exactly the first- and all higher-order

Born terms. By applying Eq. (28) to the expansions

(32) and (33) one can isolate the first Born term,
obtaining a decomposition of the form
G; = GO + G + g2, (34)
in which Gf(l) is the first Born term,and the re-
mainder § }2) now contains exactly the second- and

all higher-order Born terms. The remainders
Gf? are easily computed and will not be written

282 -~ 1)
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down here. However, we record here for reference
the first Born terms (a derivation of these Born
terms will be indicated below):

iv2ik (4n)U-V2r(s(f — 1))

Gf(l) —

(k3 — E2)(R} — k2) g/1
£=234,..., (35
(— 2ik) q2(— 2:k)2

Mg ~ k2)(k3 — k2)’
larc(— ik)|< in. (36)

6P = kg — k2) (k3 — k2)
larc(kg , — #2)|<m,

This same separation of the Born terms expressed
in Egs. (29) and (34) can be achieved also by using
the original integral representation (14).27 If we
substitute the form

37

4 (t(/~3)/2

at (1 — 2tx + £2)D/2

in Eq. (14) with f = 2,3, 4, ... and integrate by
parts, we find directly an expansion of the form
(29) in which the surface term can be identified
with the free-particle Green's function.28 The
other term, which is proportional to iv, is there~
fore G,1). This approach gives us directly the
integral representation

g™ = i»‘—;%eﬁmﬂ)(f-n/zwaf + 1)

x e miliv-(f-1)/2] m
sinn[iv — 3(f — 1)]

1—¢2
(1 — 2tx + t2)(r+Dr2?

y _L:f(on

dit-iv+(f-3)/2
21 “liarc(t)=0

f=2,3,4,5,..., (38)

of the remainder term §/£%. It should be stressed

|

) _ e —= (= 1) + 262(f +3) — (f — 1)t4 — 4xt(1 + £2)

(1 — 2tx + £2)U+d/2

r

that Eq. (38) will not give the correct answer for
the remainder term in the one-dimensional case.
The identity (37) remains valid for f = 1, and so
does the integration by parts, but this integration
by parts does not separate out the one-dimensional
free-particle Green's function Eq. (31). This is
reflected in the fact that if we substitute f =1 in
Eq. (38), we obtain an expression which is still
zero-order small in the parameter iv. The method
can be applied also to the one-dimentional Green's
function, but one must begin with the identity

_d_< t—x o 2t—x(1 +£2)
dt \'1— 2tx + 2/ (1 — 2x + £2)2’

(39)

instead of Eq. (37). Using the same method as
before (Ref. 28), the surface term from the inte-
gration by parts can be identified with the free-
particle Green's function, now equal to the func-
tion of Eq. (31). The remaining integral is then

g = Aivik gy T 1 o+ dtpiv—_t—% (40)
2 sinmiy 2pi “1sarc(®)=0 1 2x + 12
T
Due to the vanishing of the contour integral at and (for the one-dimensional problem)
v = %, this expression is indeed first-order small '
in iv.29 This process of separating out the Born 4a - 2) t—x
terms by means of an integration by parts can be dat Int — 2tx + £2) = 21 —2tx +¢2 “2)

repeated. The identities needed for the lasttrans-
formation are

We have here the promised explanation of the
from of Eqgs. (35) or (36) for the first Born term.
This Born term is the surface term which arises
when one substitutes Eq. (41) or (42), respectively,
into Eq. (38) or (40), and integrates by parts. The
final integral obtained after this integration by
parts provides an integral representation of the

d 2 t+{f-1/2 )
dt (f — 1 (1 — 2tx + t2)(F-D/2

_H2(1 — £2)
(1 — 2tx + t2)*D/2°

S =23,4,5,..., (41)
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remainder term G, of Eq. (34). This remainder
term is

g, = (iv)z%%f—)f-<4n)<f-ﬂ/2r(%<f —~ 1)

x eniliv-(f-1)/2) L
sinr[iv — 3(f — 1)]

©+
i (32
f.arc(t)=0 att=ivrts

2m
X (1— 2ty + 2y /D/2 f=2,3,4,5,.
(43)
or in the one-dimensional case
02 = (iv)? 20k gy _ T 1
p2 sinriv 2mi

©+)

civ-1 3 ,
x flv'arC(t)=0 dt¢iv1 In(1 —2¢x + £2).

(44)
The Gegenbauer or Tchebichef expansions of G2
can be obtained directly from Eqs. (43) or (44)
with no need of recurrence relations. The lengthy
calculations with recurrence relations performed
above are needed, however, to obtain the Gegen-
bauer or Tchebichef expansions (16) or (25) of the
full Green's function including the zero-order and
first-order Born terms.

The closed-form expression

g = 2;”’k (1—){p 51,1 —iv,2 —iv;p)
1,5(1,1—iv,2—dy;p- )}, (45)
in which
2% (1,1 — iy, 2 — iv;2)
=[1/T(@2 — V)], F,(1,1 — v, 2 — iv;2), (46)

is easily derived from the integral representation
(40) using the method of Ref. 4. Here p is defined
as a root of the quadratic equation

x=13lp+p™), (47)
and ,F,(1,1 — iv, 2 — iv; 2) denotes the ordinary
Gaussian hypergeometmc function.39 This func-
tion is divided by I'(2 — iv) in Eq. (46) in order to
exhibit the pole structure of the momentum space
Green's function when regarded as a function of
iv. This pole structure of the Green's function is
contained in the gamma function factor I'(1 — v)
in Eq. (45), the other factors being analytic func-
tions of iv.

IV. ONE-DIMENSIONAL EXCITED STATE
GREEN'S FUNCTION IN MOMENTUM
SPACE

The one-dimensional ground state reduced Cou-
lomb Green's function in coordinate space has

LEVERE HOSTLER

been treated elsewhere.31 We will here obtain a
closed-form expression [Eq. (71)] which expresses
this function in momentum space and which
applies more generally to an arbitrary excited
state. In view of the remarks following Eq. (10),
the corresponding three-dimensional functions can
be obtained from this one-dimensional result by
differentiation with respect to the momentum
transfer. This investigation is based on the
Tchebichef expansion (33) of §,{V. Since the theory
of the reduced Green's function has been deve-
loped in the references cited above, the derivation
of the new result will be brief. We here assume
the relation

iv =i/kay, ay = the first Bohr radius, (48)
between the parameters %2 and iv. The calculation
begins with the formula32

d
Kl(k,z, kl, q; En) = Zif[(E —E, )Gl(kz, k1; q; E)]]E:En’

(49)
relating the reduced Green's function K, and the
full Green's function G,. The parameter iv is a
function of the energy through Eq. (48) and the
relation & = (2mE/h2)1/2 0 < arc(k) < 7 [Cf. Eq.
(2)] 1t is convenient to rewrlte Eq. (49) using iv
as independent variable instead of E:

w+n
—n)——

(@) 2G (kz,klyq:E)> iv=n?

(50)

(The energy eigenvalues E, correspond to the
values iv =n = 1,2, 3,... of the Coulomb para-
meter iv.) We now substltute for G,(ky, kq, q; E)
in Eq. (50) the sum of Eqgs. (31) and (32) and apply
the operation

OF(v) = 2 (51)

v=n

term by term. It is easy to see that the operation
O leaves unaltered any function F(iv) which is
analytic in the neighborhood of iv = » and simply
evaluates it at iv = n: OF(iv) = F(n). This applies
to the expression (31) and also to all except the
nth term of Eq.(33). This nthterm of Eq.(33) con-
tains the factor (iv —n)~! which removes the fac-
tor (iv —n)*! of O and leaves one with a simple
derivative of a function which is now regular, eva-
luated at iv = n. Thus

K (E.) _= 2n5(q)n3ad 2n3a}
e 1+ 13 (1+ 1) +£3)
+ L _ 4n3a§ nT, (x)
1= (L+t9)A +13) —n +1
n3ad

i [(“/ + 7’1)(1 —'x)Tn(x)]'iu=n:
2 v
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Hh = nak;, t,=nak, q=t,—t, (52)

243(iv)2q?
i1 e (53)

T+ a2(i)2kR)(L + a3(iv)2kD)]

2% . (54)
(1 + )1 + t2)
In the following we will derive an expression in
closed form for the infinite part of the series in
Eq. (52) (for the sum from ! =n + 1 to infinity)
and will work out the derivative indicated in the
last term. The derivative is evaluated by use of
the identities

dx 201 —1) 12 -—1
= = (55)
divl ;,-, n (14 £3)1 + 3
and33
d
(a—yE)Tn(x) ~uCL,(x), n=1,2,3,.... (56)
Thus
n3a3

d
o 2 [0V 00 =0T,

5+ 12 + 12 — 31313
(1 + 12)2(1 + 3)2
02(t313 — 1)

(1 + 13)3(1 + 13)3

= 21343 T, (1)

+ 16n3a3nC1_ (1) (57

The key to obtaining the infinite part of the series
in Eq.(52) in closed form is the identity34

T”(X)z %(pn +p-n), n= 17273,”" (58)
in which p is defined by
r=3%(p +p1). (59)

{This is the same p as before [Eq. (47)], but is now
evaluated for iv =n.} We note the inequality

q2
. =1, (60)
(1 + 6301 + ¢3)

which follows from 1 + 2t £, cos6 + 1413 = 0,6
being the angle between t, and f,. As a conse-
quence of (60) we have

23117

with
0=y =7/2.

If we substitute the expansion (58) of the Tche-
bichef polynomial into the infinite part of the
series in Eq. (52), this series becomes

0 2n3a3 n(pl + p“l)
1y= 2 — L

1=l (14 82)(1 +t3) —n+1

(63)

in which p has modulous unity. This series is
visualized as the limit as # = 1~ of the series

3a3 inl 1n~-1
k) = °Z°) _ 2n3a3 n(hip! + hip ),
1=n+1 (1 + 1301 +18) —n+1
(Rl <1, (64)

which one is permitted to split up into a sum of
two series. These individual series are just loga-
rithmic series of the type

(1 —z)=— > fz.l 2] < 1] (65)
=1
Thus,
I(h) — ——__211_3_(2i—_n(_ h)n[e-zniv ln(l + he'Zi'l‘)
T+t +13)
+ e2ni¥ In(1 + he2i¥)] (66)
and
4n3ai(— 1)n
1) =————— [~ i
I(1-) T+ 0+ fg)[ ¥ sin(2y) + cos(n2y)
x In(2 cosy)]. (67)
The calculations are completed by noting the
following relations:
cos2y =—1, sin2y = (1 — £2)1/2, (68)
(= 1)* cost2y) = T,(1),
 1)* sin(m2y) =— (1 — 12)1/2CL (1),  (69)
— a4 \¥%~
W= cos ((1 T )+ f%)) ' (10)

Equations (68) are just a rephrasing of Eq. (62).
The second of relations (69) can be obtained by
differentiation of the first, with the use of Eq. (56).
In Eq. (70) the acute angle must be taken, in con-
formity with Eq. (62). When these results and Eq.
(57) are inserted in Eq. (52) we find

5+ 13 + 12— 31313

—1=i= 1, (61)
and can therefore write p in the form
p=E T+ (1l — 3;2)1/2 = e—ziill, (62)
|
K. (E.) — 278(a)n3a3 2n3aj 4n3a3 nT,(x)
0 1+ 1y Q+EA+13) @+ DA +13) n—1
92(13t3 — 1) 4n3aj

+ 16n3a3nCl_, (¥)

3(1
e ) e + 1302

(1 +t3)3(1 + £3)3

1+t +13)

q2 1/2
(1 — £2)1/22C1_,(x) cos™1 ((TTT;S(T;—{;‘))
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n3a}

+ mnTn(x)‘z‘ ln<

in which the sum ! < z is interpreted to mean
zero if n = 1, otherwise to mean 2;2°1. The nota-
tions in Eq. (71) have been defined above [Egs. (52)
and (54)]. We have here the desired closed-form
expression for the general excited state reduced
Coulomb Green's function in momentum space.
This expression is without hypergeometric func-
tions and may be useful for applications. For the
momentum space representative of the ground
state reduced Coulomb Green's function, studied
earlier in coordinate space, Eq. (71) gives

3+12 + 13— 1312
(1 +t3)2(1 + £3)2

— 216(q)a} N

Ka(By) == t3)

4a3

4q
(1+qx1+@b’

LEVERE HOSTLER

=1,2,3,..., (71)
[
—9— 13—t +71383
+ dafo® (1+ 12)3(1 + 13)3
P S
(1+t3)(1 +1t3)
2 1/2
— r2)1/ —1__1____
X (1 — 12)1/2 cos ((1+(§)(l+f§)>
4a3 s 442
+u+fpu+f@§mﬁ1+qu+gﬁin)

1 l(i J. ‘;Jhite and F. H. Stillinger, Jr., J. Chem. Phys. 52, 5800
1970).

L. Hostler, J. Math. Phys. 11, 2966 (1970).

J. Schwinger, J. Math. Phys. 5, 1606 (1964).

L. Hostler, J. Math, Phys. 5, 1235 (1964).

The term “full Green's function” refers to the ordinary

Green's function as defined here in Eq. (2). This term is

used when necessary to avoid ambiguity in order to distin-

guish between the Green's function of Eq. (2)and the “reduced

W o W N

Green's function,” defined by
(T 2) 0 (r1)
K(r,,t,,E,) =— 35— -
2T B 2m ,,2,.? E, — E,

This function, which plays an important role in Rayleigh—~
Schrédinger bound state perturbation theory, has been studied
in the Coulomb case for » = 1 (ground state) by H. F. Hameka,
J.Chem.Phys. 47,2728 (1967);48,4810 (E) (1968); L. Hostler,
Phys.Rev. 178, 126 (1969) and in Ref. 2,

6 Reference 2, Eq. (8).

7 Reference 3. The corresponding coordinate space result was
obtained by Hostler [Ref. 2, Eq. (21)].

8 Reference 2, Eq. (5).

® G.N.Watson, A Treatise on the Theorv of Bessel Functions
(Cambridge U.P., London, 1962), 2nd ed., p. 177, Eq. (8), and
the relation on p. 77

1,(2) = e"miv/2g (zei/2), — 7 <arc (z) < 3m.

10 This integral may be evaluated by first assuming A > 0 and

B real, and then extending the result by analytic continuation.

One introduces polar spherical coordinates in the f-dimen-

sional space, with the polar axis in the direction of B. Inte-

gration over the polar angle is evaluated using Watson's Eq.

(9) (the fourth form), p. 79. The final integration over the

radial coordinate uses Watson's Eq. (6), p. 386, and the con-

nection between 7, and J, (cf. Ref. 9).

E.T.Whittaker and G. N. Watson, A Course of Modern

Analysis (Cambridge U.P., Cambridge, England, 1927), 4th

ed., p. 245. The condition Re(x) > 0 is needed to permit one

to deform the integration contour (cf, Jordan's lemma, p. 115).

12 The term “extracting the Z dependence” of the Green's
function refers to the property of Eq. (8) of expressing the
Coulomb Green's function as an integral whose integrand is
the same function of k, and k; as in the free-particle limit
(cf.Ref. 4).

13 Reference 2, Eq. (16).

14 Reference 9, Eq. (8), p. 79.

15 Equation (12) is obtained by explicitly differentiating the
closed-form expression [Eq. (6), Ref. 2] for the one-dimen-
sional Green's function. The function W, ., /, is the Whit~
taker function as defined in H. Buchholz, The Confluent

1

-

Hvpergeomelvic Function, translated by H. Lichtblau and K.
Wetzel (Springer, New York, 1969), Sec. 2. 5.
16 For this we need the relation

Wy ,u2(2) = (2/M12K 5 (32)

[Buchholz, Ref. 15, p. 24] Eq. (29a).

17 Bateman, Higher Transcendental Functions (McGraw-Hill,
New York, 1953), Vol. II, p. 235 Eq. (16).

18 Reference 17,Vol.I, p. 178 Egs. (27) and (28). A great deal of
labor is saved by defining C¥(x) =0, v# 0, n =—1,— 2,
— 3,...,whereupon all the identities (19) hold for unrestrict-
ed positive or negative integral » or zero.

19 Reference 17, p. 178, Eq. (36).

20 Reference 17, p. 184 Eqs. (3) and (6), can be combined to give

T,., = Cly —xCln=0,1,2,3,....

Equation (23) now results by use of the identity

0=Cly—2¢Cl+CL,, n=-—1
This last identity results if one multiplies Eq. (15) (with v=1)
through on both sides with the factor (1 — 2fx + £ 2), and com-
pares coefficients of like powers of { on both sides of the
resulting equation.

21 Reference 17, p. 236, Eq. (23).

22 Jf the calculation for the one-dimensional case and for the
higher-dimensional cases are carried along together up to
the point indicated by Eq. (20), one obtains directly the
expansion

61=%

’

2tk (n — 1)(CE_, — CL.5)
p2

—iv+n—1

in which the n = 1 term evidently drops out. If one looks at
the free-particle limit, however, one obtains the indeterminant
form 0/0 for this term. By treating the one-dimensional pro-
blem from the beginning as a separate case, one can arrive

at Eq. (25) without encountering this ambiguity.

23 Reference 2, Eqg. (19).

24 Reference 17, p. 179, Eq. (3).

25 Cf. Ref. 3.

26 It may be of interest to point out that Eq. (31) can also be
obtained by summing Eq. (25) in the free~-particle limit v =0
if we interpret the resulting series as the limit as # = 1~ of
the series

4ikh x—h

4ik &
il mT - —x=n
p2 ;,?1 wle) p2 1 2hx + h2
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[obtained by differentiating Eq. (24) with respect to the expan-

sion parameter]. This sum can be rewritten as

— 2ik  2ik 1— k2
p2  p2 (1— h)2 — 2h2k2¢2p~2’

in which the last term gives the 6(g) part of Eq. (31), in the
limit h > 1~

27 This generalizes a calculation of Ref. 4.

28 This is done by retaining an upper limit £ <1 in the surface
term, and identifying the distribution obtained in the limit as
t = 17, along the lines of Ref. 26,

29 The contour integral is an analytic function of iy, vanishing at
iv = 0 [if iv = 0, there is no singularity of the integrand with-
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in the contour (see Appendix to Ref. 4)], and therefore has the
general form ivp(iv), where ¢(iv) is likewise analytic in iv.
One sees that Eq. (40) has the form

ive(1/sinmiv)«ivo(iv),

which is first-order small in iv.

30 Reference 11, Chap. XIV.

31 Reference 2. For the treatment of the three-dimensional
problem, see the work cited in Ref. 5. Also, see Ref. 5 for the
definition of “reduced Green's function,”

32 Reference 2, Eq. (15).

33 Reference 17, p. 186, Eq. (26).

34 Reference 17, p. 235, Eq. (20).
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This, the second paper in a series on the motion and structure of a class of (elementary) singularities,
extends the earlier work on “free” singularities to the interaction of these singularities with “back-
ground” gravitational and electromagnetic fields. The principle result is an unusual derivation of the
Lorentz-Dirac equations of motion for a charged particle. The results do not depend on any ad hoc
assumptions nor upon any renormalization, but follow uniquely from the Einstein~Maxwell equations
applied to the elementary singularities. A concomitant result is the time evolution of the structure of

the singularity.

1. INTRODUCTION

This is the second part of a series of papers on a
new approach to equations of motion in general
relativity. As shown in the first paper,l this new
approach is based on the structure and behavior
of the family of null cones emanating from a
singular world line in space-time, where the
singularity is a suitably defined singularity in the
Weyl tensor. The advantage of this approach over
other approaches to the problem of motion is that
it gives an intrinsic description of the motion of a
singularity in its own space-time and does not
depend on the assumption of a regular background
space. By applying Einstein's field equations in
spin-coefficient formalism to the singular world
line, we are able to derive equations of motion for
the singularity in terms of the time dependence of
the null cones. In addition, we obtain the concomi-
tant result that the singularity has an internal
structure whose time development is also govern-
ed by the field equations.

In the first paper we applied our approach to the
Robinson-Trautman (RT) type II metrics and their
charged counterparts, namely the Robinson-
Trautman-Maxwell (RTM) metrics. It was shown
that these two special classes of solutions lead

to equations of motion for “free singularities”,
i.e. singularities not interacting with incoming
background fields. From the RTM solutions, in
particular, we were able to obtain the Abraham
radiation reaction force? in a rigorous fashion,
with no ad hoc assumptions or mass renormaliza-
tion.

Here we shall consider the more general case in

which both incoming gravitational and electro-
magnetic fields are allowed to interact with the
singularity. In Sec. 2, we give a brief review of
the formalism. Sec.3 will deal with the motion
and structure of a singularity in the presence of
an incoming gravitational field in a general empty
space (R,, = 0). Then, in Sec.4, we analyze the
motion of a charged singularity in the Einstein-
Maxwell theory. It is here where we obtain our
major result, namely, the derivation of the Lorentz-
Dirac equations of motion for a charged particle.?2

2. REVIEW OF THE FORMALISM

A brief review of the formalism and of the basic
assumptions will now be given. It will be assumed
that the reader is familiar with the spin-coeffi-
cient formalism.3

Since our approach to motion is based on the
properties of the null cones emanating from a
singular world line, we begin by introducing null
coordinates x0 = u,x! = 7,and x4, A = 2, 3, such
that v2u is a “retarded time” parameter labeling
a family of outgoing null hypersurfaces;v/v2 is

a standard affine parameter measuring “distance”
along the null geodesics lying in each u = const
hypersurface, and x4 are “angular coordinates”
labeling the null geodesics. We then introduce a
standard null tetrad system (I, n#, m#*, m#4) where
{# and ## are real null vectors, m# and its complex
conjugate m* are complex null vectors, and

B M —
I,n" =—mm =1,

with all other scalar products vanishing. In the
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[obtained by differentiating Eq. (24) with respect to the expan-

sion parameter]. This sum can be rewritten as

— 2ik  2ik 1— k2
p2  p2 (1— h)2 — 2h2k2¢2p~2’

in which the last term gives the 6(g) part of Eq. (31), in the
limit h > 1~

27 This generalizes a calculation of Ref. 4.

28 This is done by retaining an upper limit £ <1 in the surface
term, and identifying the distribution obtained in the limit as
t = 17, along the lines of Ref. 26,

29 The contour integral is an analytic function of iy, vanishing at
iv = 0 [if iv = 0, there is no singularity of the integrand with-
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in the contour (see Appendix to Ref. 4)], and therefore has the
general form ivp(iv), where ¢(iv) is likewise analytic in iv.
One sees that Eq. (40) has the form

ive(1/sinmiv)«ivo(iv),

which is first-order small in iv.

30 Reference 11, Chap. XIV.

31 Reference 2. For the treatment of the three-dimensional
problem, see the work cited in Ref. 5. Also, see Ref. 5 for the
definition of “reduced Green's function,”

32 Reference 2, Eq. (15).

33 Reference 17, p. 186, Eq. (26).

34 Reference 17, p. 235, Eq. (20).
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Lorentz-Dirac equations of motion for a charged particle. The results do not depend on any ad hoc
assumptions nor upon any renormalization, but follow uniquely from the Einstein~Maxwell equations
applied to the elementary singularities. A concomitant result is the time evolution of the structure of

the singularity.

1. INTRODUCTION

This is the second part of a series of papers on a
new approach to equations of motion in general
relativity. As shown in the first paper,l this new
approach is based on the structure and behavior
of the family of null cones emanating from a
singular world line in space-time, where the
singularity is a suitably defined singularity in the
Weyl tensor. The advantage of this approach over
other approaches to the problem of motion is that
it gives an intrinsic description of the motion of a
singularity in its own space-time and does not
depend on the assumption of a regular background
space. By applying Einstein's field equations in
spin-coefficient formalism to the singular world
line, we are able to derive equations of motion for
the singularity in terms of the time dependence of
the null cones. In addition, we obtain the concomi-
tant result that the singularity has an internal
structure whose time development is also govern-
ed by the field equations.

In the first paper we applied our approach to the
Robinson-Trautman (RT) type II metrics and their
charged counterparts, namely the Robinson-
Trautman-Maxwell (RTM) metrics. It was shown
that these two special classes of solutions lead

to equations of motion for “free singularities”,
i.e. singularities not interacting with incoming
background fields. From the RTM solutions, in
particular, we were able to obtain the Abraham
radiation reaction force? in a rigorous fashion,
with no ad hoc assumptions or mass renormaliza-
tion.

Here we shall consider the more general case in

which both incoming gravitational and electro-
magnetic fields are allowed to interact with the
singularity. In Sec. 2, we give a brief review of
the formalism. Sec.3 will deal with the motion
and structure of a singularity in the presence of
an incoming gravitational field in a general empty
space (R,, = 0). Then, in Sec.4, we analyze the
motion of a charged singularity in the Einstein-
Maxwell theory. It is here where we obtain our
major result, namely, the derivation of the Lorentz-
Dirac equations of motion for a charged particle.?2

2. REVIEW OF THE FORMALISM

A brief review of the formalism and of the basic
assumptions will now be given. It will be assumed
that the reader is familiar with the spin-coeffi-
cient formalism.3

Since our approach to motion is based on the
properties of the null cones emanating from a
singular world line, we begin by introducing null
coordinates x0 = u,x! = 7,and x4, A = 2, 3, such
that v2u is a “retarded time” parameter labeling
a family of outgoing null hypersurfaces;v/v2 is

a standard affine parameter measuring “distance”
along the null geodesics lying in each u = const
hypersurface, and x4 are “angular coordinates”
labeling the null geodesics. We then introduce a
standard null tetrad system (I, n#, m#*, m#4) where
{# and ## are real null vectors, m# and its complex
conjugate m* are complex null vectors, and

B M —
I,n" =—mm =1,

with all other scalar products vanishing. In the
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null coordinate system which we have adopted, we
take " to be tangent to the null geodesics and
parallelly propagate the rest of the tetrad along ",
This leads to the following form for the tetrad
vectors:

A
F =6, m'=wd| + 76,

: A (2.1)
n =0y +UsY + X7, A=23.

=50
I, =069,

This also leads to the following form for the con-
travariant metric tensor:

%=,

gl = 2U — w),

g =x"— (% +wTY, (2.2)

g¥=—(TP+TY®), A,B=2.3.
Now, the properties of each null hypersurface can
be characterized by the two spin coefficients p and
o defined by

d—v 1 gH
p=lymm=—z1,,

n

o=1, m"m" = (complex shear).

14

The basic condition which we impose on this family
of null hypersurfaces is that p and o have the
following behavior:4

p=—r1+0@), o=0(@) (2.3)
near v = 0. Geometrically, this restriction means
that in the neighborhood of the origin » = 0, the
null hypersurfaces behave like cones. When con-
dition (2. 3) is satisfied, and the Weyl tensor is
singular at » = 0 (i.e., it becomes infinite at » = 0),
we call the singularity an elementary singularity.
It is this type of singularity which we choose to
represent matter.

It can be shown easily from (2. 3) that the 2-sur-
faces,u and 7 constant (i.e., the cross sections
of the “cones”), possess a metric given by

c
gAB:‘“‘%rz g913+0(7"3), g%B:g%B (u,x )-
(2.4)
The limiting metric given by
£9,.=1lim ——2-g (2.5)
AB~ 230 ,22AB .

defines the limiting 2-surface, which we call the
Jundamenlal 2-surface (F28). By using confor-
mally-flat coordinates, the F2S line element can
be written most conveniently as

diz2 = g9, dx*dx® = P-2 dg aTq, (2.6)

where £ = x2 + ix3 and P = P(u, £,€ ). The quan-~
tity P plays a fundamental role in our approach to

ROGER POSADAS

motion. When there is an elementary singularity
at » = 0, Einstein's field equations yield differen-
tial equations for the determination of P from
which one can, in principle, derive all information
about the motion and internal structure of the sin-
gularity.

In flat space, where a similar null coordinate sys-
tem attached to an arbitrary timelike world line
can be constructed, the F28 reduces to a unit
sphere and P becomes!

P=P,=£0b", (2.7)
where é“ is the velocity of the timelike world line
and

b= (1/202) (1 + 88,8 + T, (6 —T)/i, 00 —1).
(2.8)

It is shown in Ref. 1 that there is a unique equiva-
lence between the acceleration vector £* and the
quantity P,/P and between (¢ + 3 £2¢") and
(Po/Pg + 3 £2), where £2 = °£ . It is also shown
in that paper that 150/P0 and (IDO/P0 + 1¥2) are
both expandable in [ = 1 spherical harmonics.
This can therefore be used to give alternative
expressions for equations of motion in flat space.
For example, for motion with the Abraham radia-
tion reaction force, we have the equivalent expres-
sion

VZ m Po/Py=2e2 (Py/Py + 4 £2), (2.9)
where the v2 is due to the fact that « is not the
proper time.

In the case of a general curved space with an ele~
mentary singularity at » = 0, we make the assump-
tion that the F2S is a distorted sphere, that is, we
impose the regularity condition that

P=P,(1+1), (2.10)
where P is the quantity defined by (2.7) and (2. 8)
and 7 is a regular function on the sphere, expand-~
able in [ > 2 spherical harmonics, with the addi-
tional property I > —1. We define P,/P to be the
“acceleration” of the singularity, in analogy with
the flat-space case, and take I to represent its
internal degrees of freedom.

In general, when space~time has an elementary
singularity at » = 0, the field equations will yield
an equation for P/P. Then by imposing the regu-
larity condition (2. 10), we can, in principle, de-
compose this equation into spherical harmonics
such that the [ = 1 part gives the equation of
motion in terms of the “acceleration” P,/P, and
the [ = 2 parts give the tinie dependence of the
internal structure 1.

3. MOTION IN A GENERAL EMPTY SPACE

In this section we will discuss the motion and
structure of an elementary singularity in a gene-
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ral empty space (R = 0). The integration of the
field equations is done asymptotically in the neigh-
borhood of » = 0, in a manner analogous to that
used in the far field (r — ) analysis.3 We start by
considering the two coupled spin-coefficient equa~
tions

9p

oY

= PZ + 067 g—g = 2p0 + wa (3-1)
where /, which represents the incoming gravita-
tational background field, is defined by y/, = #'prf
P 1Pm?, C being the Weyl tensor. If condl-
tion (2. 3) narﬁely,p =—7r~1 + O(r) and ¢ =0(r), i
now imposed on Eq. (3. 1), it can be easily checked
that , must necessarily have the form y, =0(1),
i.e., ¥y must be a regular function of » around »
=0. Thus, condition (2. 3) excludes, for example,
»~5 and higher-order singularities whose presence
in Yy, in linear theory, corresponds to the presence
of intrinsic quadrupole and higher multipole mo-
ments. It can also be shown that condition (2. 3)
leads to the vanishing of the coefficient of the »-4
term in ¢y =—C,,,,/"n"1’m", which means that
the elementary smgularlty cannot have an intrinsic
mass dipole moment and angular momertum.5 In
other words, only elementary singularities of the
nonrotating, mass-monopole type are allowed by
condition (2. 3).

If we now assume an explicit form for ¥, namely

Vo (3.2)

=g +ylr + 0@2),

the “radial” spin-coefficient equations can be
integrated asymptotically around » = 0 to find the
r-dependence of the spin coefficients, metric
variables, and tetrad components of the Weyl ten-
sor, up to the orders allowed by (3. 2). Each step
of the integration will yield a “constant” indepen-
dent of », which will be denoted by a superscript 0.
Then, by substituting the results of the “radial”
integration into the nonradial spin-coefficient
equations and comparing powers of », we can ob~
tain relationships among these “constants.” The
calculations, which are extremely tedious, are
given elsewhere.6 We shall merely give a sum-
mary of the results here.

A. Telvad components of the Weyl lensor:

Vo =¥§ t¥ir +0(2), (3. 3a)

W, =—3 0y —%3Ylr + 002), (3. 3b)

Vo =¥ 3 + 58208 + @20 + 209 [w8|2r

+ O(r2}, (3. 3c)

Yy =92 — 5 wgsPlr-1 — (5 53¢ + 5 wesy})

+ O(r), (3. 3d)
Y= [B0— WP PQIr~2 +y -1 + 0(1).

(3. 3e)
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B. Spin coefficients:

p=—r"1+ w823 + 5 ReW¥dire + 00d),
(3. 4a)

U:§¢87 +5ykr2 + 003, (3.4b)

(3.4c)

B=—a®r L+ (;a®yd—L3uQr + (& a®y}
—LBYLp? + 03 (3. 4d)
T =—5 0Py — & Sydrz + o3, (3. 4e)

A== SVEVE (G OV — s WRE R 1002,
(3. 41)
p=—Y9r=2 + p0rl + 2 B200r + (5 5293
— 5 ¥8lygl2p2 + ow3), (3.4g)
y=—5 Y82 + 50 + [ 529§ — s Im(a OBy

L 02 + 5 vBlYEI2 — 5 Im@ 0By )2

+ 0(r3), (3.4h)
= —URrTt 00+ 5 (WYSTR — TG — 3uo0TR)r
+ 0Ww?2), (3. 4i)
k=e=m1=0, (3.4j)
C. Melric variables:
w =15 BYPr2 + 5 BYrd + 00rd), (3.5a)
U=—yr~1 +U0— (0 +50)y — & Re(52yQh2
— & Re (8293 + 20914812173 + 0(4), (3.5b)
£ = 2% L ugT + 5 ugT0 2 + 009),
(3.5¢)

x*=x°"—§ Re (£%%5¥8r — & Re (¢™"oy})r2

+0(@r3). (3. 5d)

D. Line elemenlt:

= 2[ygr?

+ 2dudr + 0(r2) (dudt + dud¥ )
2 .

_ [# + 0(74)] dedt.

ds2 —UO + (0 + 5 0) + 0(r2)])du?

(3.6)
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E. Relationships among the “constants”:

wl=A0=y9=0, 70=0a0+p0=0,

(3.7a)
£02 = £03 = —P@,¢(,C), P=P, (3.7b)
0 — E 00— __50 3.7
a v B8 a0, (3.7c)

UO=p0 =p0=—K, K=158logP, (3.7d)

Z0= p-1(X02 + jx¥03) 520 = —% vy g,

(3.7e)
y0=—3P/P +§ 820 —Im(a029), (3.71)
0 = —F (40 +59) — L w95y, (3.7g)
55yg = -3y}, (3.7h)
Y§=—3U°=0K, (3.71)
Y =—8v0 + 5 y3 (Foy§ — 4k¥Y), (3.7j)
5y8=0, ¢9=18, (3.7k)
Vg + 36,0 +50) w§ = —5yh. (3.7)

To analyze these results, we shall impose the
regularity condition P = P4(1 + I) and use the
properties of the operator & (edth), which is de-
fined as
¢ O

5n=2P" 3¢ (P°n) (3.8)
for any function 7 of spin weight s. It will again
be assumed that the reader is familiar with this
operator and the related class of spin-weighted
functions.”

First, we note that (3. 7k) implies
(3.9)

where 8 is defined with respect to P,. This in
turn implies that ¢§ is an / = 0 spherical har-
monic, i.e.,

Y8 =—Mu), (3.10)
where M(u) is related to the “mass” of the sin-
gularity. (For the Schwarzschild solution, y§ =
—+/2 km,where k is twice the gravitational con-
stant and m is the Schwarzschild mass.) Now, con-
sider Eq.(3.7e). Since Z0 and y/J are, respectively,
s = 1 and s = 2 quantities, we can write

z20 =%V, y§="02R, (3.11)
where V and R are both s = 0 quantities. Substi-
tuting (3.10) and (3.11) into (3. 7e), we obtain

52(V —3 MR) =0, (3.12)
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V=3MR +J,

where J is an s = 0 quantity satisfying 82J = 0.
By means of the coordinate freedom ¢’ = g(u, ¢),
it can be shown that J can be transformed away.
Therefore, we have
V =3 MR. (3.13)
If we now substitute (3. 7f), (3. 7i), (3. 10), and
(3.13) into (3, 71), we get
M —3M P/P =383[K~MR +R)]. (3.14)
With the use of the regularity condition P =
P,(1 + 1) and the expression (3.7d) for K, Eq.
(3. 14) becomes

M—3MPy/Py—3MI/(1 + 12358, [(1+1)2
+(1+1)8,8,]—8,5,—M2R +R)].

By carrying out the differentiation of the terms
inside the bracket, we can write this equation fur-
ther as

M —3M Po/Po—3M I/(1 + 1)3(5 43 48 o5 ol
+285,5,0) —(1 +1)253-33] (3.15)
—M2(1 +1)23,5,(R +R).

Formally, this equation can be decomposed into
spherical harmonics such that the [ = 0 part

gives the time dependence of the “mass” M, the

[ =1 part gives the equation of motion in terms

of Py/P,, and the I > 2 parts give the time develop-
ment of the internal degrees of freedom 7. How-
ever, due to its extreme nonlinearity, it is more
enlightening to consider the linearized version of
(3.15).

Under the assumption that PO/PO, I,and R are
first-order quantities, the linearization of (3.15)
yields

M —=3MP/Py—3MI=75,8,5,0, +2548,]
—M25,5,(R +R). (3.16)

Note that since ¥ § is expandable in spin-2 spheri-
cal harmonics starting with / = 2, R must be
expandable in [ > 2 spherical harmonics. Because
of the linearity of (3. 16), we can (without loss of
generality) let R have a definite [ value, i.e.,

8,0 oR = —I(I + 1)R. Then the decomposition of
(3.18) yields
1=0, M=0, (3.17a)
l=1, MP,/P,=0, (3.17b)
1>2, I+3M-U(+1)Ll+1)—2]
=3:M Il +1)(R +R). (3.17c)
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Thus, from (3.17a) and (3.17b), we see that the
singularity moves with a constant mass and zero
acceleration, while from (3. 17c) we get the solu-
tion

[ = e-u/u0
x (1€, ) =iM UL + 1) [(R +R)e™ odu),
where (3.18)
(o)™t =3M~1(1 + 1)UL + 1) — 2]. (3.19)

Equation (3. 18) shows how the internal degrees of
freedom are driven by the incoming gravitational
field y§ or R.

In the test-particle limit (M — 0), we, of course,
obtain from (3.17a), (3.17b), and (3. 18) the usual
results P/P, = 0 and I = 0, i.e., the test particle
moves along a geodesic in the regular background
space. However, if we constrain I to be zero before
going to the test-particle limit, we obtain an inter-
esting result: The world line of the particle is not
only a geodesic but also part of a rigid geodesic
congruence. To show this, we set I = 0 in (3. 15)
and decompose the resulting equation into spheri-
cal harmonics. Then we get

1=0, M=0 orM=const, (3.20a)
=1, MPy/Py=0 orPy/Py=0,  (3.20b)
1>2, M2(R+R)=0 orR+R=0. (3.20¢)

In the limit M — 0, (3. 20b) implies that the world
line » = 0 is a geodesic while (3. 20c) implies that
R is pure imaginary, i.e.,

R =iy, (3.21)

where x is real. It follows from this that

Vg = i63x,

which shows that ¢/§ is pure magnetic. As we shall
now prove, the vanishing of the electric part of

¢ § implies that neighboring geodesics have zero
relative acceleration with respect to the world
line » = 0.

(3.22)

Given a timelike geodesic congruence, the rela-
tive acceleration between any two neighboring
geodesics of the congruence, L, and L, say, is
expressed by the equation of geodesic deviation®

D2y

— gHveT
Do? = RVt ¢

oTr (3.23)

where # is the tangent vector to the congruence
of timelike geodesics parametrized by the proper
time u(t”tu =1),7n" is a vector orthogonal to #
which connects points of L, and L,, D denotes
absolute differentiation along #,and R***’ is the
Rieman tensor. The tangent vector t* may be
written in terms of the null tetrad vectors (I*s#"»

m", m") as
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t' = 2-172(0% + o), (3.24)
and in empty space R*“?” may be replaced by the
Weyl tensor C*°, Hence, the equation for geodesic
deviation can be rewritten in empty space as

D2y’ _ o

oz Mg (3. 25)

where C"° is given by
C“": 2Cu:zptft”tp = C“uptr (lu + ”y)(lp + "p)

(3.26)
and has the properties

HO _ ~ (o) v _
cC =C s “ut =0.

Ct =0, C (3.27)
It ¢an be seen from these properties that C“" has
only five independent real components. We choose
these components to be the two complex scalars,
2, and Q, and the real scalar Q 5, defined by

Q, =—C,,m'm", Q,=—C, I"m",

Q3=—C,,m'm". (3.28)
From the definitions of the tetrad components of
the Weyl tensor, we can also express (3.28) as

2= "“(‘PO + -#—/4), Q, =y, —53»

Q3 =¥, T ¥,

Now, let 7 = 0 and M — 0 so that the world line

v = 0 becomes a timelike geodesic, which we can
identify with L, and y'§ becomes pure magnetic,
Y8 = i58x . From (3.7h) we find that in the limit
M-0

(3.29)

5050)( = —6y, (3.30)
which shows that y is an [ = 2 spherical harmonic.
Then, using this in (3. 3a)-(3. 3e), we get the follow-
ing values for y to ¥4 on the world line » = 0:

Yo =y¥g =183, (3.31a)
Yy =—10g08 =iy, (3.31b)
Yo = ; BBY8 = 2ix, (3.31c)
Y3 =— 75 0348 = —iByx, (3. 31d)
Ya=3 Og¥g = B3x. (3.31e)

[Note that the O(1) term in y, was explicitly
evaluated by adding another term to y, i.e.,y
= ¥8 + vy + it + 0tr).]

Substituting (3. 31a)—(3. 31e) into (3. 29), we obtain

Q,=0,=0;=0, (3.32)
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which means that C,, = 0, or

Therefore, the vanishing of the electric part of
¢'§ (under the constraint / = 0 and in the test-
particle limit M — 0) implies that neighboring
geodesics have zero geodesic deviation from the
geodesic v = 0.

Finally, we consider how the incoming field y§
and the radiation field ¥/ are affected by the
motion and structure of the singularity. The for-
mer is modified by the presence of the singularity
through Eq. (3. Th), which can be rewritten as

52855R + 6K 2R = 3My/}, (3.33)
where use was made of the relation (88 — 33)n =
2sKn. Thus the incoming field drives the internal
degrees of freedom of the singularity and is in
turn affected by the presence of the singularity. In
the case of the radiation field, we can express
(3.7j) as

vy =52 (§20 +52°) — P/P] +} 3
X (5599 — 6KyQ) =B82[; MB35 (R +R) (3.34)
—Po/Py—1/(1 +1)] +M(2KLY — MY}).

In the linear approximation, this becomes

Wq = BZ[EM 5 ,B,R — 1), (3.35)
where the first term represents the contribution
of the incoming field R and the second term repre-
sents radiation from a 2°-pole source.?

4. MOTION IN THE EINSTEIN-MAXWELL
THEORY

We now consider the motion and structure of singu-
larities in the presence of both incoming gravi-
tational and electromagnetic fields. Again, the
Einstein~Maxwell equations are first integrated
under the assumption p = —~1 + O(r) and ¢ = O(7),
and the solutions are then analyzed with the use of
the regularity condition P = P4(1 + I). The cal-
culations become much more tedious and the de-
tails, which can be found elsewhere,® will not be
given here.

In the presence of a Maxwell field F, , the two
“radial” spin-coefficient equations ( .1) get
modified as follows:

-g-g =p2 + o0 + k(poqao,g—g = 2p0 + Y, (4.1)
where ¢ 3, which represents the incoming electro-
magnetic field, is given by ¢, = F, #'m”, and the
coupling constant % is twice the Newtonian gravi-
tational constant G. If we again integrate (4.1)
under the condition p = —r~1 + O(r) and 0 = O(r),
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we find that y, = O(1) and ¢ = O(1).6 Therefore,
condition (2. 3) excludes not only intrinsic mass
quadrupole and higher multipole moments but also
intrinsic electromagnetic dipole and higher mo-
ments (i.e.,»~3 and higher singularities in Vo)

In integrating the radial equations, we take 1//§, the
coefficient of »~¢ in the Weyl tensor, to be zero
although it is very likely that, under condition
(2.3), ¢ vanishes identically, as in the empty-
space case.

With the information that the incoming fields ¥,
and ¢ have to be regular functions of » around

v = 0, we may assume that they have the following
explicit forms:

Vo =8 +Vlr + WErt + 009, w2
Qo= (p8 +odr + qp(z)’rz + O(r3).

We can again integrate the “radial” spin-coeffi-
cient equations asymptotically around » = 0, obtain-
ing at each step a “constant” independent of ». The
results of the “radial” integration are extremely
long, so we shall give here only the relation-

ships among the “constants” and the differential
equations for ¥/ and ¢{, which are respectively

the coefficients of 3 in the Weyl tensor and of
»~2 in the Maxwell tensor.

A. Relalionships among the “constants”:

w0=¢?:¢$:0, 70 =0a0 + 80 =0,

(4. 3a)
£02 — j£03 = _p(u t.T), P =D, (4. 3b)
K=15% log P, (4. 3c)
a® = —F0 =~ 2~ 7 7ol (4.34)
20 = ko B9 — k2980 9)?, (4. 3e)
Z0= P-1(X02 + iX03), (4.30)
320 = 2kp8p3 — VWY — Ry lefl2,  (4.3g)

UO=—K+ 2 k2]0§|2109|2 — 2k0 9503
— 289980}, (4. 3h)
uo = —K + 8k2| 0812|9012 — 2k0 909§ — k9B ¢Q,

(4. 31)

yO=—3P/P +382° + 5k y3lpg|2
+ £ Im(Z9% log P), (4. 3§)
Ve =8, (4. 3K)
5yg = 2ke Q99 — 2kY 30809, (4.31)
509 = —3k08l09]2, (4.3m)
598 =—keU0d)? — 3 ve9, (4.3n)
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5oy =—3uh — £ ky3lefl2 + 6kpQpi5y§
+ 2o By G +10kp3B0Q — 6kp 93 (4. 30)
— 10ky 809808 + 55 k2481081210912,

Y9 =BK — 3kpBp 9K + 3 ko §82p + ; k89]- 59§
+ 362980 fpel0e12 — k2030 el 012
— 3k 995(P80 Q) — 1502081091209 (4.3p)
T k20919817809 — 3k2903(¢09)?5¢§
+ 3 k%0809 egl2l0912.
B. Differenlial Equalions:
99 — 2(P/P) 99 + } [6(09Z9) + B(¢929)] s

=—~8¢9— (Y33
W8 —3(P/P)yg + klugpdl2 +  Y9(BZO + 520
+ 5(208y3 + Z05y9) = 95 (¢ §K)
+ 9 98(08K)) + ko893 + tklpQ12(52¢]
+82¢8) + 5 k@099 5Y8 + 98] TYY)
+ 3 (V808209 + V8096 209) — 3 k(599520 §
+ 8¢9 52¢8) — 36k2[0f[2(0Q[2K
+3%2((9920(0309) + (9D 2B(p3e ]
+ 3k2((p 959 8)2 + (@B0Y?) — §
x k219912(W 80§80 Q + ¥Be8599)
+ 9k2|0880912 + T k2089598 5?
+ 980 B9§:599) + 1822|9592
+ 3k2[p §(¢0 )20 208 + 0@ 125 298]
— § #210Q12(p80 9598 + 080 95UQ)
— 1531991 0803 + 0803 —
k3198121991 %p 008 + 0 §B¢8)
— 5 k3lo912[¥8(980 92 + V80§09
— 3 219212080920 + 98025 99]

+423k4|pQ14] Q4. (4.5)

—BBK + 3k[o

X

These results are obviously much more compli-
cated and nonlinear than those of the empty-space
calculations. Though in principle we could extract
equations of motion from (4. 5) and (4. 4), it is
more instructive to use a linear approximation
procedure for the present. Thus, we impose the
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regularity condition P = Py(1 + I) and assume
that Py/P, and I are first-order quantities. In
addition, we carry out the analysis only up to first
order in the coupling constant &.

Now, since ¢§, ¢ 3, and y/§ have spin weights +1,
—1, and +2, respectively, we can write them as

®3 =3B,

where A, B, and G are all spin-weight zero vari-
ables. Next, from (4.3m) we find that

@8 = BA, Vv =526, (4.6)

[¢ 0(99 = O(k),
which implies that
@9 = E(u) + O(k). (4.7)

Then, substituting ¥§ = §2G into (4. 30) and using
the commutatlon relation for & and 6 we obtain

353G = 5253G + 6K52G = O(k), (4.8)

where we have also used the fact that there is a 2

in ¥§ (c.f. Schwarzschild solution: zp% =—2 km).

In the linear approximation, Eq. (4. 8) becomes
53(3,8 4G + 6G) = O(k),

which implies that G =R + O(k), where R is an

{ = 2 spherical harmonic, i.e.,

5,0R = — (4.9)
Therefore, /§ is given by
¥§ =BFR + O(k). (4.10)

If we substitute this together with (4.7) into (4. 3n),
we get

534 =—3E 53R +O(k), (4.11)

whose homogeneous part has the solution A =F,F
being an ! = 1 spherical harmonic. Hence, the
complete linearized solution of (4.11) is

A =F — 5 ER + O(k),
i.e.,
0§ =8oF —} ES R +O(k).

(4.12)

(4.13)

From (4. 3g) we find next that
520 = O(k).
Since the homogeneous part of this equation can
be transformed away by means of the coordinate
freedom ¢’ = g(u, £), we therefore have
Z0 = O(k). (4.14)

Now, linearizing (4. 4), we obtain
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5,808 = —E + 2E Py/P, + 2EI + O(k).
(4.15)
If I is assumed to have a definite / value,i.e.,

640 ol = —I(I + 1)I, then (4.4) can be decomposed
such that

E = O(k) (4.16a)
and
B =—E Py/P,—[2E/I(1 + 1)) + O(k).
(4. 16b)
Equation (4. 16a) implies that
E=e +O0(), (4.17)

where the constant e, assumed to be real, is just
the charge of the singularity (cf. Reissner-~Nord-
strém solution: ¢ = ¢). With this result, ¢,
¢8, and ¢ 9 become
09 =-e +0(k), {(4.18a)
08 =8,F —3e 5,R + O(k), (4.18Db)

09 = —eBo(Po/Py) — [2e/U1 + 1)] Bl + O),
(4.18c)

Substituting all these into (4. 31), we then obtain
B oW = —2ke25 o(Po/Py + [2/U1 + 1)]I) + O(k2),
which has the general solution

—~ [4ke2/U(1 + VI
+0(k2), (4.19)

W = —kW(u) — 2ke2 Py/P,

where —kW(u) is the solution of the homogeneous
part,

Finally, we consider the linearization of (4. 5).
Substituting into this equation the expressions for
00,93, ¢3,¢§, and Y obtained previously, we get
to first order in &
EW + 2ke2 (B /P, + £2/2) + [4ke2/1(l + 1)
— 3kW P /Py — 3EWI =5 43¢5 ;B o/
+ 28,8 of — 3ked (B o(F + F) +ke25 ;8 o(R +R)
— jke2 (5383R + 5352R) + O(k2), (4. 20)

where 2 = Z“'éa comes from the identity6

8o(Po/Po) B o(Po/Po) = —{(Po/P)? + £2/2].

Since F and R are [ =1 and [ = 2 spherical har-
monics, respectively, and since 8 6,/ =
—I({ + 1)1, Eq. (4. 20) can be simplified further to
yield
kW + 2ke2(P /P, + £2/2) + 4ke2I /1(1 + 1)
— 3EW(P,/P,) — 3kWI = I(I + 1)[I(I + 1) —2]I
+6ke(F + F) — 12ke2(R + R) + O(k2). (4.21)
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If we now decompose this into its different / values,
then we obtain

1=0, W=0(), (4.22)
I=1, W(Py/P,) = —2e(F +F) + % e2(P /P,
+ £2/2) + O(k) (4. 23)
=2, % kel — 3kWI — 24] = — 12ke2(R + R)
+ O(k2). (4.24)
From (4.22) it follows that
W =+2m + O(k), (4.25)

where m is a constant which can be identified with
the mass of the singularity. Eq.(4.24) shows that
in this order of approximation only the I = 2 part
of I is excited by the incoming fields. Substituting
(4. 25) into (4.23) and taking the limit £ — 0, we
get

V2 m(Po/Po)

—2¢(F +F) + 3 e2(P,/P, + £2/2).

(4.26)

We will now prove that (4. 26) is equivalent to the
Lorentz-Dirac equation of motion.

If the Lorentz—-Dirac equation is expressed in
terms of a parameter which is v2/2 times the
proper time on an arbitrary timelike world line
in Minkowski space, it becomes

V2 om EF = 2ef FU + % o2(E" + L E2gY), (4.27)
where g §” = 2. Multlplymg thlS by [, and using
the relations, ! g =1and! g = PO/PO, we get

e2(B /P, + £2/2).
(4.28)

«/Z_m(PO/PO) = 2eF"“gul“ + 2

Now, since g can be expresged in terms of the
tetrad vectors {,andn, as §, =1, +n,,and since
F'is antlsymmetrlc then
vy, vy _ Hy
FUgl, =F In,=—F"ln,. (4.29)
But from the definition of ¢,,i.e.,¢; = 3 F**(I,n,
+m,m ), we see that
H _
Filn,=¢ + (pl.
Hence, the first term on the right of (4.28) can be
written as
2eF" g1, = —2e(g) + 7). (4. 30)
Now, in the flat-space limit (K » 1,/—- 0,y ,— 0,
a = 0-4) and in the test-charge limit (¢9 — 0) of
the Einstein—Maxwell solutions, the world line
r = 0 becomes a regular world line in flat space
and the value of ¢, on this line can be shown to
beé
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Py = %50408, (4.31)
where ¢§ satisfies the equation [see (4. 3n)]
8098 = 0. (4.32)

Setting 9§ = 8 (A, we see that then (4. 32) implies
that A is an [/ = 1 spherical harmonic,i.e.,A = F.
Therefore, (4. 30) becomes

2eF" £, 1, = e5,B(F +F) = —2e(F +F).

(4.33)

Substituting this back into (4. 28), we get precisely
(4.26). Thus, we have shown that (4. 26) is equiva-
lent to the Lorentz-Dirac equation, with the Lorentz
force appearing in terms of a unique background
field F and the Abraham radiation redction force
arising without the use of mass renormalization or
ad hoc assumptions.

5. SUMMARY AND CONCLUSIONS

We have considered here the extension of a new
approachl0 to equations of motion in general rela-
tivity that was presented in an earlier paper.
This approach was based on an analysis of motion
in terms of the structure and behavior of a family
of null cones emanating from a special class of
singularities, called elementary singularities,
Imposing the condition p = —~1 + O(r) and ¢ =
O(r) on a family of null hypersurfaces # =const
in a general curved space, we were able to define
a fundamental 2-surface (F2S) whose metric is
specified by a function P = P(u, ¢, ). By assum-~
ing that this F2S is a deformed sphere,i.e.,P =

P (1 + 1), we were then able to give an alternative
mode of describing motion, in which P,/P is
identified with the acceleration and ] is interpreted
as internal degrees of freedom. If the Weyl ten-
sor is singular at » = 0, Einstein's field equations
yield differential equations governing the behavior
of the F2S, from which one could extract equations
of motion for the singularity in terms of P,/P
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as well as equations for the time development of
its internal structure I.

In this paper we discussed the case where the sin-
gularity interacts with both incoming gravitational
and electromagnetic fields. We showed (to lowest
order) how equations of motion are obtained and
how the internal degrees of freedom are driven by
the incoming fields (which in turn are modified by
the presence of the singularity). In the case of a
charged singularity interacting with a Maxwell
field, we were able to derive the Lorentz—Dirac
equation as a first-order approximation. This is
the major result of our work.

In conclusion, we would like to point out some of
the difficulties in our approach that must be clari-
fied before it can be considered as an acceptable
theory of motion. The primary difficulty is that it
appears almost certain that in the neighborhood of
the singularity at » = 0, there exists a horizon
that prohibits external fields from penetrating to
r = 0. It thus leaves the meaning of the “external”
fields Y, and ¢, obscure. Associated with this
problem is that of the time development of each
term in the expansion of , and ¢ ,. We do not
know the results of studying the higher order ¥
behavior of the solution, e.g., do they lead to com-
patible equations? Our inclination is to believe
that these are not insurmountable difficulties but
they nevertheless must be faced.

The work presented here totally neglects the possi-
bility of introducing singularities with internal
angular momentum. It now appears that by gene-
ralizing the conditions

p=~1/r +0(r), o =0@),

to

+0(r), o =0(@),

_ 1
P==75%iz
it is possible to study singularities possessing a
spin structure, the resulting equations of motion
resembling the Frenkel-Mathisson—Papaetrou
equations. The details of this work will be dis-
cussed in a future paper.
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The excitation for an obstacle moving with constant velocity in free space (Z) is transformed to the
scatterer's rest system (Z’), and the corresponding far-field scattering U’ ~ U/{g) is transformed to =

to obtain U ~ U,(G).

A simple expression is derived for the scattering amphtude G in terms of the con-

ventional g,and known functional forms U[G] gwe the scattered field in = as a complex integral and its

inverse-distance expansion. In dyadic form,G =

P7*gp, where p corresponds to transforming the ex-

citation from Z to Z’,and p” (a planar recxprocal) o transforming the scattering from Z’ to . Then we
transform the Green's function surface and volume integral representations, and the multipole series
for U’, and apply the results to spherically symmetric scatterers, arbitrary small scatterers, large

tenuous scatterers, and to cylinders and slabs,

INTRODUCTION

The scattering of a plane electromagnetic wave by
an obstacle moving with costant velocity v in free
space is determined by Einstein's procedure.! The
wave &(r,{) in the observer's system Z is trans-
formed to the scatterer's system Z’as the incident
wave ®'(r’t’), and the corresponding scattered
wave U’(r’,t’) is then transformed to £ as the re-
quired function U. We use known results of rela-
tivityl ™3 and scattering?:5 theory, and transform
explicit 3-vector forms in an invariant cylindrical
basis (v P, cp) initial forms are in spherical bases
(r,9,9;1’ 8 f} and results are exhibited in re-
tarded (ﬁ 8, ¢), present (r T8, @), and mixed

(r., 8, ) bases in which @ is invariant, Earlier
work of Yeh and Casey,% Censor,? Lee and Mit-
tra,® and Restrick?® and Tail0 is cited in context.

Given ¢ with direction of propagahon I = =kand
polarization p = 9, /)l +@;pg = ozp1 + 61)2, we iso-
late a simple form p’ = a@'p, + 61)2 ind'(k’:p'p "
and show it exhibits the invariance aspects of the
transformation. Given the scattering amplitude
g(r’) for the conventional problem in L', we trans-~
form only the far-field U’~ U, (g) to obtain
U ~ U,(G) with G(R;T) = egal + <ng,, the known?
functional forms U[G] give the scattered field in
Z as a complex integral, and its inverse-distance
expansion. (Far fields have been transformed
before, 810 and a complex integral for U was ob-
tained originally by Censor? by transformmg the
analogous integral for U’.) The result p*Gk; k') =

p’+g(k’) interrelates the interference effects in the
two systems In dyadxc form, G= prg*p, where

= (@'a@ +86)p’ (k¥) corresponds to transforming

the excitation from 2 to =, p” = (08" + (pgo)/p'(R )
(a planar reciprocal) to transformmg the scatter-
ing from Z' to %.

Then we transform surface and volume integral
representations and multipole series, and apply
the results to spheres, arbitrary small scatterers,
large tenuous scatterers, cylinders and slabs.

1. THE SCATTERED FIELD
Preliminary Considerations

We assume that system Z’ has the constant velo-
city v = vZ in T and that the origins coincide at

¢t =t =0. Anevent r{z,x,v),! in £ is specified
in ' by r'(z',x’,y'),t" wherel

"=ylz—Bet), x'=x, ¥y =y, t=v(t—Ppz/c),

B=v/c, y=(1—p2)"1/2 (1)
with the velocity of light given by ¢ = (€4p)~%/2 in
terms of the free-space electromagnetic para-

meters. Using the dyadic V = ¥¥ and the identity
I, we write

"=Ler —vi),t =yt —ver/c2);
L=ywW+A-V)=wW+T 2
The fields transform as!™3
H' = f"H*‘yVX Eeq,

f :V +y'f‘ :,},i‘*-l_ (3)

E' = T*E +yv X Hpy,,

For the inverse of (2) or (3), we switch primes
from left to right and replace v by — v. For ¢-
periodic (e~¢!) fields,from V X H = €,3,E and

V X E = — p,0,H, we have

g YXyx¥ VX¥ |E

- k2 - ik T jHV?
_Yx¥ | Hpg -

with # = «/c. Thus, ¥’ and its mate ¥;, are speci-
fied by ¥ as

V= T¥ + 8% X (VX ¥/ik),

Y = To(V X B/ik) — ¥ X ¥; V¥’ =0, (5)
Similarly, to transform ¢’ -periodic (e~iw’¢'} fields
from =’ to £ we switch the primes and replace ¥

by — v and & by &’

We use (5}, or its inverse, with explicit 3-vector
forms in the invariant Cartesian basis (& = ¥,%,y)
1mp11<:1t in (1), or in the invariant cylindrical basis
(¥,p =X cosg + ¥ sing,p =¥ X B),or in sPhemcal
bases (f = ¥ cosf + p sinb, § —~go X r,ga,r 9, 9)
in which only @ is 1nvar1ant Corresponding to
r=2z+p =2zr cosé +pr sind, we have r’' =z’ + p,
with 2* = 7’ c0os6’ =y {V*r — vf) and p =7’ sind’ =
¥ sinf = (x2 + y2)1/2, The decompositions are
general, since any direction ¥ can be written in
terms of the invariant direction ¥ as ¥ = £*¥¥ +
(v x r) X 7 ; then, we define in turn 6, then qo, and
then p and_ 8 by means of v-rA~ cos6 VXT = <p
sme,:va—p,and<p>< =4.
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Plane Waves
In 2, we write a plane wave with direction of pro-
pagation k and polarization p as

= eiv(kf)ﬁ(ﬁ), f(.ﬁ(ﬁ) =0,

(6)
where k*p = 0 ensuresV+® = 0. In Z’, by (5) and
(@),

& = ei{;l(i{’)p,, V'(ﬁ') — klEl.rl
p’ =Tp+y80 % (kX p)

v(k) = kker — wt,

—w'lt,
:p’ﬁ,’ (7)

where the phase v'(k’) = v(k) is invariant1,2 with

k'/k =w'/w =y(1 — B cosa) = 1/y(1 + B cosa) = p’;

Il

(cosa ~ B)/(1 — B cosa),
sina/[y(1 — B cosa)],

cosa’

1l

sina’ (8)
intermsof cosa =k+v and cosa’ = k’+v. All details
of (7) but p’ have been discussed fully.1~3 Since
the isolation of a simple form p’(p) exhibiting the
invariance aspects of the transformation is essen-
tial to our development (and provides the prototype
for later work), we consider some elementary mat-
ters. See Censor? for work withp’ = [(1 —y)v +
vBkvp + (1 — BV+k)p, and Restr1ck9 for work in
rotated Cartesian systems.

We write k = vekv N (v X k) X v and introduce

@, then 6 and then pand a . by means of V°k =
cosa, vxk—ésma andbxv—uandbxk~a
Thus, for a given k there is an associated invariant
cyhndrxcal set v u, B (inv, p, @),and a spherical
setk,a,d (inT, 8, @) with_ 6 invariant. Since pk=
0, we may write p = (I —kk)*p or, equivalently,

P = (@@ +83)*p =a(@p) + 5(B+p) =ap, + &,
= @& sin@ + B cosQ,

(9)

where @ is the polarization angle.

In the cylindrical basis, we have k = -V cosa +

j sina,@ = — Vv sina +ycosa and I' =vv +
y(ji + 86);from (7),p’ = [~ ¥ sina +
fty ( cosa — B)]p1 +8y(1 — B cosa)pz,and by (8),

p’ = (—¥ sina’ + i cosa’)p, + bp,. Thus, with

= — v sina’ + u cosa’,

o321

P’ =a'p, +8p, =a'(a-p) +5(-p)

= (@’a + 8d)*p = a’ sinQ + 3§ cosQ; (10)
since kK’ = L+(k — BV)/p’ = V cosa’ + ji sina’, we
have p’*k’ = 0 as required for V’'+*®’ = 0. The
final forms of p and p’ differ from those of
Restrick? in that his corresponding pairs of base
vectors plus k or k’, respectively, form rotated
Cartesian bases with one base vector in common.

In terms of p and p’, the corresponding mates are
= l;X P :f)Mei“,
=kXp=(—ad +8a)p = — @ cosQ + & sin@,
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b, =k X&' =ppye’
Py =k’ xp'=(~0a'8 +30)*p' =—a’cosQ +b sing,
(11)

and we also have P, = (@a + 88)+(k X p) and

p/ = (@'a + 56)+(k X D), as well as the analogs of
(11) for p(pM) and p’ (pM) (For some purposes, the
sets k , P, pM and k', p’ pM provide natural rotated
Cartes1an bases, but we do not use them in the
present development.)

The polarization angle @ is preserved in the sense

=a'*p = sing. (12)

Thus, if for fixed k we considef two different
polarizations,p, = @ sin@, + 0 cosQ, = p[@,] and
B, = BlQ; ), then
Q) (13)
is invariant,i.e., the angle between two different
polarizations along a ray is invariant under trans-
formation. This follows from (12), which is simply
a consequence of the invariance of the ¥ compo-
nents of the field (3) or (5). ‘Thus, from
'<I>M = v *diy,i.e. ,V pM b’ v'pM we have

v (k ><p) ~pv (k’Xp),smcev Xk_Gsma and
v XK’ = b sina’ , we obtain 6~p sina = d*p’p’ sina’
which by (8) reduces to G-p = 6-p of (12). Simi-
larly, Vb = v gwes G-p = 6-pM or, equwalently,
6 (k Xp) =b+(k’ X p’) whlch reduces to @ p =

@'+p’ of (12) on using 85X k=@ and & X k' = &’
Thus, the invariants v-<1> and v‘d) correspond re-
spectxvely, to the 1nvar1ants 5+p and 3+p > 2nd both
are exhibited in (12) and in the basic form p’(p)
of (10). The relation &’+&, = &*& required by
(5) is shown in p’*p,, = p'p'y = cosQ sin@[1 —
cos(a’ — a)].

PPy = p; Py = cos(@, —

Similarly, if we transform from %’ the wave
V’(ﬁ') — k’ﬁ"r’ —w't,
=6’ sing + § cosg; (14)

B(R) = pre v EIGR),
G =(©96 + )G
where R’ 6’,(,) form a special spherical set
(in §,8 (p) we obtain in Z in terms of the corre-
spondmg set R,6,0 (in T,8,9)
& (R;R') = p'p,ei*sG = PeP®G(R);
GR) = (66’ + 99)*G’ = 6 sin® + § cos?;
v, = ksﬁ'r —w,t = v'(R) = Pv(R),
V(R) :kR-r~—wt, P:p’ps :ks/kzws/w;
b =k/k =w,/w =y(1 + 8 cos®’)
= [y(1 — B cos®)]"1;
(cos®” + B)/(1 + B cos@’),
sin® = sin®’/[y(1 + B cosO’)].

cos® =
(15)
Essentially as before for (7), the form for G fol-

lows from p G = -G —ypv % (R" X G’) with
I'=ww+ y{Pp + (p(p),etc We have R = L-(f{
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BY)/p, =¥ cos® + p sin®,and 6 =T+(® +8p)/p, =
® X R;the forms ©(6’') are the same as a(a’) of
(8), and the function p_ is reciprocal to p’. The
corresponding mates are

&, =R X & =Gjeiv,

G, =R xG =(—69+¢0)G,

q’sM = ﬁ' X ¢s = GMPeiPy,

G, =RxG=(©0 +3@)-®Rx &)

= (—6¢ + §6)°G". (16)

If R =k’ ,then R =k (and w, = w, etc.),and (14)
and (15) reduce to (7) and (6) with different polari-
zations; by (13),

p'k’)*G' (k') = p(k)*G(k) = cos(@ —2).

More generally, for fixed R, in terms of G; =
G[2,], etc,

(17)

G (R)GyR) = G, (R)*G,(R) = cos(2; —2,) (18)
is invariant. Essentiallv as before for p, (18) is a
consequence of @ *G = ¢ *G’ and §+G,, = $*G};, which
follow from the invariance of v+®/, and v*®, re-
spectively.

In terms of the dyadics ¢ and &, we rewrite the
fields as

b = e"iump,@(ﬁ/).éz’ (ﬁ(ﬁ:) - (é,é, +([@)eik'ﬁ'-r',

(19)
& =5G oR,R)= (68 + gp)Pet®,
V(R) = B(R*r —ct) (20)

Statement of the Problem

We consider & = peik‘r-ivt of (6) exciting a scat-
terer moving with v = vZ in 2. The scatterer is
specified in its rest system I’ by its volume (V'),
surface (G’), electromagnetic parameters (¢, p'),
etc.;the center (' = 0) of its smallest circum-
scribing sphere (¥’ = a’) is the origin. The exci-
tation in Z’ is @’ of (7), which we rewrite as

QI — e—iwltlpl¢, ¢ = i‘)reikl'r/ (21)
with k' = L@k — k8V) = kp’k’ and p’ = (&'d + 85) *p
as in (8)—(10). The corresponding scattered wave
is

U’ = e iv'tplu (22)
such that ¢ +u = ¢ is the solution of the conven-
tional scattering problem.4 For 7’ ~ o, with
h(x) = h(Ol) (x) = e*/ix,we have

u~u, = kkr)gl),
gi') = (0’0" + @) -g(r) =88y’ + 98,,  (23)

where g(¥’) = g(¥’,k’ :p’) is the corresponding
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scattering amplitude. The normalization is such
that

— Rep’+g(k’) = (k'2/4n)o; = M |g(f")| 2 + (k'2/4n)0},
ol = M= (1/4n) [dQ@E"), (24)

T = 05 = Oy
where O indicates the mean over all directions
of observation, and oz, 04, and 0, are the total,
scattering, and absorption cross sections. (The
usual normalization corresponds to g/ik’ = f.)
We regard g as known, so that u is known at least
forr' >a'.

We may write u functionally in terms of g as the
complex integral of plane waves with complex
direction R’ (6, ¢,) and amplitude g(R.) given in
(27),4 or as the series (convergent and asymptotic)
in powers of 1/k’r’ and of derivatives of g(r’) with
respect to 6’ and ¢ as in (29)¢ and (54).4 We indi-
cate these functional forms symbolically by

ulg] = fe* " Regdr) = [ER:) -g®R2)
= h(/e’r’)3~)°g(f"),

where /= (1/2m) fdﬂ(ﬁ’c) with paths as for 21, and
D=1+ @G/26'»)D + .-+ with D as a Beltrathi
operator; see Ref. 4 for details. For the mate u,,
we replace g by R X g (or by T’ X g for the last
form).

(25)

Thus, since g determines u, and since
U’ ~ e“zwrtlp Iua — e"zwltlhp,g - Ua’ for v’ ~ w,
we need only transform

U= FT G ik,
G'F)=pg=p'08 +p2,) = gF)PGE). (20

Then, in T we isolate the corresponding amplitude
G and use it in the functional forms (25) to con-
struct U.

Solution
From (5), the transform of U, for ' ~ w0 is

U, = " hik'r)G = e'5G/ik'r,

v, = P(kﬁ°r —wh) =k —w't’,
G(R;#) = g(#)PG(R) = P(6gy +2,)
= P(6§’ + ¢¢)g(r’), (27)

where R = L+(f’ + 8%)/p and P = p'p (8') as in
(15) in terms of ®’ = ¢’ (corgesponding essentially
to the transform of (14) for R’ = £’). The mates to
U, andU, are U}, = X U, and U, = RX U,.

The scattered wave in Z is thus
U= [T RGR Ry = JE®R,;R) gR)
_ e—iwlt'h(k'yl)ﬁ'(‘!(ﬁ;f'), (28)

where G(R_;R/) = (6,6, + §,9,)"gR)P'p,(©)),
with ©,_ and © related by the forms in (15). For
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the mate U,, we replace G by R, X G (or by RXG
for the last form) and g by R/, X g. Although G
differs essentially from g in that G3' = 0,we
showed by (58)4 and (60)¢ that the operations in
(28) are also equivalent for the present generaliz-
ation.

The procedure of transforming U’ to obtain U,
was used by Lee and Mittra® for the cylinder, and
by Restrick?® for the sphere;the present form dif-
fers from Restrick's in the isolation of G =
P@46’ + »P)+g. The corresponding results for U’
and U that follow from the functional equation (27)4
may be written in terms of the wave forms of (14)
and (15) as

v =Jea = [o:R)eRY),
U= fesa = J& (R;R)gR.)

The second follows from the first on transforming
the plane wave in the complex integral, the proce-
dure used by Censor? with different representa-
tions for &, and G.

The present form G = p (88’ + $@)*G’ makes the
structure of the transformation of the scattering
from Z’ to T explicit. As discussed after (18) and
(13) the form corresponds to the invariance of
P G’ and ¢°G’ which follow from the invariance
of v-u, and v-U’ respectively (or equivalently of
¥+®/, and v*®/). A particular consequence of the
form of G is that (17) applies, and since P = 1 for
R =k, we obtain p’ -g(k) = pG(k;k’). Thus, we
may rewrite (24) as

(29)

= Reva(f:;ﬁ’) =—k'20;/4m,
=p*Gk; k'),

Rep’ *g(k’)
i‘)l 'g(k’)

which enables us to interrelate the interference
effects in =’ and . Similarly for the generaliza-
tion of (24) as in (23),4 we may use (17) and (18) to
replace the scalar products of unit vectors in Z’
by the corresponding ones in Z.

(30)

Dyadic Amplitudes

We now complete the development by introducing
a form of G that also makes the transformation of
the excitation explicit.

We rewrite the transformation (6) to (7) from =
Z' as
& =p®, P =pk, k) =1 —pik@a+d),
(31)
where the operator p(k’ k) accounts for the change
in magnitude and direction of the Z polarization
p=(aa+ 66)-p,1 e.,p’ =p'p’ "P(k k)'l’ Simi-
larly, for the transformation (14) to (1 5) from %’
to Z,
q’s = ﬁs @,
=p"(R,R") = (B8’ + $5)/4(1 — g¥+R), (32)

where p” accounts for the change in the =’ polari-
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zation. Thus the inverse of (31) is & = p "k, k') -3,
where p” (k, k') is the reciprocal of pk’, lg) 113 the
plane perpendicular to k,i.e.,p’ (k, E’)-p(k’ k) =
I— kk. The transformatlon of G’ of (26) to G of
(27), in the form (32),1

G=p,"G’ =p (R,¥)G". (33)
The conventional scattering amplitude g(t’) =

g(®’,k’ :p’) can be expressed in terms of the
dyadlc amplitude11 112,4 35

gE k' :p) = 86", k)P,
g, k) =g(r',k:@)a’ +gr',k":5)3, (34)
where g is independent of p’,i.e.,
= (66" + 99) @', k) (@@’ + 88)
=0'a ge’a’ + 5’5g9,6 + ‘}&’ggoq’ + agg(pé - (35)
In terms of § and P, we rewrite G’ of (26) as
G =gp'p' =D =8F,K) Pk, 0D (36)

Thus we may rewrite G of (27) and (33) as

G = p~s.G/ — i')s. é.ﬁ/ .is - G.i;’ (37
where the dyadic amplitude
G(R,k) =g p' = B R, #) 8@, k) Blk’, k)  (38)

is independent of p. The operator p corresponds
to transforming the excitation from Z to Z’,and
the reciprocal p” to transforming the scattering
from Z’ to Z;since g(r’,k’) is transverse to T’ on
the left and to k’ on the right, p” performs essen-
tially as the inverse of p for the operands at hand.
In view of the discussions after (13) and (18), the
forms

G=p,(60" + p¢)-g(aa + 8d)p

= ps(é&ge'a/ + égg@'é + &&gtﬁa’ + ‘;Sg%)p' (39)

exhibit the consequences of the invariance of
Ve®,v+4,,v:U’,and V+U;,.

In terms of dyadics, (30) equals Rep’ gk, k)P =
Rep- G(k k) *p. To consider reciprocity, we must
show more of the dependence of G on the para-
meters than required here, or elsewhere in the
text. We therefore reserve discussion for the
Appendix.

Interpretation

The phase of the incident wave & atr’ =rgy =0
and ' = #f is v’ k') = Vo = — w'ty and this is also
the phase vV of U atr’ and t’' =ty + 7v'/c. The
displacement R’ = r’ — rj and the interval
th—ty = R’/C are observed in Z as

R=r—ry,=L*(r' +pr¥) =RR,
t—tO ::R/C,

R =7p,
(40)
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where p_ and R are the same as for (27). The trans-
form of the incidence event ry, ¢, is the retarded
event t, £, with ro = ¥y (v’ — Br’') = V(vt — BR) =
vtg and ty = yto = t — R/c;the displacement R

is the retarded vector from r, to the observation
position r at the present time ¢,and { — {, is the
time for light to travel from r, to r. The form
R2 = |r —viyl2 = c?(t —ty)? corresponds to a
spherical wave emitted from the retarded position
vt, at the retarded time ¢,. The scattered phase
v (r,t) = v'(r’,t’) is the same in both systems

and equals the phase vy = — wgly of the incident
wave @’ at ry, #” and of & at the retarded event

r,, t0,1 e., v, =kry—wly=— w(l—8 cosa)to =
—-w tO/y,thus

Vv, = P(kR'r —wl) =kv — Wt =— Wi

S
= — w(1 — B cosa)t, = (1 — B cosa)(kR — wt),
(41)

where — w(1 — 8 cosa)t = kevi —wt = — w't/y
is the phase of & at the present position v¢.
By (2), we may rewrite U,(r’, ') and U(r’, ¢') in
terms of r, £, and by (40), in terms of R, ¢ [with
R ) ,@as before for (27) and (28)]. We may also
work with present (simultaneous) coordinates ori-
ginating from v¢ (the position of v’ = 0 at ¢):

r,=r—vi=R—Rfv, T8, ¢, (42)
Since, from (2),
r'=Ler, = LR — R3V), (43)

it follows that

r' =7,/q9 = R/p,,
= 1/y(1 — B2 sin29,)1/2 = (1 — 2 cos26")1/2,
cosf’ = yq cost, = yp,(cosO® — B),

sinf’ = ¢ sind, = p, sin®, (44)

We also use mixed forms

cos(8, — ©) = (1 — B2 sin26,)1/2 = 1/pq = cost

sin(6; — ©) = B sind, = sin{ (45)

such that ¥, = =R cost + 6 sin¢, etc. From (44)
and (45),

(1 — 28 cos® + p2)1/2
(46)

r,/R =q/p; = sinf /sin® =
= cos{ — B cosf

as well as R/7, = y2(cos{ + B cosb,)

=(1+ B cosf’)1/2/(1 — B cosg’)1/2, etc.

From (44) we see that »’ ~ ®© corresponds to
R ~7, ~ 0, and that (27) may be rewritten as

(eis/ikR)P2 B2y, + P2,
V=R — @'t =

U, = (¢i'/ik'R)p,G =
(47)

We may also rewrite G of (27) as
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G = hpsﬁ'x i"(;‘,x G') = — qp‘,R x (i:sx f°GI)

=—p2R X (r, X ['*G’)/R2. (48)

In particular,from (48) and the first form of (47)
we obtain

U, = (ei*'/ik'R)[— p2qR X (¥, X ['-G")]
V'R X(r, X I'+G’)
~ ik'y3R3(1 — B cos®)3 *

(49)

Comparison of U, with the E-radiation field? of a
moving dipole of charge e and acceleration ¥ shows
that for this case e¢i¥’G’/ik’ corresponds to
—(e/4mc2ey)v’ with v/ = 30 -1+% = 2LV as the
acceleration in Z’.

From (41) in retarded or present coordinates, U,

is a periodic function of ¢ with period T, 27ry/w ,
an interval that by (1) transforms to %’°as the
period T’ = 2n/w’ of the ¢'-periodic function U’i.e.,

T" =21/, T, =2my/0" =21/w(l -8 cosa),
(50)
with T as the dilation of 7. From the final form
of (28) i.e., (47) with G replaced byﬂ) G, we see
that this result for U, also holds for U. Thus when
in Z’ we consider quadratic functions (energy and
momentum) of U’ that have been averaged over one
cycle T’ in #’,the analogs in Z in retarded and
present coordinates may be interpreted as f aver-
ages over T,, We illustrate this in the following,
but reserve discussion of the quadratic functions
and of conservation of energy and momentum for
a sequel.

Thus, we interpret S, = ; ReE, X H* in R, { as
the scattered Poynting vector averaged over T,
With U = E;,and S, = €,¢/2, we have

S, = SyReU x U}
~ S,1GI2R/(k'7r")2 = ($pt1g|2/R2)R = SR,
$=S,/k2=S,p'2/k'2, (51)

In general, the interval T, is small enough for the
implicit ¢ variation of (51) in r, ! to be neglected
for practical purposes. Plots of S,, for a small
perfectly conducting sphere are given by Res-
trick?; he interprets S, as the limit of the ¢ aver-
age over an infinite interval., Since dQ(R) =
dQ(r’)(3g, cos®)/d,, cosb’ —dQ(r )/p2, the scattered
flux A®, through AA(R) with RdA(R) RRZdQ(R)
Rfr'de(r') equals

A®, =8 [,p2igE)2dQ[@), p, =y(1 + B cosd’),

A= 80R(R). (52)
From (51) or (52),d®,/d2(R) = Sp&lgl2.
The corresponding energy density is
W, = 16o(1U12 + U, |2) = 3¢y lUI2 ~ S, /c =W,
(53)

and from (51) and (53) we construct
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S, —vW, ~8, —vW, =S,[R — 8Y) = S,(q/p,)F,
spllgl?2 . Spyqdlgl?
=7 R — pv)= —72— . (54)

)
Since dQ(zr,) = dQ(x’)(3,, cosb,)/d,, cosh’ =
d(t’)/yq3, the flux of (54) (say AG}) through AA_
with ¥ dA, = T v2dQ(T) = T,p'2dQ(r")/vq is

A(PR = SIAS(I + 6 COSQ')lg(I") |2d9(l'), As = AQ(rs);
(55)

for the corresponding flux through AA(ﬁ), we re-

place A, by 4. We regard (55) as the fundamental

reradlated flux measure in Z. It yields

d®y /dQUR) = $p3lgl2/y and d®,/dQ(r,) =

Spsq3|gl 2

Several special values of U, are of particular

interest; we list key vectors and P. Corresponding

to the forward-scattering direction in 2,

k= cosa’ + {I sina’
IA( Vcosa +ii sino,
T, =V cost, + {i sing, = = (k —pv)/e,
cosé, = (cosa — B)/€, sing, = sina/¢,
=(

I

e -} '1)
Il

1— 28 cosa + 82)1/2p — 1, (56a)
For back scattering in Z’,
# =—k', R=k =—2cosa, — [ sing,,
I, =T, =—F,
cosa, = (cosa — B,)/(1 — B, cosa),
sina, = sina/[y,(1 — B, cosa)],
By =28/(1 +p2?),
vz = (1— p3~1/2=(1 + B2)/(1 - p2)
P =FB =+2@2=(1— 28 cosa + $2)/(1 —82)
=y,(1 — B, cosa). (56b)
For back scattering in retarded coordinates
R=—k, #=Kkj=—2 cosa, — i sina},
T, =— (k +59)/(1 + 28 cosa + §2)1/2
cosay (cosa +B)/(1 + B cosa)
= (cosa’ + B,)/(1 + B, cosa’),
sinay = sina’/[y,(1 + B, cosa’)],
= (1 — B cosa)/(1 + B cosa)
= [y2(1 + B, cosa’)]1 (56c)

where B, corresponds to the relativistic sum of
two identical velocities. For geometrical reflec-
tion from z’ =0,

f’:fc = —1Z cosa’ + [i sina’,
R =k, =— % cose, + i sing,,
I =1, =—zcosf +psing, P =P, (56d)
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For observation in the direction of motion,

f,=R=%=¥, 6, =0=0=0,

P = P(0) = (1 — B cosa)/(1 + B). (56e)
For observation back from the motion,

fS:ﬁ.:i‘ 0 932829':71,

P = P(r) = (1 — 8 cosa)/(1 — B). (561)
For observation perpendicular to the motion,
6, =8 =1/2,

T, =% =p, R=9%8+p(1—p2)Y2

P = P(n/2) = (1 — 8 cosa)/(1 — B2). (56g)
For © = 1/2,

R=p 1 =—%8+p(1-p2)1/2

F, =98 +p)/(1 +83)1/2, P =13 cosa.
(56h)
Finally, for forward and back scattering in present

coordinates,

v cosa + p(sina)/y

T, =k, T =+T/ =42 1 — B2 sinZa)i/2
(1 — B cosw) B cosa .

The Doppler effects are determined primarily by
P in the form Pv(R) = v, of the phase given in (27);
see Lee and Mittra8 for discussion, and also for
graphs of P(0) and P(r). In terms of By,

B cosb,
P =p'(a)p(6") = p'(a)y 1 +m]
_1—Bcosa B cosb, .
=1 —p2 [1 T T = 3% sin% )172]’ (57)

the approximation P ~ 42(1 — 8 cosa)(1 + B cose ),
correct at least to order 2, is rigorous for 6,
0,7/2,and 7.

2. ALTERNATIVE REPRESENTATIONS

Surface and Volume Integrals

As discussed before,4 we may write u of (22) in the
form (12)4

ur’) = {h' lr' —r"1), ue”)} =, ¥}
- k'2/4n)f[(h x n’)' u, + byl x@)]da’,
- (58)
h=vxv xfi ho/k'2 =@+ V'V /k2)h,,
h, =V X h/ik' =V’ X iny/ik’,
hy = kP k' |x" —x"1), (59)

where A’(r”) is any surface enclosing the scatterer's
surface @’ and excluding r’,and 0’ is the outward
normal. [Equation (58) differs from (12)4 in that
it contains u,, instead of V” X u(r")/ik’ and h,,
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instead of — v” X h/ik’.] f A’ = @’, the usual boun-
dary or transition conditions lead to alternative
surface (Q’) or volume (V') integral representa-
tions, and provide integral equations for ¢ = ¢ +
u. In particular, essentially as in (14), 4 we may
represent u for constant parameters by

u(r’) _( a7 )—/[ 2B — DRy
—(1— B)hM"PM]

S i (0 I P i s AT

where the ordering for B corresponds to that in
(4). For dispersive scattering material, the rest
system parameters €’, 4’ and index of refraction
1’ depend on w’ and therefore on v and .

For r' ~ ®_we have hy(klr’ — r”|) ~ h(k'r’)
X e=#'Tr” and (59) reduces to

h~h = @9 + @p)e #E Ty
= ¢~ F;r)hk'r),
BMN f’ xﬁa =1 X on = $M;" (61)

where ¢ is the form in (19). By using (61) in (58)
or (60), it follows from u ~ kg that

gF) = {77, y(r"},
where { } represents integration over any sur-

face inclosing the scatterer,or over U. From
(26),4

(62)

R’ lr’ —r7l) = f(éc’écf + @C@)eik’(r’“r”)'ﬁc'
= JE@®;r) 6 R, By = J§F,.

Substituting (63) into (58) gives the integral repre-
sentation (25) with g as in (62).

(63)

We may rewrite U’ of (22) as

U= {3y}, ' =hE Ir —r")peivt,
3, =h,preivr, (64)
and, by (61),
U ~ U, =heiwt'G’', G = p'{, ¥l =pr'g. (65)
By (5), the transform of U’ in Z is
U= {"ﬁ:,l}/}, J‘é = -f‘(l.) — '},B?]X BM)pre-iw'tr,
5, = (Fehy + v xB)pre ™" (66)
For v’ ~ ®, from (61) and the forms in (19) and
(20),
H~F = PO + @p)he vt
=8R,7';x)d—T";x")/ ik,
- - @, @9
ac,, x 3¢, i P . (67)

1kr =7
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Substituting (67) into (66), we obtain
U ~ U, = he"tv't'G,
G=POF +¢9){p, ¥} =

as given originally in (27). Using (63) in 3 and
JC,,, we have

P@§’ +@j)g (68)

Je®,, R;;r) 6~ Ry;r7)
L/P(ecec + (pc(_pc)elk’(r' xr)e ﬁé-iw/tl’

GEM = fa”‘ﬁw

3

(69)

which when substituted into (66) gives the integral
representation of (28) in terms of (62). Alter-
natively, we could start from (28) in terms of

G as given in (68), then identify Jand JCM of (69) in

the result, and then relate 3Cto h, etc.
In terms of spherical waves,

,~, = G 90 %; ¢ A,

=(—08'¢ + o’ )ik,
hl = hy(x) =h(11)(k|r —r"l), H, =2hy/x,
%, = 8, (xhy)/x, (70)

where hy = h(—i + 1/x) and ¥, = ih, — h/x2. I
7' ~®, wt%pavg Jc1 thy ~ Wk v —r1"|) ~
h(k T and H, ~ O(r'” %), then (70)_sim-

phfxes to (61). The correspondmg i and JCM of
(66) may be represented in various ways in dif-
ferent coordinate systems It is useful to keep
the right-hand vectors in ¥’ ,9 , @ and 1to express
the left-hand vectors in terms of T, 6, and @

Thus
R/pre” " = (66" + p@) NI + T0°NZ + T/ NI),
N1 = 9(3ky + ik, cosb’),

N% = [(hy — I,)yB sin@)/cos,

N3 = H,/cost,
:fcM/p'e Wt — (—Og + @b’ )M + r,eI3
+ (p?"JTl'{,
M3 = y(ihy + ICB cos8’),
mZ = N3,

I3 = H,yB sind’ = HyyBp  sin®, (711)

where the basis recxprocal to r e ¢ is R/cosC,

) ./ cost, @. Since r =R cost + é sing, we could
regroup into forms R A, + OA + (PA3, but the
present forms are simpler and more similar to
(70). X ' ~ o, we have N} ~ ph and the
remaining terms are O(r'~2); then (713 simplifies
to (67). We always have N = M2 o« p/x2 = O(x~3).
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Special Function Series

Similarly the procedures discussed before4 for
generating the series representation of u can be
generalized to u. The Hansen functions satisfy!1,4

{Ml v’ i fe—ik'r'.fl'c ‘C(i:“',c) }

N | R
INj R liBR,)

thﬂ:

~ Wi %C(r:) } (72)
iB(t")
Bo#xC, Co—fxXB, M=iNy N=iM, °

where M =M, (k',r'), C = C.(r'),etc., with
subscripts usually suppressed. In terms of

h, = 1 (x), =nlm + Vi, /x, ,= 3 xh)/x

(73)

n
x =k'r,

and the spherical harmonics Y, "(6', ¢) normalized
as before4,

M,..
Nﬂ

= h,Cr =h,0'0—p3y)Y,’, 3 =(sin)-13,

m= 3B+ HPI =309, + @)Y + HT'Y".
(74)

If '~ o, then h,~ i "h, ¥,~ i hand H,~0(x"?). 3
The analogs with s (U replaced by j, are written M*, N1,

The Green's function (59) may be written 11,4

-~ ) 7

h= 3 % [M,,(r)MI_(r") + NNL|(—1)"d,,
n=1l m=-n

d,=(2n + 1)/nn + 1), (75)

and h 1 has M(r’) and N(r’) replaced by —N and
—iM (corresponding to M, and N,,). By substitut-
ing into u of (58) we obtain (36)4

u=7,(Mc —iNb)" =ulc,b), upy=ub,—c)=w

(76)
where ¢ = ¢,m=i"(— 1)"‘d{ M Wi and b = b,
has M! replaced by N1. Similarly, as in (37)4,

g =2(Cc + Bb)
=3[0(cd +bag) + l—cdy + b)Y

(77
= a'gel + {58‘? .
The corresponding form of 52: is
3¢ = JJ[InM! + 9NN} (—~1)"d,,
I = (T+M + i fo X Nype™ " = an(m, N),
I = M(N, M) (78)

and 3¢ ;, has M and N replacea by —I and —JN.
Substituting into (66), we obtain
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U=23(Mc —iNb)i" =Ulc,b), U,=U(b,—c),
(79)

which also follows directly from (5) on transform-

ing U’ =p'e =1} with u as in (76). The corres-

ponding scattering amplitude is

= P(ége’ + @ng),

— v X B))p’

G =2;(Cc +®Bb)
" —(D.C" =P(@3 —§3,)¥",
—(I‘ B + 48V X C)p’ —P((—Dae, + (pa)Y
—Rx c. (80)

Since &, (x) has the form e times a polynom1a1
in 1/x, we may factor u in the form e'’s[ ], where

, the phase factor ¢'’s was discussed for U,.

The functional forms M(C) and N(B) of (72) are
also satisfied by M(C) and N(B); thus, if we sub-
stitute the present series G(C,®) into the complex
integral in_(28), we again obtain (79). Censor? de-
composed I'+g — 8V X (R, X g) as a series of
vector spherlcal harmomcs involving P'" as well
as C and B , and obtained a series for U involv-
ing Lm r’) as 'well as M.,‘m and N,,,

Essentially as before for 3¢ and .’IC > We resolve
the analogs I and /i into components along
s» 8, and @:

.wltl

N,m/p'e”

= lfﬂ.}‘(éae' + aa) +;s(m’3 ae’ + D’LE)]Y:‘

Nl
Loy —iwit
m,,/i'e

=[IML(— 8 + o) + rIM20 + M|, (81)

where JU1, N2 = 92, etc. are the forms given in
(71) for 3,912, etc., with 2, (k| x’ — r"}), H,, and
x4, replaced by h (k r),H,,and X,.

Alternative representations may also be construc-
ted by using (106)% and (108)4,
h=2N,, + R ReN,, + 5 Im N,; = h(N),

h,/i = h(M), (82)

and the analogs

(N, M)/pe " = ZN,, + Zy(Re Nyy + 6 Im Myy)
+ ¥y (Im Ny, — if Re M), JC, =3C(M,N).
(83)
General Decompositions

Alternative representations and decompositions
may be more useful for special computations.
Thus from (5) in the form

U/p'e ™" =U =T'eu— vBV X w,

wW=u, =V’'Xu/ik,K (84)
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we have in the invariant cylindrical basis
U = Euz + B’y(up — wa) + (}Y(uw - Bwp)

=z, + AU, + U, (85)

We rewrite the scalars in terms of the spherical
components as

U, = u,, cosf’ — uy sind’,
W,/y = u,, sing’ + ugy, cos’ + puw,,

U, = plu, — w,B8 cosd’) —w,, By sing’

= U,y — w,, By sind’ (86)

and can express (Z,) in (R,8),0r (t,,8,),0r
(r’, ®'), or in 2 mixed system.,

»r — (g, — wy )yp sind,
U, = (u,,yB sin® + uy,)p — (ug, — w,)yB €osO,
(87)
with U, as in (86). The representation in t,,6,%
is simpler:
U = T, U/ cost + 6U + U,

U0 = yluy, + w,B cosd’). (88)

Here U’ is similar to Uyq,and all terms but these
become negligible as »’ ~ ©, The behavior of the
terms can be seen from (76) and (74):

u(c,d) = 2 [f'fl + 5’f2 + &fs] Y,
w=u{—b,c),
fi=—ibH, fy=chd —iblka,,
fg=— chd,, — ibX3,
U= D[ Fy + OF, + PF,]Y, 1",
Fy=M2(cd —bdy,) — N3y,
Fo=—Mlcd — Nb3,,,

Fy =9Mcg, — N + M3c. (89)

As7v' ~ o, ‘ue(a, 3,,) and Uy, = U (— Ogs» 0) TE-
duce to app 8y, and hyp 8,y. On the other hand

Uy, — W, = Sk + i%)(cd — b3, Yi", as well as u,,
and w,, , become negligible.

7!

Spherical Scatterers

For spherically symmetric scatterers we have
Com = D'+ C;7(K')(— 1)"c,, and similarly for b,,,.

For a homogeneous sphere, 11 with & = E, in
termsof x =k'a’and X = K'a’ = n'x

_]',L(X)J,t (x)— i, ()3, X)Bn
3. ()%, (x) — h,(2)8, (X)Bn

a,(B) =
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¢, = afu/w), b, =a,ley/€), (90)
where g, is the form JC, of (73) with /, replaced
by j,. Restrick? discusses a different decomposi-
tion of U, in terms of the coefficients ¢, and b,

for a sphere, and gives numerical results for a
perfect conductor (B,— ® in ¢,,and B,, — 0 in

b,) for small k’a’. Censor’ considers a different
decomposition of U and specializes the result to

dipoles.

For spherical symmetry, we write the dyadic scat-
tering amplitude (35) for the conventional problem
essentially as in (90),4

0
B, K) = 2 (C,c, + B,b,),
B, = (»'v,)(k'V,)P,(k), C,=—7 xB,xk
(91)

such that g = g*p’. Here 'V, = §'3, + @0 ,/sind’,
etc.,and P, is the Legendre Polynomial, In terms
of

Q, =13, P,(x) +k'1'32P,(x), x =K1 (92)
We obtain
B, = 6" + ¢9)Q,* (@' + bb),
G, =—(00¢+36)Q, ad+3da)
:—;'X~nxf{l, (93)

Thus, for the corresponding relativistic problem,
G of (38) equals

én: —ps(—" é(ﬁ + ‘;é\l).Qn.(_&,g + 6a)p,v (94)
from which we obtain G = G*p. If & = Eg, then b,
and ¢, correspond to electric and magnetic mul-
tipoles, respectively. If only the dipoles are signi-
ficant, we retain only P, = x, and Q, reducestothe
identity I. For the perfect conductor,b, ~ — 2¢; =
i(k’a’)3 (the case considered by Restrick?), and for
homogeneous spherical dipoles, by ~ i(k’a’)3 x

(" — €g)/(€’ +2¢€p) = b(e’, €p) and ¢y ~b(W', pg);

to include scattering losses, we replace these first
approximations for 4, or ¢, by b— 2/b12/3, If

the quadrupoles are also significant, then, from

P, =3(3x2 — 1), we get Q, = 3kr'I + 3k'F, etc.
The corresponding dyadic scattered wave u such
that u = a*p’ is

xQ ~
u=7, M,c, — Z'an)i",



RELATIVISTIC SCATTERING

N, = % N, @B k&)~ 1"
= ﬁ + H,1't"*P,,
B, = _P,(@'a + 88). (95)

S~ir§ilarly, the relativistic dyadic 13, such that U =
U-p, equals

U= O, —i9,0,)i",
n=1
g‘fz'n = E mnmcnm(k,) 'P "~ l)m

= ToBp (- 1"
§,/e i = [N1(B8" + ¢@) + N2L,6']*B, P’
+ NIE B, P,
oW, /ie” " = | (— 0 + 6")
+9M2r, @] » «(B, x k’)*p

where B = (§'9" + :p(p)°B for comparison with (95),
and we may rewrite M in terms of pM_- £ Xp' =
p’ xk. We obtain a form of I more similar to
the final form of M in (95) by replacing the terms
in 9! and M2 by (ML, (B” + ¢o) —M2t.§')C, P,
where the form in bragkets is now close to the
corresponding one of 3, The dyadics 9, and W, /i
are identically the dipole dyadics 3 (%'»')*p’/p' and

., *D'/p’ of (T1). The set T, and 9M,/i are sym-
metr1cal quadrupole dyadics, etc.

Arbitrary Dipoles

If & = E,, in terms of (99),4 the scattered wave for
a general electric dipole with moment b is

-~ “jwrtrs A
E, = Ue°p~ he G,p,

— jé(kl,rl’ wltl). B'f)',
G, = B, *Bep’ =, (B + §g)*b+ (@'a + 5B)".
(97)
For a magnetic dipole with moment €, we have

E,=U, *D~hei“"G p, U,=— P,
G, = —Poy*€*Ply = —RX[p,*€+p']x

— _p, [P xExK P,

s M‘ c-

W’ga

(98)

wherepsM by~ 69 + ¢8") and Py, = p'(— a'd +
§a). The sum U + U, = U is the result for a
general particle w1th dlmensmns small compound
to 1/k’. We have

E,= (0, +0,)p~ hk'r et Gep,

G=p_b—1 xexk)p, (99)
which follows directly on substituting g of (101)4
into (38). If 3~ 1 and k = ¥ (i.e., for large veloci-
ties and excitation along the motion) then all par-
ticles become small compared to 1/k’ = (A/27) X

(1 + B)1/2/(1 — B)1/2, where X = 27/k is the origi-
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nal wavelength. If b = 0,1 and ¢ = ¢,1, we get the
corresponding special results for a small sphere,

Tenuous Scatterers
From (66) and (60), we have

E, = (ik'3/47) [{[(e — eg)/e,) He oy
— [0 — o)/ w] oy} avr. (100)

If €’ ~ €, and ' = y,, we may use the Rayleigh—
Born approx1mat10n Y ~ ¢. For small k'3, we
obtain the special case of (99) with

b =Tik30 (e’ — €)/ dney = iv = Bo(e’, €o),

¢ = byu', 1y) = Ic. (101)
If '3’ is not small, we use G = Gep,

G = BBy — £ X & XKD,

g= [ E&E g/, (102)

where J is the conventional Rayleigh-Born inte-
gral. The usual explicit results for g(r' k) may
be rewritten in r, k in terms of k' = Le(k — Bv)/p!
and ¥’ = L* R — gV)p, = Lerq.

~

In the forward direction ¥’ = k’, R = k, from
the eikonal approximation,

G=(aq +88)(b +¢) 9,,

ge _ fei (K'-R") -8 dl()l(rl) ~ 14+ ikl(nl _ 1)‘1’

(103
where ¢’ is approximately half the scatterer's’ )
mean thickness3 along k’. We used {’ = k’*r’ and
¥ = ¢(84) exp[iK’(§" — §p)] with {¢k’ as the impact
point on G’ for the ray through r’.

Cylindrical Scatterer

Results analogous to (21) £f. hold outside the smal-
lest circumscribing circle (of radius a’) for an
arbitrary cylinder with generator along 37, and kK’
and T’ in the plane y = 0. For this case we use5

. ) 2
hx) = e (2/mx) V27174, M = (1/27) fo nde',

[= /1) [ae,,

where % is now the asymptotic form of Hél) and
the path of f is as for H{; also hD(k'r';32) of
(11)5 provides the complete asymptotic serles
and (34)14 the convergmg series, Thus, since
=p=%x and b = =¥, the analog of (27) is

(104)

s G(o/mk!r) /267174,
(105)

U~U,= e Y k) G —e
G = P67 +3Y)g

with ker = k7 cos(§ — a) and p = & sin@ + ¥y cosQ
in the incident wave and y, =Pu(R)=P[krcos(© — 6)
— wt] for the scattered phase, The rest follows
through (30) with the factor £’2/4n in (24) and (30)
replaced by 2’/4. The essential difference is that
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now we cannot factor &'°s in the form of U obtained
from (34%14 [which involves e O gD (kyr) and
¢'""" B (k'v')]; however, we can factor the com-
plete asymptot1c series (11)5 so there is full cor-
respondance for moderate to large 2’7’,

The scattering amplitude g for & = E, may be
written

g =0'gy +yg, = b'g,, sinQ + g, cosQ, (106)

where g, corresponds to the standard function for
the scalar problem of H parallel to a generator,
and g, corresponds to E parallel,13 In terms of
the dyadic

~, A~

g, a’) = (107)

9,&,gm + g’?gey

we have the same development (31) to (39) with
8=9=7, &y =&y = 0.

The analog of (51) is

S~ (28 o/k'v") |G| 2R = (8,03 1g] 2/R)R,

S, = 2S,p'2/ k! = 2S.p' [Tk, (108)

and since d© = d9’/ps the flux through AA =
RRAO equals (52) in terms of S, and dQ, = db’.
Thus, d®,/d® = 8,p31gl2.

Similarly the analog of (54) is

S;— VW~ 8,031l %R — pv)/R
= 8,p,q4%1g1 25,/7s; (109)

and since df = d0'/yq?, the flux through AA =
T7,A6is the form (55) in terms of $, and sz

Thus,d(PR/dO S, p21gl2/y and d®,/d

8, h9%1gl?.

The Green's function development is essentially as
in (58)-(69) with

{Y=—@&/9 [ 1dA" = —(&'2/4) [[ ]aV’

as line and surface integrals, and with h(l) of (59)
replaced by H%D the analogs of (58)- (60) follow
directly from (9)4 to (14)4, From the Sommerfeld
representationl?! for H(1) (2|r’ — r”|) as a com-
plex integral, we construct
hy = A+ v'V'/R2)HED

= (1/7) [ (6:8] + 3P T T Rege (110)

and using this in u = {h,, ¢} gives the cylindrical
analog of (25). This is one way of generalizing our
earlier scalar result (9),5 i.e.,

u[g] _ (1/1’)feik/wcos(eé-or)g(eé)dec/ (111)

to the problem at hand; see Ref, 5 for discussion
of paths.

The cylindrical dyadics corresponding to (70) are
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h= 643, + yyH, + T'TH,,
By = (-8 +yb)iH,,

Ho = Hy(x) = HP®'|r' — ")),
- g T =
H =H® = _3H,, Hy = H,/x,
X, =93 H, =H, — H,/x. (112)
If 7' ~ o, then ¥y ~ iH  ~ Hy ~ he- R ith

h(k'r’) as in (104) and H ~ O(x"3/2)

Similarly, corresponding to (71),

Fe/prete = 68"y (3¢, + iH,p coso’)
+ yyy(H, + iH,B cosg’)
+ 7,6'(iH, — %)yB sin®/cost
+T,r'H,/cost,
= — 6yy(iHl; + H,p coss’)
+ y6'y(iH; + 3,8 cosd’)
+ 'f's?(iHl — H))yB sin®/cost

e

&M/p,e_iw

+ yr'H,yB sind’. (113)
Because (112) and (113) involve H,, (a monopole
term) as well as JC,, the present functions are not
quite as symmetrical as those of (70) and (71).

The cylindrical Hansen functions subject to (72),
in terms of

H,=H,(x) = HO(krr), H, = ni,/x,
x,=0.H, (114)
may be writtenl5
M, =yM, =§H,e"" =HC,,
_gleme =—r X B,
N” =%,B, +HP, = (0%, + #iH,)e™"
=2i3(M,_ + M, )~ X5 (M, — M),

(115)

where H ~ i3, ~ hi"" 1 and H ~ 0(x™'?) for
»' ~ ©, The analogs with H (D replaced by J, are
written M1, N1,

The Green's function is
hy (k' {r' —r"])

o0

=n§ M, (r)ML,(r") + N NL](— 1)*  (116)

and the development of (76) to ('79) carries over
in terms of the present functions. We have
(%]

u= 2

n=-

= Z(r'Hb + 6isch + YHc)e

M,c, —iN,b,)i"

me n

(117)

and we obtain (106) in the form

- €C.c, +Bb)—2(§'c —Bb)me'

IIL 8

g._

n

¢, = cn cos@, b,=— bn sin@, (118)
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where ¢, and b, are the coefficients for the stand-
ard scalar problems. For circularly symmetric
scatterers, for either set,a,,(a’) = a¢*** If the
scatterer is homogeneous, then we use the form (90)
with d, replaced by unity; we work with J and H,
instead of j, and #,, and J, and X, correspond to
od, and 0H, (differentiated with respect to argu-
ment). Similarly we obtain

G =2 (€C,c, + ®B,b,) =POgy +7g),

en — P?ei"e' ® inp’

’ n

=— PO =Rx e, (119)

In the present version of (79), i.e.,

U= f}w O, c, — i b,)i" =Ulc,b),

U, =U,- o), (120)

we decompose J and M essentially as for (81),

M, /ipre "t = —~ FONL — im3)e™?,
Ml =vy(iH, + %,8 cosd’),
M3 = H,yB sing’,
N, /pre Y = [— @L + F_(— N2 + iN3))e™?,
N1 = y(%, + iH,B cosd’),
N2 = [(iH, — 3, )yp sin®]/cost,

N3 = H, /cost. (121)

Equivalently, in the Cartesian basis
IM,/pre " =y (M, — iBM, 4 — M,.,)/2],
v, /pre " = B (M, + M, )2
—xy[(M,y —M,_,{)/2+iEM,]. (122)
The scalar problem for p =y corresponds to

U’ :P’e—W”’Eina’zMn’ P"—"V(l —BCOSQ’),(123)

and by (5), to

U=y[l—(p/k)3,\U

- 'yp,e‘iwltl 27.nan[Mn . lﬁ (Mn—l _ Mn+1)/2]
(124)

in terms of 9,,M, = (M, ; — M, ,)k’/2. The series
in (124) was obtained originally by Censor? by
transforming the plane waves in the complex
integral p’e-iw't’yy’ of (111), and the corresponding
asymptotic form U ~ he-iw't'p’y(1 + B cosb’)g was
obtained directly by Lee and Mittra; 8 see Refs. 7
and 8 for detailed discussion.

Similarly for the mates to U’ = U’y and U = Uy
=27i"a, 9N, of (123) and (124), the transform of

“iws b .a-1
Ui, = p'e 20" a N

n-n

(125)

as obtained directly from (5) is
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U, =[20, —Xy(ik/g +23,)]U"/ ik’

=%i"tam, (126)

in terms of N, of (122), or, more conventionally, of
(121). From (124) and (126), we obtain the general
case (120) by superposition,

Slab Scatterer

Similarly for a slab — @’ < 2’ < @’,and K in the
plane y = 0, we use h = exp[i|k’* z’| + ik’* X]
and take 9N as the mean over the forward and re-
flected directions. We obtain U = U, in the form
(105) in terms of (106), i.e.,

U=Ge™ = P[Bg,, sin@ + §gecosQ]ei"S, g =g(®),
(127)
where g(a’) = T— 1 and g(s — @’) = & with 7 and
® as the usuall3 transmission and reflection coef-
ficients for the scalar problem of the slab. In the

forward scattering direction ®' = «’, correspond-
ing to (56a), we have

U= (ag, sinQ + yg, cosQ)e™,
¥=29¢+U=(a7, sin@ + y7, cosQ)e’’ = Te'”
" ¢ (128)

and the mate ¥,, =k X ¥, In the reflected direc-
tion, ®' =7 — a’,

U=P,(a,R,sinQ +y ®, cosQ)eiP"’(R')

=P, @e'’""%’ u, =k, xu, (129)
where vk, ) = kr cos(a, — 6)}— wt, with P, and 12,
as before in (56d).

The analog of the scattered flux (51) is

8, =S,IGI2R=5,p2|gl?R, s, =502 (130)
which reduces to S |g|212 in the forward direction;
the corresponding {ransmitted flux is S= S lg+pl2
xk = S,|T[2k. In the reflected direction, S, =

s,p2I®12k,, similarly, the analog of (54) is

Ss - VWs = 31P§|g|2(ﬁ—' B";) = 31P5l1|g|2?s

=[84(1 + B cos®’) g|2]yqt, (131)
with T =T, as in (56a) for © = a’ and T, = T, as in
(56d) for €’ = m — a’. The beam width of the flux
from unit area of slab surface is proportional to cos©’
along R’ and to cos6, along r_, and, from (44),
cosd; = (cos®’)/yq; we isolated §,(1 + Bcos®’)|gl2
for comparison with (55). The reradiated flux den-
sity along R is $,p, g|2/y, and that along T, is
81554 lgl2.

For a homogeneous slab, in terms of
£E=(1-2)/1+ 2,

Z'" = (BK'*¥)/(k’'+%) = B()'2 — sin2a)1/2/cosa’,
(132)
with B and 7’ as in (60), we havel3



2340

T = (1—$2)e™ KO-y,
Q= s (1 — P2 v’ D,
D=(1— g2k ) (133)

where d’ = 2a'v.

The scalar problem (@ = 0) is discussed in detail
for the perfect conductor (® = 1,7 = 0) by
Einstein! and Pauli? and for the homogeneous slab
by Yeh and Casey® and Censor.7?

APPENDIX
The usual reciprocity relation in dyadic form
is12,4

~ oA -~ ~ ~

g{kz,gl) =g (~ky, _’kz),

g(— Ky, —Ky) = g7(,,k;) (A1)

where g7 is the transpose (Gibb's conjugate) of g,
Similarly, the generalization of (24) for lossless
scatterers is

8, ;) + g1, Ky) = 8Ky, Ky ) + 8 (- K,,— )
== m{éT&3yE2)'é(1€37E1)}, (A2)

where g' =" is the Hermitian adjoint of g, and
we integrate over dQ(k,).

T*

For the present problem, the rest system g depends
not only on k and k} as shown in the above, but
also on the d1rection of incidence in ¥ (and the
direction v) as it enters the wavenumber

k; = kp},
bl =yl —pvk;)=p'(v,K)=p' (-7, —K,).
(A3)
Thus instead of (Al), we have
gk, K15 01) = g (— Ky, — Ky ),
g—Ki, —Kp ;) =g (&, K550, (A4)

where k] is the direction of incidence for the first
relation, and — k: for the second. To seek analogs
involvmg G of (3%) if we reverse k , then we must
also reverse v to insure that the relatlon between
——k and E' is preserved, i.e., as determined by

=Le&; +pv)p], Kki=L-k,—Bv)/p;. (A5)
Since p(k;,k;) = p; of (31) is unaltered by reversing
both v an E (and thereby reversing k; ), i.e.,

V. TWERSKY

p(kzs 17 ) = (a’a + 68)1)1'
= (6 x k)G xR +

]p _—“‘ﬁ(—'ﬁi,"‘ﬁi;”_%);
(A8)

we may write corresponding forms of G of (38) as

Glk,,k,; V) = py - gKy,Ki;01)* P,

= [p} *g(—K}, —Ey; p1) 55717, (A7)
G(—K,,—Ky;— V) = p1- g(— K}, —K5; 03) D,
[pz g(kz,kl,pz) .D]’:T]T- (A8)

Thus, in general, there isnodirect relationbetween
G of (A?) and G7 of (A8); to stress this we write

G(E;z,kpv)

where p}

GT(—Kk,, —Kk,; — V)| Pl p (A9)

== p1 indicates an ad hoc interchange.

For an arbitrary scatterer, a simple relation
ex%fsts for the forward scattered directionk; =Kk,
=Kk, i.e,,

Gk, k;v) =

for which case

G-k —k—-Vv)=GT(—KkK,—k;—V)

(A10)
(@a’ + 88)-g-(a’'a + Bd),
g =gk k) =g(—k,— k).

G=

For arbitrary directions, if é has inversion sym-
metry,i.e., if

gy, K15 p1) = g(—Ky, —Kj;05) = g (K5, K 09,
All
then ( )
G(EZiEl;G) = G(“EZ! _El;_ 6)
= py - g5, Ki; p1) Dy (A12)

In general we may rewrite (A2) as
G,k ; V) + G*(—K,,—k;;— V)

= 29 [py 8" (— Ky, — K45 01) 8BRS, Ky5p1) Ay ),

(A13)

where we can insert p,*p; between the g's to show
that the mtegrand has the structure G*+G with 244
instead of p4 in g*. It k = k1 =K, then by (A10)
the left side reduces to 2ReG(k,k V) and we obtain

(30) by forming p~G'p If the scatterer has inver-
sion symmetry, then (A13) reduces to

— Reé(ﬁz,fl;e)
= I[Py -g*ky, kg3 p7) ks, ki3 00) P4 1.
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power imparted to the scatterer and the force that acts on it, and the reradiated and interference
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INTRODUC TION

In a previous paper,l we applied Einstein's proce-
dure? to the scattering of an electromagnetic wave
$ by an obstacle moving with constant velocity v
in free space. The wave ®(r, f) = pe'~** *“’ in the
observer's system Z was transformed2~4 to the
scatterer’s system Z’ asg the incident wave

&'(r',t") = p'p'e’**7""*“" then, the corresponding
scattered wave U’(r',t') was transformed to Z as
the required function U. The function ¢ has the
period T = 27/w in ¢{,and & and U’ have the period
T’ = 27/w” in t’. The wave U is not periodic in
r,¢,but in retarded (R,t) and present (r,, ) coordi-
nates, it has the period 7 equalling the dilation of
T'.

Forr’ ~ «,the far-field U’ ~ U, is proportional

to G’ = g(r )p' (k'v),where g = ge, 0 + g,9 is
the scattering amplitude for the conventional prob-
lem in Z’. Similarly for R ~ o, the corresponding
function U ~ U, is proportmnal to G(ﬁ) =(24:©
+2,9 op (k-v)/p (R+v), where R 6, (o is the re-
tarded basis. The result p'G(k) p’*g(k’) inter-
relates the interference effects in the two sys-
tems,

Now we consider ¢'-averages (over T’) of quadra-
tic functions578 of ¢’ = & + U’: the time-averaged
energy density (W’), energy flux vector (8’), and
momentum flux tensor (M’). In Z,in r, ¢ coordi-
nates, the analogs W, S, and M depend in general
on f;however,in R, f or r, ¢ coordinates, the func-
tions may be interpreted as f-averages over T_.
We then show how the known Z’ conservation
theorems®-12 are exhibited in T, and determine
the average power (Pj) imparted to the scatterer
and the force (F) that acts on it in Z, etc. (The

interval T is,in general, small enough to regard
the present position of the scatterer as practically
fixed for far-field intensity measurements by a
receiver with rest system Z. Restrick!3 and Cen-
sorl4 interpret S as the limit of a t-average over
an infinite interval.)

We discuss several different derivations of the
resuilts for Py and F. The first, and most direct,
involves transformation from Z’ to Z of the known
densities in the scatterer's volume U’, The second
involves transformation of 2’ surface (A’) integ-
rals and facilities unambiguous resolution of
interference terms, etc. Then we consider the
quadratic functions directly in Z,in order to
clarify interrelations between different functions
in the two systems.

We use the same notation and the same symbols
as before.! We begin with a short statement of
several key results discussed earlier in detail,!
and then consider the quadratic functions.

1. FAR-FIELD SCATTERING

In Z, we write the incident wave as!

® =eiuﬁ, v:k-r—wt:k(f{'r—ct),
p=(aa +89)p, (1)

where k a 6 form a special set in the spherical
basis r 9 <p, we use r =V cosé +p(<p) sind, etc.

The transform in £’ is 174
d'=e ZU"‘,p; v =K1’ w't':.l/,
p = (a’a +88)p, p' =y(1—pvk)=~k/k,
k'=L-(k—pv/p, a=8xk,
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on f;however,in R, f or r, ¢ coordinates, the func-
tions may be interpreted as f-averages over T_.
We then show how the known Z’ conservation
theorems®-12 are exhibited in T, and determine
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fixed for far-field intensity measurements by a
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sorl4 interpret S as the limit of a t-average over
an infinite interval.)

We discuss several different derivations of the
resuilts for Py and F. The first, and most direct,
involves transformation from Z’ to Z of the known
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involves transformation of 2’ surface (A’) integ-
rals and facilities unambiguous resolution of
interference terms, etc. Then we consider the
quadratic functions directly in Z,in order to
clarify interrelations between different functions
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as before.! We begin with a short statement of
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)
B=v/e, y=(1-pr12 @

with ﬁ’, &;, § as the corresponding set in F’,ﬁ', o.
We have k*v = cosa, etc., so that
p' =y(1—pB cosa) =1/y (1 + § cosa’), etc.

The corresponding scattered wave in 2’ for v'~ ®

is )

U~ U, = e sprg(r’)/ik'r,
gr)= (89" + @o)g(r), (3)

where g(r') = g(r’,k’ : p’) is the conventional
scattering amplitude. (The more usual normali-
zation corresponds to g/ik’ = f.) Its transform in
zislt

[ A— tart 147
v, =k'r' —w't,

U~U, =e"sGRYik'r,
G=p'p,06 + 99)g("), D =v(L+BV'r)
v, = vl = p'py(kR*r — wt) = p’(kR — wt)/y,
R=0L.@ +Bv)/p,, (4)

with R, ©, ¢ as the retarded basis,and R, ¢ as the
retarded coordinates. For brevity, we write the
relativistic scattering amplitude G(R,k:p;V) as
G(R). We have

r'=L®R—RV)=L" r,, v =R/p, =7,/q,

q = 1/9(1 — B2 sin26,)1/2,

T'+v = cosd’ = yp, (cos©® — B) = yq cosb,,

py =v(1 + Bcost’) =1/y(1 — B cosO), (5)
where T, 8., ¢ is the present (simultaneous)
basis,and r, ! are the present coordinates.
Equation (4) corresponds to R ~ #; ~ «, For

forward scattering in 2/, we have T/ = k’ and
R = k; for this case,p’p, = 1,and!

p-G(K) = p'+gk’) (6)

enables us to interrelate the interference effects
in the two systems.

The mates to & and U, and their transforms, are
given by

¢, =kxe, & =k x9o,
U)('Ia:;’xué’ UMa:ﬁan
such that 2,U,, = — cv XU, etc. For ¢ -periodic

fields in r’, t', we have U;, = v’ X U'/ik’, etc. We
take & = E as the original electric field, so that
H, = &,/(€o/10)V/2; similarly, U= E is the
scattered electric field and U,, = H (uy/€,)/?

is the normalized scattered magnetic field. Thus,
¥ =% +U=E, + E; =E is the electric field in
Z,etc.

In retarded or present coordinates,U, of (4) is a

periodic function of ¢ with period T = 27y/w’;
this interval is the dilation of the #'-period
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T' =2n/w’ of ®' and U’, and it is also simply re-
lated to the original period T = 2%/ w. Thus,

T, =yT' =yT/p’ = T/(1 — B cosa). (M

Since U differs from U, in that G is replaced! by
DG =[I + (i/2k'»)D + +++]*G,with D as a
Beltrami differential operator on the angles,10
U(R, ?) also has ¢-period T'; similarly for Uy in
terms of D+(R X G). We also refer & to the re-
tarded event r, {, [withr, = v{, = V(¢ — R/c)]

by rewriting v of (1) as ¥ =k*(r, + R)— w(ty +R/c)
R/c) = vy + kR(k*R — 1);using vy = v, as discus-
sed before,! we express @ in retarded coordinates
as

B(R, ) = o< ETHD)

v, = (1 — B cosa)(kR —wt),
(8)

with v, as in (4). In present coordinates, we have

iKerg-iw(l-Bcosajt
o[r,t] =e °

In Z’,we factor the fields and write

-iwt! ik*r’ U'

¢=pe",
u~ e ®g ik (9)

~fwrts
¢ =e p'e, =e p'u

¢ tu=y,

where y(r’;k’ :p’) is the usual ’-independent solu-
tion of the reduced wave equation for real 2’. The
scattering amplitude g may be represented as an
integralll,1 over the scatterer's surface @':

)

-~ — k2 - . ~
g(r’) =77T_f[‘$ Xn')euy + $y(uxn’)jda’
F(—T) = @8 + ppre T,
u, =v"Xu/ik', &,=TFx¢. (10)
We use d@’ = fi’d@’(r") with i’ as the outward
normal (and we may replace @’ by any surface A’
inclosing the scatterer, in the volume V'’ external
to the scatterer's volume V). In the forward
direction T = k', in terms of ¢(— k) = ¢*(k’),

Beg®) =7 [l0%(k) X uy—u x @) ]dA" (1)

2. ENERGY AND MOMENTUM

The fields are periodic in Z’ and we may average
products over one cycle T’ in ¢’ to obtain the
usual® quadratic functions: the time-averaged
energy density

W' = §(€o| B2 + po | H'I2) = 3 W (1912 + [y [2),

Wy =14 eo; (12)

the Poynting flux S’ and momentum density N’ vec-
tors

S’ = ¢2N’ = 3 Re(E’ X H'*) = S, Re (¥’ X ¥f),

So = % €q¢ = Wy (13)

and the momentum flux dyadic
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M = — %RG(G E'E’* + u HIHI*) + 'fo
= — WyRe(¥'¥"™* + ¥ *) + IW’. (14)

The square of the dimension of E is implicit in the
definition of W, etc.

Transforming (12)~(14) to Z, we have the ana-
logs5~7

W = 2[(W’ + vN') + ve(S’ + M+v)/c2), (15)
S =yLe[(8 + VW) + (M’ + ¥N')v],

N =y Le[(N' + vW'/c2)+ (M’ +vS8'/c2)*v/c?], (16)
M = Le[(M’ + VN') + (8'v + W'vv)/c2]-L, (1)

which depend on ¢ in r, ¢ (but in R, ¢ correspond to
t-averages over T,). By superposition,

W —veS/c2 = W' +v*N/,

W —veN = W+ v-S/c?, (18)
S— Wv =L 1+(8' + M'+v),

S — Mev = Le(8' + Wv)/y, (19)
M — Sv/c2 = Le(M’ + vN’)*L1,

M — vN = L-1¢(M’ + S'v/c2)-L. (20)

We keep S and N distinct to facilitate interpreta-
tion.

Wehave E'=¥' =&’ +U’'=Ej + E, etc.,and
W'= Wy + W/ + W, etc. The incident (W{) and
scattered (W) energy densities are

Wo = 5 Wo (182 +1@,12) = W, &2 = W,p'2
(21)
W, = 3 Wo (U2 +luyl2) ~ w,lugl 2
= Wplgx")|2ID|2 =W!,, D=1/ik'r.
(22)

The interference term is

W, = Wy Re(®* U’ + &;f* U}
~ W' Re{eik’r'-ik'.r’[ﬁl g+ (ﬁ/ X ’p").(i.‘r X g)] D}
= W, (23)
and the hase of the asymptotic form is statmnary
at ' = k]~ k’; the stationary value of Wj, i
2 Wy Re p'~g(ﬁ’)D for the first and zero for the
second. (We use k’*g(x k") = 0, etc.)

The incident (8;) and scattered (S)) fluxes satisfy

b =SyRe(@*x &) =Kk'S), S{=S,0'2, (24)

8, = Sy Re(U"™* x Uy) ~ r'Splg(r’)I2IDI2 =8/,
(25)
The total power reradiated from the scatterer's
surface @’ is

= [§.ed@' = [8,dA’=S}o (26)
s s
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with o as the scattering cross section; we used
v’eS. = 0in V' to replace @' by A’. Taking
dA’ = r'7'2dQ(r") with v’ ~ o, (henceforth A’ )

o', = b [lg(r’)!2], = (1/4nm) [dQ(T"),

b =4n/k'2, (27)

where 9 indicates the mean over all values of r’.
The interference of the incident and scattered
waves is shown by

S/ = S, Re(* X U}, — U’ X &%), (28)

and from (11), the power diverted from the inci-
dent wave by interference is
= [8,+dA’ = S, b Rep’ *g(k’). (29)

This result may also be obtained from the asymp-
totic form

p'x (x'x g)+g x (k' x p)ID}
=8, (30)

S}"" SbRe{elk r-ik" IJ[

which reduces to S, = S52 Rep’ g(k")k'D, 0 at the
stationary points r’ = k’, — k’. Thus, evaluation of
] S;,°dA’ by the method of stationary phase,

irrrer o) I (67,
je‘k r'f(0'¢) (8%, 9) r2d0'dg

z‘kl,yl
~ 2T < eik’r'fm ffm
-,_ 3
k'2 7 08 f22f,— (39,0, £)2]Y/2

also yields (29). Here f =1 —k’+1’, and we
sum over the set (m) of stationary values.

The net flux into the scatterer's surface, the
power absorbed in V’, equals

P, =— [8'+d@’ = S} 0, (31)

where o, is the absorption cross section. Since
v’*S’ = 0 in V’, we also have

[87:d@’ = [S}*dA’ + [SyedA’=P, + P

= §4[b Rep’* g’ (k') + 0%, (32)
where we used [S{*dA’ = 0,and (26) and (29).
From (31) and (32) we obtain the usual energy
theorem?,10 in the form

Py +Ps =H=—P}, o,+os=0;=—bRep' gk,
= 8,0, (33)
where 0% is the totdl cross section,and Py = — Py

is the energy diverted from the incident wave by
interference with the scattered wave, and either
absorbed or reradiated by the obstacle.

Similarly, for the components of the momentum
flux tensor,
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ﬁ6 - WOIQ’IZ[I;II;, + a’;r X‘I‘)/)(El % f)l)__ij

= Wyk'k’ = 8pk’/c, (34)
My ~ — W, lU,l2[gg + (&' % g')r' % g') — 1]
= W, T'T = S,'/c, (35)

M, k' = W, Re[U’ X (k' X &")* + Uy, X (K’ X &))*]
= Wo(U' X &;f +@™* x U}) =8§; /c,

M) F' = — W, Re{[®"*U’7 ' + &* X (¢’ X U)]
— [®X U F + DX (£ XU, ]} ~ S;é%.)
The analog of (26) is the force
F, = [M§+~d@ = Wb [lg(r')|21’]
= W§o'(r) =PXr")/c,
@)= JlgEnl2rdnE)/ [l gr)2de )
= b (| gl27']/0l, (37

where we used v'*M_ = 0 in V’. The analog of (29),
F; = [M;+d@’ = Wb Re p’+g(k")k’ = P/k'/c, (38)
gives the momentum diverted from &’ by inter-

ference with U,

Since v'*M’ = 0 in the volume external to the
scatterer, the radiation force on the obstacle [the
analog of (31)] is

F'=— J'ﬁ,,dai: W(')O' (39)

where ¢’ is a directed cross section for force. In
terms of (37) and (38), we also have

JMdG = [;+d@ + [MysdQ' = F] + F}

= Wy [b Rep’ *g(k’)k + o’(r)]. (40)

From (39) and (40),

F' +F; =F} =—F},
0’ +0%(F") = 0} = — b Rep’ *g(R")k' = 07K’;

o' = o B — o'(FY, (41)

where F; = — F;, the momentum diverted from
the incident wave by interference with the scat-
tered wave, equals that imparted to the obstacle
plus that reradiated. For a spherically symmetri-
cal scatterer, the radiation pressure is specified
by
o = U'E',

o = ofp — 0L (Ker)=04 + o1 —k'-F) (42)

as discussed by Debye,11 and van de Hulst.12

We may write the absorbed power as an integral
over the scatterer's volume (V')

P, =— [8d@ =— [v-sav = [qav,

V'8’ =—@', (43)
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where @’(r’) is the power loss density within the
scatterer. Similarly for the force on the scatterer
F' = — fﬂ"da’: _ fV"M'd.U' - jf’d'U’,

VM = —f, (44)

with f'(r’) as the internal force density. The
divergence relations are the usual ones for the
t’-independent problem. The densities transform
ag2-5

f=Lef + v /c2 = Le(f' + vQ'/c2),

Q=Q/y; Q+vi=yQ +vel), (45)

where we used the result for @ corresponding to
heat; vef is the work per unit volume. From the
above and the relations

dV=dV'/y, dA=L<dA"/y, (46)

we determine the absorbed power P, and force
Fin Z.
In Z,the corresponding force on the scatterer is

F= [fd0=y"1 [(f + vQ'/c2)+LdV’
=—y"1 [da’ (M’ + 8'v/c2)-L

=— [dG (M —vN), (47)

where we used (43)-(46), and finally (20). Thus the
force on the scatterer depends on both the momen-
tum flux tensor and the momentum density vector.
Similarly, the corresponding absorbed power is
P,= [QdV=1y"2 [QdV =~—y2 [Seda’

=— [dG[S —vW — (M —V¥N)*v], (48)

where the final form follows from (16). Since the
mechanical power that the field spends on thé
moving scatterer is
Py =v'F = [vefdV =— [dQ+(M— vN)+v,
(49)
the total power imparted to the scattering body
P, =P, + P, = [(Q +vf)dV = [(Q +vf')dD
=— f(S' + veM)ed@' = — f(S — yW)*dQ (50)

depends only on the energy flux and energy density.
Rewriting the last form of (47) as an integral over

F= [fd0 =— [veM— WN)dO, (51)
we have, within U,
—f =V'M—vV+yN = V*M + §,N, (52)

where V*vN = v*VN = — 9,N follows from
y(veV + §,)N = 3, N = 0. Outside the scatterer's
volume,
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v+(M — vN) = 0. (53)
Similarly, from (50) in the form
B, = [(Q +v[)dV =— [ve(S—vW)dD,  (54)
within U,

—Q—vi=VS—VvW=veS+o, W (55
and 6utside U,

V(S — vW) = 0. (56)

The forms of (52) and (55) in —v*V = 3, the usual
ones? for the r, {-dependent problem in Z, may be
taken as the starting ones for the development.

We determine F and P, initially by twn procedures
based on the results obtained in Z’. Tnen we con-
sider W,S and M in Z and discuss derivations

based on evaluating the X~ integrals in (47) and (50).

The most direct procedure for determining F and
P, etc.,and the corresponding cross sections
0=F/W,, 0, =Pg/S,,etc.,is to compare the V'
integrals of (47) and (50) with those in (43) and
(44). Thus,

F = Le(F' + vP,/c2)/y =L*F'/y + vP4/c2 = W,o,

(57)
P, =P,/y% = 5,0,, (58)
P, =v*F =v*F' + 2P} = Sy0,,, (59)
Py =P, + Py =P} +V°F' = §,0. (60)

The last form (60) is the simplest to interpret. In
Z,the power P, imparted to the moving scatterer
is the electromagnetic power P) it absorbs in its
rest system plus the work done on it by the rest
system electromagnetic force F’. However, the
power P, of (58) absorbed in Z is the relativistic
transformation of the power P) absorbed in Z'.
The first form (57) says that the force F that acts
on the scatterer in T consists of the distorted
rest system electromagnetic force F’ plus a force
arising from motion .nd the inertial effect

(P4 /c?) of the absorbed energy; both forces con-
tribute to the work done on the scatterer in 3, i.e.,
to P, of (59). If B/ = 0, the scatterer is lossless;
the results simplify to F = LeF’/y,and B; =

Py =vF' =v*F,

We construct the cross sections in Z by substitu-

tion. The simplest form is (58). Substituting from

(31)~(33), we obtain

P, = Sg0,4 = SH0'/v?,

04 = (1 — B cosa)? o, =(1—Bcosa)’(o; — of).
(61)

Next we consider (57) in terms of (41) and (33),

F = Wyo = WeLe(o’ +VBoy)/y

= WiLe[op (& + BV) — 04T’ + BW)]
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= Wiopk/p’— o (Rp) /v
W, p'2[0%K(1 + B cosa’) — o (R(1 +8 coss’) ],

o= p'zofﬁ(l + B cosa’) ~p’20’s(f{(1 +B cost’y

= op(1 — B cosa)k — p'20%5(R(1 + B cosd’)), (62)
where R(1+ B cosf’) = Le(r' + Bv)/y = v (cos8’ + p)
+ fp(sing’)/y with p = X cos¢ + § sing, We
obtain (59) from (62):
Py = S0, = V°F = S,pv*a
0y = BP'20%(B + cosa’) — Bp’20%(B + cosd’)

= Po’y (1 — B cosa) cosa — Bp’20'(B +cosd’).

(63)
Finally from (61) and (63), or more directly from
(31) and (41), we express (60) as

Py =S40, = So(04 + 04) = Sgp’2(04 + B¥+0),
0p =p'20%(1 + B cosa’) — p'20%(1 + B cosf’)

= 0'7p(1 — B cosa) — p'20% {1 + B cosb”). (64)
If the scatterer is lossless,then 05 =0, =
p'2Bo’{cosa’ — cosh’); see Restrick!3 and
Censor!4 for different developments.

From (33) and (41), we have

oy =0y — 0%, o =07k —oi(®), (65)
and we see that (64) and (63) are similarly related.
By comparison, we identify the total cross section

in Z as

0, =p’20%(1 + B cosa’) = 07.(1 —Bcosa), (66)
and the reradiation cross section as
0p =p'205(1 + B cosd’)

= p' 2690 [ lg(r") [2(1 + B cosp")]

= k72 [|g(f)]2(1 +8 cos6’)dQ (), (67)

and introduce

(RY = m[lgl2R(1 + B coss’)] /M [lgl2(1 +8 coss’)]
= oM [ Igl2R(1 + Beosd’)|/op (68)

to exhibit the same structure as (65):

o =0,k — o, (R). (69)

Soon we derive the components directly.
We make the interference effects explicit by
using (33) in terms of (6):

op=—b Rep'-gk) =—b Re p-G®).  (70)

Thus, although we are simply substituting Z‘
results, the interference of ® and U in Z is
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shown by the last form. In particular,

Op +UR :OT :0'2,(1 —BCOSQ)
= — (1 — B cosa)b Rep*G(K),

Py + P, =P, =—P;. (71)
Essentially as for (33) in Z/,in X the function P,
is the total power derived from the incident wave
& by interference with the scattered wave U and
either spent (as absorbed or mechanical power)
or reradiated by the obstacle. Similarly, we re-
write (62) in the form (41) as

0+ 0{RY =0,k = 04(1 — Beosa)k
= — (1 — B cosa)b Rep G(k)k,

F+F, =F, =—F,; (72)
and interpret the result essentially as for (41).
From (7), the factor 1 — g cosa in (72) equals
T/Tg,the ratio of the incident and dilated periods.

Now we rederive our results by using the surface
integrals in Z’, This enables us to evaluate the
reradiated and interference terms separately,
and gives directly the decompositions of (71) and
(12).

Since v’*S’ = 0 and v'*M’ = 0 in V', we also have
V(S + v*M’) = 0 in V’,and may therefore re-
place the @ ’-surface integral for P, in (50) by
one over any surface A’ inclosing the scatterer.
Proceeding essentially as for (31)-(33), we write

Py=— [(8 + veM’)*dA’
=—PI~PR:PT~PR' (73)

For P,,we use 8} of (25) and M of (35) and pro-
ceed as for (26);thus

B, = J(8 + veM})*dA’
= Syos({l+pVer) = Syo,, (74)

with o, as in (67). Similarly, from 8; of (30) and
} of (36),

P, = [(8) + veM})*dA’ = S'pb(1 + pV-k’) Rep’ ~g(k’)

= So(1 — BV*K)b Rep*G(k), (75)
P,=—P, =54(1 + pv+k’)o},
= So(1 — Bv-K)oy = Sg07.  (76)

We follow essentially the same procedure for the
force functions in terms of the Z’-surface integral
in (47). Since V’'*(M’ + S’v/c2) = 0, we proceed
essentially as for (39)-(41). Thus

F=—9"1 [dA’+(M’' + S'v/c2) L
=—F;~F=F; —F,. (17)

From (25) and (35),
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Fp =y 1L [ (M} + vSy/c2)*dA’
= Wyol(£'+ Buyr Ly
= W, p'205(R(1 + B cost’) = Wyo (R),

and from (30) and (36) e

F, =y 1L+ [ (M} + vS}/c2)*dA’
= Wb Rep’g(k’) (K’ + pV)/y
= Wo(1 — B cosa)b RepG(k)k, (79)

Fp =—F,=Wy(1 — B cosa)o,k = Wyo,k. (80)
Now we rederive our results by working with the
quadratic functions in Z,i.e., by using the G-
surface integrals in (47) and (50). This exhibits
the physical content that the Z’ procedures have
left implicit.

InZ,with¥ =& +U=E, + Eg =E,etc.,in
terms of (1) and (4), we have the analogs of (21)-
(23):

Wo =1 eo(1812 + [8,12) = $ ¢, (81)

Wy ~ WolG(R)|21D]2 = W, |p'beg(r’)12ID|2 = Wy,
D =1/ik'r' = py/p'ikR, (82)

ikRik-R

W,~ W, Re {e [p*G +(k xp)*(R XG)]D} = W,

where Wy, = p2 W), . We use &* as given in (8) to
cancel eivs of U in W, ;the result is the full
analog of (23) in terms of the corresponding Z
quant1t1es In particular, at R=K, — Kk we get

W, = 2W, Rep-G(k)D, 0; the f1rst value differs
from the correspondmg (r =k’) result for (23)
in containing W, instead of Wi, = W,p’2,and in
that we now work with D = l/ikRp'2 . Similarly
the analogs of (24), (25), and (30) are

So = ¢2Ny = 3 €,ck = Sk, (84)
Sg = ¢2Ng ~ S,1G|2|D|2R
= Solp'psgl2IDI2R =S, (85)
Sy = c2N, ~ S, Re{e’™®" #EB X (R X G)
+G X (kxp)|D} =8,, (86)

where Sg, = p285, . ER =k —kthenS,, =

28, Rep'G(k) kD 0. The flrst differs from the
correspondmg (r =k’) result for (30) in containing
Sok instead of Suk’. Finally, the analogs of (34)-
(36), are

M, = e kk = Wik, (87)
Mg~ W,|G|2|D|2RR =S4, R/c, (88)
M;k~M;"R~8S,/c. (89)

The original procedure (31)-(33) for P} in Z' was
based on v’*S’ = 0 in V'. We can parallel this
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procedure in X for P, of (50), since by (56),
V(S — vW) = 0 in V. Thus,the analog of the
sequence (31)-(33) is

Py =— [(S—vW)*d@ =— [(S—vW)+dA

=—P — P, =P, (90)

R H
with corresponding cross sections given by P/S,.
In particular,in terms of Wy of (82) and S¢ of
(85),

P, = [(8g — vW)*d@ = [(Ss — vW)*dA
=8, [ P_)__lg(r R — Bv)+dA,

Y2y 2 (91)
where A is any distant closed surface around the
scatterer. If we take A as A, in R, then since
d (R) = d2 (r')(84 cos8)/3, cosd’ = dQ(r’)/p2,
and R = 7'p, ,we have dA = RR2dQ(R) =

Rr 2do(r'); thus,

. = (So/k2) [ 1gl2p2(R — pv)-Rdsy(r’)
= (So/k2) [1g|2p2(1 — Bcos@)ANAT") = S0y

which, since psz(l — B cos®) = p, /y =(1 +B cosb’)
is the result given before in (67) and (74). The
same result follgws if we take A as A.,O in r§

use d)(rs) =d(r’ )(9,, cosbg)/ 3y, cosE’ _.dﬂ(r )/yq3
and 7s = r’q as in (5) to obtam dA=r rzdﬂ( ) =

r 7’2 dQur’)/ 7g; substituting into (91), and notmg
that R — BV = sq/pb, we again obtain (74). Most
simply, we use p; (R — v) = v+ L1 of (5) to write
PR — Bv) = ¥(1 + B cosé’)r'*L~1 in (91); taking
yL-1+dA = dA’ with A’ as A!_ gives (74).

In general, T is small enough for the implicit
slow t-variation of W5, and Sg, in r,{ to be neglec-
neglected for practical purposes. We may identify

APp, = (So/kz)f lg(r')I2(1 + Bcoss’)d(E"),

= AQ(Ts), (92)

with the flux through the directed aperture AA(rg)
of a fixed receiver in Z pointing at the scatterer's
present position v/, If we replace Ag by

A = AQ(R), the form corresponds to the flux
through the directed aperture AA(R) pointing at
the scatterer's retarded position v(vt — BR) = vi,.
The corresponding differential cross sections are

do(R)/dQUR) = p31g12/k2y
dog(r)/dur,) = p,q3lgl2/k2. (93)
The distant Poynting flux through AA(R) is
Pg, = (So/k2) [,p2|g(T")] 2 d")
= So/k2W? [; (1 + B cost’)2g(r')| 2dQ(r"),
do (R)/dQ(R) = ptlg|?/k2 (94)

but since V-Sg = 0,in general, (94) is not a funda-
mental differential flux measure in Z,e.g.,if we
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use AA(r r ), the integrand becomes pzlglzR-r /va=
lgl2(py/vq)2 = 1g|2(1 +.8 cose')/(l — B cost’)
with corresponding do (r )/dQ(r pquglz/ b2y,
Sommerfeld4 converts the dlfferentlal form in

(94) to the first form in (93) for the case of a
radiating accelerated electron by introducing
at/at =1 — B cos6, i.e., he replaces R°SSa by

R Ss,zat/at0 =R SSa(l — B cosB) = SSaR. (R—-ﬁv),
which equals (Sg, —vWg,)*R. However, since
V+(Ss — vW,) = 0 in V, we would use the second
form in (91),i.e., f (85 — vW)dA for all dis-
tances. This indicates directly that (93) is the
fundamental differential reradiated flux mea-
sure in Z.

For the interference term, from W, of (78) and §,
of (86), we obtain
P = f(sl —vW)-dA
= 5o Re [De"*T*H{[Fx ®xG) + G (KxP)]
—VB[p*G + (K X D)*(R x G)]} «dA(R)
= §,b[Re p*G(k)k — v Re p*G(k) ]k

= Sob Re p*G(k)(1 — gv-k) (95)

which, since p*G(k) = p’ *g(k’) is the same as in
(71) and (75).

The same development carries over for the force.
Thus the original procedure (39)-(41) for F' in T/,
based on V/*M’ = 0 in V', applies in £ to F of (47)
since by (53), V*(M — vN) =0in V., Thus,

F = — [(M —Nv)*dG = Wyo
=—F;—F,=F; —F, (%)

with corresponding cross sections given by F/ Wo.
In terms of MS of (88) and N of (85)

Fp = [(Mg—Ngv)*d@ = [(M4 —Ngv)+dA

p2lexr)lz
=W, | —k% (RR — gRV)*dA  (97)
and proceeding as for (92) we obtain
Fp = (Wo/k2) [ Ig|2p2RR — 67) R (F)
= (Wo/k2) [ |g|2p2R(1 — B cos@)da(r’)
= Wyo,{R) (98)

as in (69) and ('78). Similarly, in terms of (89) and
86),
F,= [(M, - N,v)dA
=Re ./.Detkﬂ_zk-a [slaﬁ' - lea;] .dA(ﬁ)/C
= Wb Rep+G(k)(k — 6v)k

= Wyb (1 — B cosa) Rep*G(k)k (99)

as in (72) and (79).

The present results also apply to arbitrary cylin-
ders and slabs in terms of the representations
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for the fields given in the earlier paper?! (which
includes AP, and APg for the three sets of
scatterers) with 9N equal to (1/27) [dé’ for the
cylinder, and to the mean of the forward space
and back space values for the slab. For the cylin-
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der,we use D, = (2/nk'r")1/2 e 4 b, = 4/k’;and
for the slab D, = 1,b, = 2. Although U for the
cylinder is not periodic in R, ¢, its complete
asymptotic expansion has period T, so that the
essentials of the present development carry over.
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Classes of potentials are defined by the finiteness of certain norms. For potentials in any of these
classes, the phase shift for any partial wave is shown to possess a norm-dependent bound as a function
of energy. Two norms are adduced in which the phase shift is uniformly bounded for all energies. A
number of theorems are proven concerning the high-energy behavior of the phase shifts corresponding

to potentials in these classes.
1. INTRODUCTION

The present and the following two papers will in-
vestigate the “scattering functions” of potential
theory,viz.the partial wave phase shift §,(k) at a
fixed energy k2 (% = 2m = 1 units are used through-
out) and the S-wave scattering length A as (non-
linear) functionals of a spherically symmetric po-
tential V(7). The over-all questions raised in these
papers deal with the boundedness and continuity of
the partial wave phase shift as they depend on the
potential function V(»). These considerations are
of interest in view of a number of paradoxes! noted
in the literature calling for a clarification of these
fundamental questions. These investigations also
bring to light an interesting topological structure
governing the dependence of scattering functions
on potentials. In particular they point to a Banach
space of potentials (see following papers) in which
the scattering functions are continuous and bounded
functionals. Such a structure may serve as a use-
ful theoretical tool. A number of inequalities, some
of which may be new, are arrived at in the course
of this investigation which are likely useful in
other contexts.

The present paper will establish a lemma which
shows how the scattering functions have absolute
bounds related to certain norms of the potential
functions. While phase shifts are always subject to
a mod-7 ambiguity, we adhere to the convention

that they be continuous in £ and vanish at all ener-
gies for zero coupling. The bounds established in
these papers apply to the phase shifts defined by
this convention. They are of interest for the pur-
poses of analysis as will be seen in the following
articles. Some results on the high-energy limit of
the phase shifts are presented in a theorem, In the
following articles, it is shown how these norms,
when bounded, serve as moduli of continuity for
the dependence of the phase shift on the potential.
In a subsequent paper, continuity is investigated
when the potentials are of unbounded norm as in
the case of repulsive singular potentials. All theo-
rems and proofs will be explicitly presented for
the I = 0 case. The considerations in the case of
other partial waves are almost identical, and the
necessary modifications are presented in Appen-
dix A.

II. SPACES OF POTENTIALS

We deal in the present papers with potentials which
are spherically symmetric and which are L1 over
any closed finite subinterval of [0, «) which ex-
cludes the origin, We thus do allow for singular
behavior at » = 0. One might allow for non-L1
singularities at finite nonvanishing 7, but they are
not of sufficient interest though certain aspects are
touched upon in an accompanying paper. The po-
tentials are assumed to be point functions as dis-
tinguished from distributions, though such genera-
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other partial waves are almost identical, and the
necessary modifications are presented in Appen-
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We deal in the present papers with potentials which
are spherically symmetric and which are L1 over
any closed finite subinterval of [0, «) which ex-
cludes the origin, We thus do allow for singular
behavior at » = 0. One might allow for non-L1
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not of sufficient interest though certain aspects are
touched upon in an accompanying paper. The po-
tentials are assumed to be point functions as dis-
tinguished from distributions, though such genera-
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lization is presumably possible, and in fact the
limit as 6-function potentials are approached will
be considered in the following paper. In practice
we shall have piecewise continuous potentials in
mind,

We shall be interested in a number of classes of
potentials in what follows. The class L1 is the
familiarly defined class of potentials V(r) for which

¢[vl= [ arl vir)l <, (1)

which quantity we call the “L1 norm” of the poten-
tial. The class L{" consists of potentials V(r) such
that

wilVl= [ <o @
for some fixed positive 8. The validity of Eq. (2) for
one positive value of g implies its validity for all
positive 8. This integral will be termed the ‘L,ﬁ”
norm” of the potential (3 dependence suppressed).
Two special cases are of interest, =k (k2 is the
energy) and 8 = 0. The latter class will be termed
the “L™ class” and corresponds to potentials with
finite first moment, i.e.,

xEX[V]Ef:drer(r)Kw. (3)

x[V] is termed the LY norm of Vir). ¥

r=1V]= [ ar| vz <o, )

V(r) will be said to belong to the class L@/2) and
the quantity 7 is the L /2 norm of V(r). We define
the class L @/2) of potentials V(r) to be those for
which there is a V(r), such that

@ Vo) < V),
(i) V(r +a) <V{r)for anya =0,
@ii) [ drlVe)1/2 < w,

(5)

{In what follows, V() will always denote an appro-
priate bounding potential corresponding to an L1/2
potential V(r) for which (i), (ii), and (iii) are true.]
We also iagroduce the notation which we exemplify
for the L™ norm

x[V], = fabdr 7| vl

so that x[V] = x[V]y.

The sub&?quent paper shows that the L1, L(+1) L,
and L%? norms serve as moduli of continuity,
respectively, for the scattering functions in the
L1, LY 1D and TU/2 classes of potentials. The
following inclusion relations apply to these classes:
LW/ cLWcL®, LicL®. (6)
These relations follow from the evident inequali-
ties

wa[VI<x[V], wa[V]<(1/B)¢[V],

AS A BOUNDED FUNCTIONAL
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and the inequality valid for V(r) € L1/2 follows
from

x[V]= foao drrlvir)| = fow dx f;o dr | Vir)|

< fow dx fxm arviy) < f0°° dxV(x)1/2
M
It should be noted that the norms wg[V], x [V], and

7[V] are dimensionless in the wmits # = 2m = 1
with 8 of dimensions length-1,

X fow drV(r)1/2 = 12(V].

III. BOUNDS ON PHASE SHIFTS

In this paper, we show that these norms serve as
moduli of boundedness for their respective classes
in the sense that the phase shifts for potentials in
each of these classes can be bounded for each % by
a quantity which depends on the corresponding
norms of these potentials.

An extremely useful tool in the ensuing discussion
is the following intuitively obvious comparison
lemma.2

Comparison lemma: I two potentials V, (r),
V,(r) satisfy the ordering relation for all 7,

Vl('r) Z Vz("’),
then correspondingly for each real energy k2,
— 6, (k) > — 5,(k).

The conceptual content of this lemma is quite ob-
vious; if one potential is at least as attractive as
another everywhere, its phase shift at any energy
is at least as great. In this sense we shall speak
of the phase shift as a “monotonic functional” of
the potential. It therefore suffices in order to
establish bounds on the scattering functions to
establish them for appropriately stronger poten-
tials. Our interest in particular will be in bounds
which are uniform in 2. Only S-wave results are
explicitly presented. (See Appendix A for discus-
sion of higher ! values.)

We define the respective attractive and repulsive
parts V-(r), V¥({r) of a potential V() by

Vi) = 3[Ver) = Ve l]. (8)

Boundedness lemma: (i) If V{r) € L1,its
phase shift at any nonzero energy obeys the inequa-
lities2

_ 1 o 1 -
{eL + Leivip) < o < 2 2[v). (©)

with L arbitrary nonnegative.

(ii) If V(r) € LW, its phase shift obeys the in-
equalities

— {kL + 20, (V)T < 6() < Fix[Vv-0T}, (10a)
—~{RL + X [V*0))2} < 5(k) < F{x[IV-0)1]}, (10b)
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for any L = 0. F(x) is a specific monotonically in-
creasing function of its argument [see Eq. (28)]
which vanishes at x = 0. These bounds are uniform
in k.

(iii) If V(r) € L@/2) then Eq.(10b) is valid as well
as the weaker inequality (L arbitrary)
k) < F{r2[v]}.

—JkL + r2[V]?} < o (11)

Remark: It is clear that, in order to prove this
lemma, one must work with expressions for the
phase shift which define it by the previously stated
convention which resolves the mod-7 ambiguity.
Such relations are provided by Egs. (13) and (22).

Proof: We first note that the inequality, Eq.
(11), applied to L(1/2) potentials is an immediate
consequence of Eq. (10b) for L® potentials, in view
of Eq. (7). We also rem rk that the phase shift is
finite for all % for all potentxals For & =0this
is a consequence of Levinson's theorem and the
Bargmann-Schwinger inequality, Eq. (21a).3 For
k = 0,it is a consequence of the existence of the
Jost function (see Appendix B) f(k) (identical with
the Jost solution at » = 0 in the S-wave case) and
the fact that /() = 0 for real 2 = 0.4 The phase
shift is merely Im Inf(k).

From the comparison lemma, we readily conclude
that

6(,V*) <6k, V) <6k, V) (12)
(in an obvious notation). It suffices in establishing
the theorem to prove the upper bound in Egs. (9)
and (10) for a purely attractive potential and the
lower bound for a purely repulsive potential.

Let V(r) be a purely repulsive potential,i.e.,
V({r) 2 0. The variable phase equation® specifies
the phase shift as

o) =— I~ drv(y) sin?[er + otr,2)]

=2 (fo + [ >drV(r) sin2[kr + 5(r, k)]

F 5,(R) + 65(R), (13)
where 6(r, k) is the phase shift for the potential
truncated beyond 7.5 For purely repulsive poten-
tials®

—kr < 6(r,k) <0. (14)
In particular,

8, (k) = 6(L, k) > — kL. (15)
If in 6, (k) we employ the inequality |sinf|< 1, we
immedxately find for L1 potentials

o) > — {eL + Lepviz ). (16)
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One may optimize this with respect to L. For L@
potentials, we employ the alternative inequality

I'sin26|<|sind| < 26/(1 + 6) (17)

and one readily finds in view of Eq. (14)

16,0) =% [, arver) sin?fer + otr, B)]
< 2f°° de_(_)

1 +kr
= 2w, [V]F.

(18)

Equations (15) and (18) together imply for the pure-

ly repulsive case the lower bound in Eq. (10a). The
inequality |sin6|< 6 and Eq. (15) give Eq. (10b). By
choosing L = 0, we find a bound uniform in &,

z — X [V+].

Through an alternative use of the inequality (17),
one readily derives for purely repulsive potentials
the inequality

6(k) (19)

2
— 4k f°° d'rr Vir

o(k) > d +Er)2"

20)

This inequality has not been emphasized in the
lemma as it fails to have any counterpart in the
attractive case, since the right-hand side is finite
even for some singular potentials. Our object is
to indicate the norms which serve as moduli of
boundedness.

The bound we find for a purely attractive potential
V({r) is not quite as simple. For 2 = 0, however,
simple expressions are possible in view of Levin-
son's theorem. If n, denotes the number of bound
states supported by the potential, one finds from
the Bargmann-Schwinger inequality

5(0) =y <7 fy arrlVE) =ax[V]  (2la)
for LM potentials. For L(1/2) potentials one can,
in fact, go beyond the implications of Eq. (7) by

means of the inequality?

—;5(0) =ny < %fo” dr|Vir)|1/2 = % r[V].  @1b)
For k =0, the upper bound in Eq. (9) is an immediate
consequence of the variable phase equation. For
nonzero energies, the proof of Eq. (10) is consider-
ably more complicated. In this case, we show that
a choice of radius g > 1 is possible, which will
give 6(k,—g| V) a uniform bound in 2. We proceed
from the following expression for the phase shift
for a potential8

5() =k Jo~ ar[lf(k,7)]-2 — 1], (22)
where f(k,7) is the Jost solution for that potential,
We write
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o) =k S ar(Ife,m)i-2 —1]
~kJ, arll — Ik, 72

= 04(R) — 6_(k), (23)
where C, is the subset of the positive 7 axis over
which |f(k,7)! < 1 and C_ is the complementary
subset. Clearly 6(k) < 6,(k). An upper bound to
6,(k) can be found from a lower bound to |f(k,7)!.
In Appendix B, we establish the upper bound to
Lk, 7)1,

|k, 7) | =\ 1k, 7;8)| < exp{2gw, [V]T},

where a coupling constant g > 0 has been attached
to the potential (eventually to take the value unity).
(The g dependence will occasionally be suppressed
in the notation.) A standard function theoretic re-
sult states? that, complementary to the upper bound
in Eq. (24), one can find a related lower bound on
[7(k,7)|valid in the entire g plane exclusive of cer-
tain small neighborhoods of the zeros of f(&,7).
We shall use the following form of this resuit for
the case £ = 1, which we prove in Appendix C.

29

Result: For fixed k and 7,

|fle,7;1)]

> exp{~ 5 72[% +8 In(323x 2w, [V}

= exp{— Aw, [V]}. 25)
We find from Egs. (23) and (25)
5(k) < 8,(k) < kS, dr{exp{20w,[V]?} — 1}

= 2kAf)7 d—"{f}g’—” exp{2Aw, [VI7).

< 2xA exp(2xA), (26)

where an integration by parts has been done in
Eq. (26). The integrated part vanishes at the upper
limit since

fwdsslV(s)l < 1
r "1+ks  1+kr

7 assl vis)l= o(%) @7

which follows from x [V] < ®. The quantity w, V]
appearing in Eq. (26) is replaced by x [V] only
because a finite L® norm is necessary for the
integrals to converge. One thus verifies the upper
bounds in Eq. (10),

F(x) = x(p + o Iny) exp[x(o + o Iny)],

with p, o defined in Eq.(C17). We note that F(y) is
a continuous monotonically increasing function of
x which goes to zero as x = 0.

(28)

We note that this proof which was based on the
representation of Eq. (22) for the phase shift cannot
be repeated for the S-wave scattering length which
is expressible analogously by1?
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A= [ ar(if0,m1-2=1]. (29)
Indeed the scattering length for attractive potentials
is not a bounded functional in any of the norms, as
it becomes infinite at every bound state threshold.
The argument fails because the scattering length is
not a monotonic functional of the potential. Bounds
on the scattering length in the purely repulsive case
can be inferred from the present approach, but this
will be deferred to another treatment.

When the apotential becomes singular in the sense
that x[V], = © for any a > 0, the upper bound in
Eq. (10) fails to be finite, while the lower bound is
generally finite, though it grows unbounded as
k— o,

IV. HIGH-ENERGY BEHAVIOR

The behavior of 6(k) for large & is described in
the following theorem.

Theorem: (i) I, for some B > 0,w,[V] <=,
then 6(k) 2 0 as kb~ ©,

(ii) ¥ r2V(r) » + © monotonically as r — 0 and
wg[V1y < o for all @ > 0,then 6(k) > ag k- ©,

(iii) If, for some B > 0,

wg[V-]< o, w [Vt <®foranya >0, (30)

then 6(k)/k ~ 0.

Proof: To prove (i), we appeal to the expression
for (k) in Eq. (13),in particular, to the decomposi-
tion into 8, (%) and 6, (k) with L to be specified. We
choose an € > 0. 0,(k) is the phase shift for the
potential V(r) truncated beyond » = L. Now F{x]
of the lemma goesLto zero continuously as x ~ 0,
and so does w,{V], as L - 0. It follows from

x[VIE < (1 +BLw[V]} (31)
and the inequalities in Eqgs. (10b) and (19) that,
through choice of sufficiently small L, one can
make |8, (k)< 3e. For 5,(k),one can write the
inequality

16,(k)1 < (1/R)(B +1/Lyw,[V),

which, with L fixed, can be made smaller than 3¢
through choice of sufficiently large k4. Since € is
arbitrary, one concludes that 6(k) = 0 as b — @,

(32)

We now consider statement (ii). One considers only
V{r) purely repulsive in the neighborhood of » = 0,
as the phase shift for a strongly attractive singular
potential is essentially undefined. We again con-
sider the decomposition into 5, (k) and 5, (k) of Eq.
(13). It has been presumed that within some fixed
finite neighborhood of » = 0,72V (r) is positive and
monotonically decreasing. Define 7, by the con-
dition

r2V@) = I(1 + 1). (33)
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Then 7, » 0 as I » ©. In Eq. (13),choose L = 7,.
For fixed !,

EXCIES- f:drw(y){s—}; (ﬁ +;11—) wglVI?, (34)

which shows that 6,(k) — 0 as £ —» ©, By compari-
son, one concludes from the monotonicity of V{r)
for small 7 for sufficiently large ! that

where 6(k; C)) is the phase shift corresponding to

C,lr) =10+ 1)/r2]o(r,— 7). (36)
b(k; C)) is expressible by means of the (I = 0) vari-
able phase expression in Eq. (13)

o(k; Cz)
=—[U1 + 1) Jy  drr=2 sin2[kr + 5(r, k3 D)]
= {1t + 1/R1 ;" drr=2 sin2fkr + 50, k; D))
+ [U(i + 1)/%] foo dry~=2 sin2[kr + 6(r,k;1)]

— Lo+ I+ 1)/k]f drr-2

x sin2[kr + 6(r, k; )], (37
where 6(r,k; 1) is the variable phase function for
the centrlfugal potential I(I + 1)r~2, For fixed

I, one readily sees that 6(¢;C,) » — 37 as k di-
verges. Since / is arbitrary, one concludes from
Eq. (35) that 6, (k) » — © as k& — ©, from which
follows the same for &(k).

We now prove statement (iii) which is meant to
apply to singular potentials, i.e., potentials for
which x[V] = @. It follows by comparison from
statement (i) and w (V-] < ® that, in fact, 6(¢) <
0 as hmk - ®, Choose an € > ¢. Then if

L = e,

6,(k)/k = — 3¢

from Eq.(15). For such an L, one can choose k
so0 large that Eq. (18) implies k 15,(k) = 3e. The
result follows from the arbitrariness of €.

V. DISCUSSION

The upper bound in Eq. (10) is likely to be generous
in view of the simpler form for k2 = 0, Eq. (21a), and
the known bounds for potentials which have mono-
tonicity properties.11l One may speculate in view of
Eq. (9), the 2 = 0 case and the results for the purely
repulsive case, whether an upper bound with only
polynomial growth in j 1s possible for large x. One
should also note the inequality in Eq. (25) as an
inequality on the modulus of the Jost solution, which
is useful in later contexts. The boundedness lemma
is a vital consideration in the arguments of the
following paper.
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APPENDIX A: HIGHER ! VALUES

The boundedness lemma and high-energy theorem
remain essentially valid for the /th partial phase
shift with only minor modification of the reasoning
or results. The upper bounds in Eqs. (9) and (10)
are only changed by addition of 3! to the right-
hand side. The presence of the centrifugal barrier
does not change the attractive part of the potential,
while the “S-wave phase shift” for V({r) — (I + 1)r~2
is 317 less than the I partial wave phase shift. The
lower bound can be studied by a parallel treatment
to the I = 0 case. Again we may take V() to be
purely repulsive. The variable phase equation for
the Ith partial phase shift is12
ds,
—(r,k) = —-—V('r)Dz(kr) sm2[6 (kr) + §,{r, k)],
(A1)
where D &) and 5 ,(x) are defined in terms of the
conventmnal sphencal Bessel functions 71(") and
n (x)l.'i

D, (x) = x[j3(x) + n3(x)J1/2

8, (x) = arctan[j, (x)/n,(x)]. (A2)

(x) is defined for all x = 0 by 5 ,(0) = 0 (in the
repulswe case) and 5, (x) contmuous From (Al)
8,(k) =— (1/k) J,~ drV(r)D3(kr)

x sin2[5,(kr) + 8,(r, k)]
= 6,(L,k) — (1/R) [ arv(r)D2(kr)

x sin2[8 (k) + 6,0r,k)]. (A3)

We appeal to a number of relations. For purely
repulsive V(r),14

0 < B,(kr) +5,0r (A4)
and

k) < 5,(kr)

5,(r) <x, D?(x)8,(x) < x, (A5)

which follow from the monotonically decreasing
character!5 of D,(x),D,(®) = 1, and the relationl6

5,x) = Jy avD72(y).

We conclude from Eqs. (A3)~-(A5) that, for purely
repulsive V(r),

(A6)

5,(k) = - {5,(L) + 2w,[V]T}, (A7)

which is the appropriate inequality to appear in
Eq. (10a) with V*(r) replacing V(r) in the general
case. Setting L = 0, we readily verify the lower
bound in Eq. (9). We note the behaviorl7 of

6,(x) for small and large x as

le*‘l
8 S BT DRI DT

(x) L x— Lim,

(A8)

Equation (10b) is proved in the same way to hold
with § (kL) replacing kL. One derives analogously



THE PHASE SHIFT. L

to Eq. (20) for purely repulsive potentials
r8,(kr)V(r)

00

The theorem on the high-energy behavior applies
to higher partial phase shifts, with essentially no
change in the proof.

6,(k) (A9)

APPENDIX B: BOUNDS ON THE JOST SOLUTION

The Jost solution to the I = 0 partial wave equation

& Akyr) + 02 —gVE))fke,) =0, (BD)

satisfying the boundary condition for large v
flk,7) ~ e ikr,
also obeys the integral equationl8
flk,7) = ei#r +g[ " dr'[sink(r — r’)/k]V(r')f(k,r;gz)

This Volterra type integral equation allows the
solution by iteration

flk,r) = e-ikr + Z ( > 2 ary -

x ‘[’nd dr, sink(r, —7, ) "

sink(r, —7,) sink(r, — e i*y -ﬁIV(r,-)
i

bl 4
= 30,7, ®3)

Bounds are easily derived from this expression. If

Vir) € LY/ for k real, one readily finds from the
mequahty (17)
|y, <20 [Ty 7 drnn%v——(—r;k%'—
= Lpolvey, s34
which implies
[f(k,7)| < exp{2!g|w,[V]}. (B5)

From !sinf|< 8, one immediately deduces that if

Vir)e LD

|fk, 7)< exp{lg | x[V]}
Alternatively, 19 if V(r) € L1/2),
6, )<L, dry-ee [ dr =7, )

—rlry =7 M 1ver)

(B6)

X(ry

= Lwdxlf: drlfr:o dxzf:: dry- -

xf::_1 dxnfx:o dr

ndjllV(rj)]
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S frwdx1 f: dry--

Sy 5
><fwd‘r ﬁ I_I7(';'-)V(xj)|1/2

==L g,

@) (B7)

so that
|f(k,7)| < cosh{lg|1/27[V]°}.

APPENDIX C: PROOF OF THE INEQUALITY OF
EQ. (25)

We appeal to the representation of f(k,7;g) as in-
finite product representation in terms of its zeros
(in g). In general f(k,7;8) may have exponential
order as high as 1 in g£,20 and, therefore, f(k,7;2)
would have the infinite product representation

fle,7;8) =e*1I(1 —g/g,).

(B8)

(C1)

The dependence of g, on k2,7 is suppressed, and the
known value of f(k,7;0) has been included. Equa-
tion (24) implies an inequality?! on the number of
zeros of f(k,7;g) within a circle of radius g

ng) < 48w, [V]] = 4gw, ), (c2)
which implies that
lg,|> (C3)

4w (r)

The 7 dependence of the g, is frequently suppressed
in the notation. We consider22

| fle, 7;8)(k, 75— 8) |
= |H (1 —%)’zn[l—]ﬁ%—z] = ¢(g)

We shall find a lower bound to ¢(g). ¢(g) of course
has its minima at its zeros. Since ¢(g) clearly
vanishes at £ = |g, |, we exclude each of these
points together with a small neighborhood. We sur-
round each point & = g, (r) by a circle of radius

(C4)

lg —g,0)| =2/3n2, (C5)
and exclude the interior of the circle from the
region for which we try to establish a lower bound
to ¢(g). The choice of radius of the disc is arbi-
trary, so long as the sum of the radii of the exclu-
ded circles is finite. We denote the g-plane with
these r-dependent circles excluded by G(r). The
total diameter of the excluded circles is bounded
by

2=3 En-2—9n2>1 (C6)

where Eq. (C3) hasbeen used. We note that gasde-
fined in Eq. (C6) serves as a k- and r-independent
radius, for which for some value of g < g-”, the in-
equality to be derived will be valid. For g general,
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2
Inl¢(e)l= 2 |1 — £ |
n g, |2
= 27 In|1— g
lg,| <2¢ l l !2‘
g2
+ X ln( - I
lg, | =2¢ lg,12
=L, +L,. (cn
For lg,|< 2g,
lg2 — g, 121> 3lg,llg —1g,ll= lg.|/n2,
(C8)
and therefore from Eq. (C3)
2
ln‘l _Igg? > —1In(m2?|g,!) = — In(3283x2), (C9)
n
s0 that
2
L= T ml1--£
lg, | <2¢ lg, |2

> — n(2g) 1n(32¢3,2) > — 82 (3232w, ).

(C10)
By employing the inequality In(1 — x) = — %x
for x < 1, we find
L > g2 l 4.2 1
9 = In{l — 2z — 38 .
lg,1>2¢ |g,,|2 lg, | =2¢ Ignlz

(C11)
Now from Eq. (C3)

M. FRANK

Lo % [ oL, 20080)]
lg,1=2¢ 1&,12 a=1 4g2’ n?
_ n(2g) 2 -
=742 + 16w? () mgkm” 2
2w,(r) 2w.(r) 4w,
<— ==k, (a1
so that
L, > — 3gw,(r), (C13)
and L6
Inp(g) > —g[5 + 8 In(3283x2)Jw, ). (C14)

Consequently for any g in G(r) from Eqgs. (24), (C4),
(C10),and (C14),

|fk,7;— £)|> exp—g[’s + 8 In(3283x2) Jw, (). (C15)

The quantity on the right is a monotonically de-
creasing function of g. This inequality remains
valid if a value of & in G{) is replaced by g of
Eq. (C6) which is a & and ~ independent. Thus one
obtains the statement of Eq. (25). This leads through
the steps in Egs. (26) and (27) to the form of F(x)
presented in Eq. (28)

F(x) = x(p + 0 Iny) exp[x(p + o Iny)},

where
p =:m2[Y +12 In(n2/9) + 32 In2],0 = 6472/9.
(C17)
We have not attempted to find the sharpest possible
inequalities. We note that |f(k,7;—g)[~> 1 as w, (r)
- 0, as is to be expected.

(C16)
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The scalar field due to a bounded source and obeying the wave equation is analyzed. As a result of this,
a set of rules is derived for solving a class of “wave theories,” including electrodynamics and general
relativity, by expanding the field in a power series of ¢~ 1 in null-spherical coordinates. The method is
applied for the Maxwell equations to give all the well-known results without the use of Fourier analysis

and Bessel functions.

1. INTRODUCTION

From the time when general relativity was intro-
duced as a gravitational theory, the problem of ex-
pressing explicitly the gravitational field in terms
of the source was recognized as a very important
one. It is the purpose of this paper to set up a
method for solving-this problem.

Because of the complexity of the Einstein equa-
tions, an exact general solution, as in electro-
dynamics, does not seem possible. However, we
ask for the next best answer: namely, a procedure
which will enable us to express the metric tensor
8,, explicitly in terms of the source at any
desired accuracy.

Earlier investigations by Bondi, van der Burg, and
Metzner! and Newman and Penrose?2 opened the
way for the exact treatment of the far zone of a
gravitational field produced by a bounded source.
These and other similar works3~¢6 employ charac-
teristic or asymptotically® characteristic hyper-
surfaces and are based on the possibility of ex-
panding the metric tensor in powers of »~1, where
r is an appropriately defined parameter which at
infinity coincides with the radial coordinate.How-
ever, because of the expansion in powers of »~1,
only the far zone can be studied by this method.

For the near zone, different procedures have been
used. Einstein, Infeld,” Hoffman, Fock, 8 and
Chandrasekhar9 have given a solution for the field
inside and near the source. Also the reaction on
the source due to the emission of gravitational
waves has been derived by Chandrasekhar and
Esposito.10 The “near zone” approach assumes
an expansion of the field in powers of ¢~ (or v/c)
and is not valid far from the source because,
among other reasons, the metric tensor behaves
as r» (n = 1) at large distances.

Consequently, the problem of uniting the two pro-
cedures arises. In that direction, the coupling of
the radiation to nonrelativistic sources has been
studied by Burkell in the linearized version of
general relativity using the method of matched
asymptotic expansions. However, this method
appears to be rather complicated, and in the
author's opinion, it is questionable whether it can
be applied effectively for higher approximations.

In this paper, we adopt a different approach to the
problem of relating the gravitational field in the
far zone to the source. We consider a class (not
exactly defined) of “wave theories” with the scalar
wave theory, classical electrodynamics, and
general relativity among them. Each “wave

theory® consists of a set of field equations, a
source function (with one or more components),
and a set of boundary conditions. Our objective is
to find a set of “rules” for reducing the field
equations to a set of linear equations which can be
rather easily solved. The rules must be more or
less the same for all the wave theories of the
class. Hence, they must not depend on the field
equations (linear or nonlinear), the source func-
tion (charge distribution or energy-momentum
tensor), and the boundary conditions.

In Sec. 2 we will discover the rules by examining
some properties of the scalar wave equation and
its solutions.

In Sec. 3 the new method will be applied to the
Maxwell equations to derive all the well-known
results (with emphasis on the radiation) without
any use of Fourier analysis, Bessel functions, and
retarded potentials.

In Sec. 4 we will briefly examine the limitations, if
any, of the method, and in Sec.5 some concluding
remarks will be made.

The application of the technique in general rela-
tivity, which is the purpose for developing the
method, will be done in a future paper.

2. THE SCALAR WAVE FIELD

In flat space-time with signature — 2, we consider
a one-component field  satisfying everywhere the
equation

0¥ = — 4nf(t, 1), (1)
where
Uy = b‘““l’;pw ur=201,23, (2)

buv is the contravariant metric tensor of the space,
f(t,r) a function of the time ¢ and position r repre-
senting a bounded source (f = 0 outside an appro-
priate sphere), and the semicolon denotes covariant
differentiation with respect to g,,.

Assuming that

S, 1) = flx)eivt, (3)

we have the general solution of Eq. (1) outside the
source as a linear combination of

(4

Every %,(k7) contains!2 a factor ei*” which can be
combined with e-iwt to give e"iw*, where u =
t — c~lr. The remaining part of z,(k») is a poly-

Vi = B(EDY,, (6, P)eivt .

2355



2356

nomial of »~1 with coefficients, which are powers
of ¢~1. This is the only place where ¢ appears in
¥,,,» and consequently,y,, is of the form (with the
indices 7 and m omitted)

¥ = LF,(u,r)c™ (5)

n

Let our space—time be represented by a four-
dimensional manifold M with coordinates13 u, r
(v ranges from — © to + «© and r stands for x, y, z
or 7, 6,¢ with the appropriate ranges). A one-
parameter family of functions on M, ¥(x, r; c),
labeled by the parameter c, will be called a-u-fype
function if, for fixed « and r, ¥ is analytic in c~1,
i.e., if ¥ can be written in the form (5) [with
F,(u,r) independent of ¢]. A c-dependent tensor
field on M will be called a u-type field if each
component of that field (in this coordinate system)
is a u-type function.

The importance of the “u-type function® concept
lies in the fact that a u-type function can represent
time-dependent fields generated by a bounded
source, governed by linear or nonlinear equations,
and exhibiting radiation phenomena. The simplest
scalar outgoing wave r le-iwt ig a u-type function.
Any solution of the Bessel equation multiplied by
e”iwt hbecomes a u-type function. In flat-space
electrodynamics, let J* be a contravariant vector
field on M whose components are independent of ¢
in the coordinate system ¢, r. We suppose in addi-
tion that J# has compact support on each { = const
hypersurface and J#., = 0. Then for each c, there
is a unique retarded solution of Maxwell's equa-
tions with source J# and which goes to zero at
spatial infinity. This solution is a u-type function.
Because of the expected similarity between elec~
trodynamics and general relativity, we will assume
in Einstein's theory that the gravitational field of
a bounded source is a u-type function with «, », 6,
and ¢ appropriatelyl,6 generalized.

If we now express the operator O using co-
ordinates u, 7, 6, and ¢ as a power series of c-1,
then automatlcally Oy, will be a power series of
¢~1, and since Oy,,, = 0, we conclude that the co-
eff1c1ent of ¢ of Oy, w111 be zero for every n.
The same conclusion could be reached if we had
considered ¢~ as an independent variable instead
of a constant. It is important to notice that any
sum of ¥, with respect to 7 and m, and any sum
or integral with respect to w (in case the source
has a discrete or continuous spectrum) are also
u-type functions. Hence, the solution of (1) outside
the source is a u-type functzon and ¢™1 can be
considered as a variable independent of the co-
ordinates or any other parvameter of the problem.
We now consider the inhomogeneous Eq. (1). Let
f(¢, ) be given by (3). We also assume that f(r)
does not contain ¢. The physically acceptable
(~ »~1 for large 7) exact solution is

=2 Vi Yime (6)
im

where
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= ikhl(k'r)e‘iwtfg 725, (kr")F,,, (v')dr*
+ ikjy (er)e™it [2772h (ky")Fy (') ()
m (r) = fY;nf( (8)

The function ¢, satisfies exactly a differential
equation which written in coordinates u, 7, 0, and ¢
becomes

wlm

and
).

1 )
(L—; M) Yy = — Fp,r2eivt, (9)
where
92
L=rz——+2r——-ll+1 10
et U+ ) (10)
and
92 9
— 942_9" 9
M = 2r 5usr T Zrau. (11)

In the above, y,,, is not a u-type function. However,
we can consider it as a function of ,7, 4, and ¢
and expand it formally in powers of ¢~1. The fac-
tor e-iwt of the first term of (7) combined with eé*r
of &,(kr) will give e-iw%, The factor e-iv¢ of the
second term will be expanded as

iwr

2,2
=e-m<1___ w?r )
c c2

Finally, we expand the Bessel functions %,(k7) and
j,(kr) and replace k by «/c. Keeping only the two
first powers of ¢—1, we find

Vi = YD + (/D + 0(c™2)
where

g i -1- 1+ ' ’
WD = grrr 7SS 7R, )

e wt = g-iwu, g-ikr

(12)

g + rlj:" 7'"l+1Flm(7”)dT’] (13)
an
lp(l) zwe ~wn [’V'lfg r11+21;l‘m(rr)d,r/

+ ytL [0yt (y)dr’].  (14)

We now have the u-type function ¢{@ + c-1y(D, and
multiplying by L — ¢~1M, we find

(e ) 2+ 742)
== Bt i)

But the right-hand side is the first two terms in
the expansion of —F,, 72¢" of (9). This means
that, instead of solving (9) exactly, we could expand
the source in powers of ¢~1 (in coordinates u, 7, 6,
¢), and solve the equation

LD = — F, (r)r2e ivn (16)
to find Y2, then solve the equation
LyR = MyQ + iwE, (rir3e-ivu (17

to find Y} and so on.
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At this point, we are ready to state the general
rules for any wave theory of the considered class:

1. Write down the field equations in null-
spherical coordinates'd u,r, 0,and ¢ and
expand'4 the source-function in powers of
c-L.

2. Replace c™! by € and consider € as a
variable independent of the coordinates or
any other parameter of the problem.

3. Consider the field as a power series of €
and write down the field equations as a
sequence of equations for the various co-
efficients of €n.

4. Solve each set of equations (each membeyr
of the sequence) from n = 0 up to any
desived €n.

The approximate solution of the original field equa-~
tions comes from the expansion of the field in
powers of € by replacing € with ¢—1, Having the
field as a power series of ¢!, we can expand the
coefficient of ¢ in a power series of »~1, In this
respect, the method appears similar to the use of
Liénard-Wiechert potentials and, of course, gives
the same results as these potentials or any other
method in electrodynamics. However, the Liénard-—
Wiechert potentials are solutions of the linear
wave equation in flat space and do not employ ex-
pansion in powers of ¢c—1, Contrary to the Lienard-
Wiechert potentials, the present approach, as stated
by the four rules, is suitable for solving nonlinear
field equations (the Einstein equations in general
relativity).

Comparing now the above rules with those followed
by Chandrasekhar,9:10 we see that there is one
essential difference: namely, the coordinate frame.
In fact, Chandrasekhar uses coordinates £, 7, 6, and
¢ and considers the field as a f-type function (de-
fined accordingly as the u-type function). In the
near zone, { and u = { — rc~! are approximately
equal, so the field can be considered to be of u-type
or {-type. Consequently, the new method is ex-
pected to give essentially the same results as the
E.I.H. and post-Newtonian methods in the near
zone. However, in the far zone, t and u are com-
pletely different and the field is a »-type function.
Although this difference seems small, it is enough
to make the present method valid at large dis-
tances, where the other methods of expansion do
not apply and radiation phenomena dominate. The
use of u instead of ¢ distinguishes, in a way, two
kinds of factors of c~1: one coming from the ex-
pansion procedure (which is replaced by ¢) and one
which remains hidden in # and generates the re-
tarded effects.

In Sec. 3, we will apply the rules on the Maxwell
equations leaving the question of the validity of the
approximation for Sec. 4.
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3. THE ELECTROMAGNETIC FIELD
A. The Field Equations

The solution of the Maxwell equations using the new
method will serve two purposes. First, it will in-
spire confidence in the new technique since the
results can be compared with the known exact solu-
tions. This is not possible in general relativity and
there the method has to be trusted. Second, it will
raise questions which can be answered rather
easily in electrodynamics. Similar questions are
expected in general relativity, and it will be better
for us to be prepared since at that time our whole
attention will be focused on overcoming other
difficulties due to nonlinearity, physical interpreta-
tion, etc.

We can start from: the covariant form of the field
equations which contain the field tensor F,, and
apply the rules. However, it is better to start from
the equivalent set

V°E = 4np(t, 7, 6, @), (18)
yxE=—128 (19)
%*B = 0, (20)
qu:%J(t,r,a,q:H%g?, (21)

where V, is the usual voperator with the under-
standing that E and B are functions of the four
independent variables ¢,7, 6, and ¢. If we consider
u,7, 6,and ¢ as the independent variables, then we
must replace

d 0

a_t by W’

d 10 0
7Y Tocm T

and leave 9/06 and 9/0¢ as they are. These
changes send

Vt.E to V'E - (I/C)";‘O'E,o
and
G XE to VXE + (1/c)E,, X7,

and similarly for B. The operator Vis given by the
usual formula but with «, 7, , and ¢ being the in-
dependent variables for E, and 7, is the unit vector
in the radial direction.

The sources of the field are described by p(¢, 7, 6,
@) -and J(¢, 7, 6, ¢) which are considered known and
do not contain c¢. To expand the source function, we
write

P(t, ¥, 95 (P) = p(u + (T/C)y 7, 9; (P) = p(u + er,7, 0; (P)

=5 TP, (22)

where p stands for p(u, 7, 6, ¢) [from p(¢, 7, 0, @) by
replacement of ¢ by «] and g{®) the nth partial deri-
vative of p with respect to . Similarly,



2358 S.PERSIDES
e 5 (] Theorem 1: There is a sequence of potentials
W7, 0,0) = 24 5= e 23) & andA,,n=0,1,2 ..., such that
Obviously, the coefficients of € in (22) and (23) do _ ~
not contain e (or ¢). Field Egs. (18)-(21) are now E, ==V, +2, 0%~ A0 (35)
© ) . B, =VXA, +A, (X7 36
VE =410 DB + 6,07, (24) " e LR (36)
n0 (we define &, and A_; to be zero).
VXE = €’7’0 XE,— €B,o» (25) Proof: We will prove the theorem by induction.
. In the zeroth approximation, » = 0, Eqs. (30)-(33)
V'B = €B 7, (26) reduce to
o©
Vx B =412 W;J,(n) €l + €79 x B o + €E,, V°E, = 4mp, @37
n=0 °
(27) VX E, =0, (38)
with commas denoting partial derivatives with
respect to u, 7, 6, ¢. This completes the second VB, = 0, (39)
step. We now assume that
o VXB,=0, (40)
E=2 Ee, e o N
7=0 with physically acceptable solution (falling off as
" r-1 for large 7)
B= E Ben 29
n=0 " ’ ( ) Eo = — v¢o, (41)
and replacing E and B in Eqs. (24)-(27), we have, B. =0 (42)
since € is an independent variable, °o-
. N wherel6
1-7! n ~
viE, = 167 LB o7, (30) o = [RTL 000 gy, (43)
VXE,=7%X E,10— B0 (31) Obviously, Eqs. (41) and (42) can be derived from
N (35) and (36) with &, given as above and A; = 0.
VB, =B, 300 (32) Hence, the theorem holds for n = 0.

_ dorn” 1J(" -D

vV xB, +75XB, 10 +E, 10

(33)

forn=0,1,2, ... (we define E_4, B_;,and J® to

be zero). This is a sequence of equations equivalent
to the original field Eqs. (18)-(21). We see that the
(n — 1) th approximation serves as a source (part-

ly) of the nth approximation.

Taking the divergence of (33) (with » replaced by
n + 1), we easily find that

P 4 geJ) = 0 (34)
for n = 0,1, . ... This condition corresponds to
the continuity equation.

B. The Superpotentials

We come now to the fourth step, namely, the solu-
tion of Eqs.(30)-(33). As these equations stand, an
obvious answer is the following: If we know all the
approximations up to and including the (n — 1) th,
then Eqs. (30) and (31) [or Egs. (32) and (33)] deter-
mine uniquely (with the boundary conditions) E, (or
B,) by specifying its divergence and curl.15 How-
ever, we can do better than that because of the
following theorem.

We assume that it holds for a specific n, namely,
that Eqgs.(35) and (36) are true for a fixed n. We
have

Yo X En,O - Bn,O =

Yo XVd, o — VXA,

=V X [@n’o;o - An 0] (44)
and . .
B, 0% = 7'V XA, o= V:(A, o X 7). (49)

Hence, the equations resulting from (31) and (32)
with replacement of n by n + 1 will be satisfied
whatever the choice of ¢,,;, and A ,, is. Hence, &,
and A,,; must be chosen S0 that E,., and B, sat-
isfy Egs. (30) and (33) after replacmg n + 1. This
means that ¢ and A, , must obey the equations

n+l

4”ymlp(m1) @ )
V2'1>m1 = —W + 2@,501 + 2~';’—’-—
— @, 1,00~ WA, 0 t A1 007 (46)
and 24
v X (V X A ) =+ 47y J) _ 2Au,01 _ n,0

n!
+ (V-An,o)'r0 + v(”o‘An,o)

— (A, 1,000 — V&, o + B, 1 0070-  (47)

These equations have always a solution; so this
completes the theorem.



A NEW APPROXIMATION METHOD FOR WAVE THEORIES

Equations (46) and (47) do not specify uniquely &
and A ;. In what follows we assume the gauge con-
dition

VoA, — A, 0T+ 8,00=0 (48)
and we ask from ¢, and A to fall off as 1 at in-
finity. Because of (48), Egs.(46) and (47) reduce to
(replacing » + 1 by »n)

4nynp(m) $ _
V2o = — nf’( +2-210 + 28, 0, (49)
and 4qyn-130r1) A
nYn-Lgn- -1,0
V2A, =~ ——qyr + 2 R0+ 2A, 4 o1

(50)

The above introduced potentials are nothing else
than the expansions of the usual & and A. Equation
(48) corresponds to the Lorentz gauge. In this
gauge $, and A are uniquelyl? determined as the
solutions of Egs. (49) and (50) which have con-
tinuous second derivatives and fall off as 1 for
large r. We will call &, and A, superpotentials
because &, _, and A, contrlbute as sources to ¢,
and A, as tille case 1s for the superpotentials of
the Newtoman gravitational theory introduced by
Chandrasekhar and Lebovitz.18 There is, however,
an essential difference. Although ¢, ; and A _;
are in general of order ™1 for large 7, the com-
binations »1&, ; o + &, ; o1 and 7IA,

+ A, ; o1 are such that the right-hand’ sitles of (49)
and 50’) are of order 3. And exactly because of
this, a solution ¢, = 0(v1),A 0(r1) exists, con-
trary to the superpotentials of Chandrasekhar and
Lebovitz.

At this point, it appears that determination of E ,
B,,®,,and A requires solution of all the approxi-
mations from » = 0 up to » and calculation of inte-
grals over all space. However, the following
theorem simplifies the situation.

Theorem 2: 1f ®, and A, satisfy everywhere
Eqgs. (49) and (50), respectively, and are twice con-
tinuously differentiable and are of order »1 as
v — ©, then

1 . n
® =n_fp<n)ﬁ|_’_%l|idv' (51)
and
A = 1 fJ(n-l)(V— lr—x )y (52)
= m—=1)! Jr—r’]
forn=20,1,2,..

Proof: We can verify by direct substitution
(after some calculations) that , and A , as given
by (51) and (52), satisfy (49) and (50). Smce the
solutions of these equations are unique under the
assumptions of Theorem 2,17 Eqs.(51) and (52)
give just these solutions.19

This theorem enables us to calculate the super-
potentials for a fixed » directly from the source
function. Then E, and B, can be derived from Eqgs.
(35) and (36).
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C. The Radiation Zone

Far from the source, we can expand the field in
powers of »~1 and write

X, =X1r1 +0(r-2), (53)
where X stands forE_,B,,&,,or A, . Since V act-

ting on X always glves terms of order r~2, we
have from (48)

A, 10— %,1,0= 002), (54)
and from (35) and (36), we conclude that

El = (Al o X %) X 7 (55)

Bl =Al; o X7%. (56)

Since A} = 0, El and B} can be nonzero only for
n= 2,
Calling o

cosy = 7,7y’ (5T
we have

(r—lr—rx|) _r’mcosry 0(—1~>, (58)

r — 1’| Y 72

and from (52),

Al = iy [0 Dyl cosnlyay.  (59)

Using the addition theorem for spherical harmonics,
we get

costy = 2, -2‘—?—5% Y, X6, 9")Y,,{0, ¢), (60)
Iym
where20
=+ DY ln~HMn+1+ 1)1 (61)

for » — ! even nonnegative and otherwise zero.
Combining (59) and (60), we find A, in the radiation
zone to be

—(n—mzzzum(" ¢)

.jrln—lJ(n—l)Ylm*(G', @)dv'. (62)

The above expression for Al and Eqgs. (55) and (56)
determine completely the radiation field in terms
of the source.

For n = 2 a detailed calculation gives

B} =D o0 X 7, (63)
where
D= [rpdv’; (64)

in other words, we have the dipole radiation.
For n = 3 we have
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B} = (m oo X %) X 75 — (1/6)79 X Q, g0, (65)

where the vector Q has components along the x, y, 2
axesg?1

a = Zﬂ) QaB'(;O)B’ a,8=1,2,3, (66)

d Qd.B = f(sxaxﬂ - Tzﬁas)pdv, (67)
an

m = }[r’ x Jav, (68)

namely, the magnetic dipole and electric quadru-
pole radiation.22

4. THE VALIDITY OF THE METHOD

In the E.I.LH. and post-Newtonian methods,7~11 the
éxpansion in powers of ¢-1 has been based essen-
tially on the assumption of slow motion and not too
strong fields. Accordingly, the question is raised
here whether there are similar limitations for the
present method. Remarkably enough the answer is
negative. In other words, there is no limit on how
close to the exact solution we can get. Although
Eqs.(63) and (65) are the dipole and quadrupole dis-
tributions only in the slow motion (wavelength
large compared to the dimensions of the source)
limit, the higher approximations (rz > 3) will con-
tribute more terms to the dipole and quadrupole
radiation, so that at the limit » — © we have the
exact multipoles.

To be more precise, let p(¢, r) and J(¢, 1) represent
a bounded source and let the potentials &¢, r) and
A(t, r) of the resulting electromagnetic field be
given by the well-known retarded integrals

[o(t, )]

K1) = [~ 4V’ (69)
and - 3,
Alt,r) = jL[—r—)Td ., (70)

This is the usual approach in electrodynamics.

If we follow the method of this paper and calculate
¢, and A, from (51) and (52), then

()
Q(ty r) = Z; (I)nE" (71)
n=0
and
A(t,x) = 25 A en. (72)
7=0
Hence tke two series,
00 o
2 8,er and 2 A en (73)
n=0 7=0

converge at a point (¢, 7) in the same way (uni- (73)
formly or otherwise) as the integrals (69) and (70)
do (or diverge if the integrals (69) and (70) do so).
In other words, the knowledge of ¢, and A, for all
n is equivalent to the knowledge of the retarded
potentials. The proof of (71) and (72) is straight-
forward, i.e.,
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é@nen _ ;i;),n_fp(n)(u o |’:;,"'|)"dV'
_ (plut+er—elr—r'l,r) o,
=J Tr—r7] av
plt—clr—r'[,r) ..,
=J T AV
t,
_fp( r)retdv' =% (t,1) (14)

and similarly for A(¢, r).

Since the series (73) converge, we can represent

@ (t,r) and A(¢, r) by taking a finite number of
terms in (71) and (72). If we have slow motion

(v < ¢), the first approximations are enough. If we
have large velocities or strong fields, we have to
take more terms.

In general relativity, difficulties will arise as a
result of the nonlinearity of the original field equa-
tions. In fact, we do not expect {o have general
formulas for any » as in (51) and (52) or theorems
similar to the theorems of Sec. 3, and the question
of convergence of the expansion cannot be
answered rigorously.

5. CONCLUSION

From the application of the new method in electro-
dynamics, it is reasonable to claim at this point
that the presented method constitutes an alterna-
tive way to the usual procedures in attacking elec-
tromagnetic problems. Moreover, it can be said
that this method is preferable when a Fourier ana-
lysis of the source is difficult or when the usual
integrals involving Bessel functions are too com-
plicated compared to those of Egs. (51) and (52).

Since the method does not depend on the original
field equations, we can use it to study the field
produced by a bounded source in any theory which
predicts wave phenomena in a locally Minkowskian
space—-time. In the wave theories examined in this
paper (scalar waves and electrodynamics), it is
perfectly reasonable and proper to specify first
the sources and then attempt to solve for the
fields. However, such a procedure is inappropriate
for general relativity. Fortunately, the application
of the introduced method requires only the form of
the energy-momentum tensor (as for example for
a source of perfect fluid) and not the exact be-
havior of the source. In this respect, the method
is similar to the E.I.H. and post-Newtonian expan-
sions.

In Sec. 3C, we demonstrated the procedure through
which the field in the far zone can be related to
the source. The expansion in powers of 1 holds
only in the far zone and, consequently, must follow
the expansion in powers of c¢~1 which holds every-
where. In this respect, the present method pro-
vides the studies of the far zonel™6 (which employ
expansion in powers of »~1 only) with the missing
part: the tools to calculate the field in the far zone
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(the news function, the Newman~Penrose constants,
etc.) in terms of the source.

In a future paper, we will use the method in
general relativity to relate the gravitational radia-
tion to the source by giving an explicit expression
of the news function! in terms of the density, pres-
sure, and other characteristics of the source. This
could open the way for the definition of gravita-
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tional multipole moments in terms of the source
and the physical interpretation of the Newman-
Penrose constants.

ACKNOWLEDGMENTS

I wish to thank Dr. Robert Geroch and the referee
for suggesting some improvements in the presen-
tation of the paper.

Supported in part by the National Science Foundation (Grant

No. GP-20033) and by the Center for Relativity Theory, Uni-

versgity of Texas at Austin.

1 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc.

Roy. Soc. (London) A 269, 21 (1962).

E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 4,

998 (1962).

R. K. Sachs, Proc. Roy. Soc. (London) A 270, 103 (1962).

4 E.T.Newman and T. W. J, Unti, J. Math. Phys. 3, 891 (1962).

E.T. Newman and R. Penrose, Proc. Roy. Soc. (London) A 305,

175 (1968).

8. Persides, Proc. Roy. Soc. (London) A 320, 349 (1970).

See, for example, 1. Infeld and J. Plebanski, Motion and Rela-

tivity (Pergamon, London, 1960).

8 V.Fock, The Theory of Space, Time and Gravitation
(Pergamon, London, 1964), 2nd ed.

9 8. Chandrasekhar, Astrophys. J. 142, 1488 (1965).

10 g, Chandrasekhar and F. Paul Esposito, Astrophys. J. 160,
153 (1970).

11 W, Burke, J.Math. Phys. 12, 401 (1971).

12 J. D. Jackson, Classical Electrodynamics (John Wiley, New

York, 1962), p. 540. The notation of this reference will be

followed concerning the Bessel functions, spherical har-

monics, and generally the wave equation and the electro-

magnetic field,

N

w

&0

-~ o

131n coordi.nates u, 7,8, (p, the flat- space metric b, i8 by =
€2,by; = i =— 72 8in26 with the remain-
ing b w equal to zero (e = c ? In general relativity, asym-
ptotically null-spherical coordinates can be used (see Ref. 6).

14 1t is assumed that the source functions f (¢, r) and later
p(t,r) and J(¢, ) do not contain c. Consequently, the expan-
sion procedure is clearly demonstrated by (22).

15 G. A. Korn and T. M. Korn, Mathematical Handbook for Scien-
tists and Engineers (McGraw-Hill, New York, 1968), 2nd ed.,
p. 166.

16 Integrals with unspecified limits are taken over that part of
space in which the integrand is not zero.

17 See, for example, Ref. 15, p. 524.

18 5, Chandrasekhar and N. Lebovitz, Astrophys. J. 135, 238 (1962).

19 Again, the similarity is pointed out of ¢, and A, as expressed
by Egs. (51) and (52), with the superpotentials of the New-
tonian Gravitation.

20 Q. D. Kellog, Foundations of Potential Theory (Dover, New
York, 1953), p. 132.

21 See Ref. 12, p. 275. )

22 1t must be emphasized that (63) and (65) give the dipole and
quadrupole distribution only in the long wavelength approxi-
mation. The complete moments require the calculation of
Al for all n (see also Sec. 4).

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 12, NUMBER 11 NOVEMBER 1971

3 F, Representations for Spin Projection Coefficients

Koichi Mano

Air Force Cambridge Research Laboratories, Bedford, Massachusetts 01730
(Received 18 February 1971)

It is shown that a variety of equivalent representations for the spin projection coefficient, given in terms
of the generalized hypergeometric function with unit argument, ;F,[1], can be generated by applying

Whipple's theory to the function.

I. INTRODUCTION

Apparently dissimilar representations for the spin
projection coefficient (SPC) were obtained by
Sasaki and Ohno! and by Smith.2 Equality of these
representations was proved by Smith and Harris3
by rewriting them in terms of an ;F, series, after
applying certain identities for binomial coefficients
to the Smith representation.

The purpose of this paper is to show in some
detail? that an application of the 5 F, theory de-
veloped by Whipple5 gives a variety of equivalent
3F forms for SPC such that the equality men-
tioned above follows directly from the theory.

II. SOME ,F, FORMS FOR SPC
The SPC that may be defined by3

C,(8, M,n)
; 1 ~S+M1+S+M;z
= (~ 1)3(2S + 1)]0 ZFI[ & ’]

(1)

x zi(1 — z)n=7*Mgz

can be calculated by expanding the ,F; and evalua-
ting the first Eulerian integral that arises there,
in the following form:

. 28 +1 [+ -1
1 - (— = -
Cl=¢ 1)’n+M+1( jM)
< .F —S+M,1+S+M,j+1;1]
342 1,n+M+2 s

n—j +M+1>0. 2)
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(the news function, the Newman~Penrose constants,
etc.) in terms of the source.

In a future paper, we will use the method in
general relativity to relate the gravitational radia-
tion to the source by giving an explicit expression
of the news function! in terms of the density, pres-
sure, and other characteristics of the source. This
could open the way for the definition of gravita-

2361

tional multipole moments in terms of the source
and the physical interpretation of the Newman-
Penrose constants.
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Our concern in this section is to point out that SPC
may be represented by many other forms of 5 F,.
Thus, the application to Eq. (1) of the two-term
relations

oFyla,b5¢;2] = (1 — 2)eab, Fy[c — a, ¢ — b; ¢; 2](3)

] ()

witha=—S+Mb =1+ S+ M,and ¢ = 1,gives
rise, respectively, to®

 1)i(2s + 1)( ; M>~'1

n—M+1

= (1 — z)‘“zFl[a, C — b c,

C2 =
S—M,1+S—-M,j +1;1
X3F2[ 1n-—-M+2, :\
n—ji—M+1>0,
ca_ & 1)1'(2S+1)(n+S)"1
T n+S+1 j

S+ M~—S— M,
X3F2[ 1]—n——S

n—j +M+1>0.

(5)

]+11]

(6)

The re-expressed form of Eq. (6) [Eq. (19) of Ref.
3]

.(:__)j(is._‘f_l_)j‘_,( 1)k (S M) (S + M)(” + S) -1

n+S+1 k j+k

(7

will be referred to here as the Smith representa-
tion for SPC. In passing, we note that the sym-
metry of C(S, M, n) in M can be made explicit by
the use of ﬁq (3)
Similarly, the use of three-term relations,? such
as

F Ez,b;] TOre—a) .,
2¥1| ¢ |TTO(c—a)
a,l——c+a;%
XZFI[ 1-b +a ]*‘““’b)’
aj

(28 + 1)S + M) n—j — M)!

— 1)HI(S — M+ k + D2

KOICHI MANO

whose second term on the right-hand side
vanishes, leads to

C DFSM2RS + 1) n—~j + M)IS— M + j)!

Cc4 =
S+MIS—MIn +S+1)!

— S+ M~S+M—n—S—1;1
X
3F2[ 25— j~S+M ’]’

n—ji+M+1>0. (8)

Further, we note that some other means help us
augment the number of 3F, forms for SPC. Thus,
direct rewriting of Egs. (22), (26), and (27) of Ref.
3 produces, respectively,

o5 _ S +Mi— M) 5 M< — M\
=T29) i —9)! j j
N F[1+S——M,1+S—M,—n+8;
372 1+S—~M—3j28 +2
S—M—j +1>0,

q,
(9)

e e () 5

1+S—-—M,—-n+8,—j1
X 3F2[—-n~M,’1+s—3w—'j]’

S—M—j +1>0, (10)
(— 1)J(2S + 1)n + M)1(n — M)!
n+S +1)1n— S)!
—S\(n + M\"1(n— M\"1
8 ( i )( j > ( j >
—-S—M,~S+M,—3j1
><31'“2[1,:1—3—]'“ ! ]
n—S—j +1>0, (11)

Also, in general, we may expect to obtain new
forms by summing in reverse order8 the finite
3F5 terms in C's found above.

At this point, it is appropriate to rewrite the
Sasaki~Ohno representation [Eq. (3. 17) of Ref. 1]

(12)

(S — M)!

in terms of a 3 F,, which can readily be found to
coincide with C5.

In the foregoing, we indicated that the SPC,

(S, M,n), can be represented by various forms
ofj F,. Their equivalence is evident by retracing
the ways through which they were found. Here, let
us suppose instead that we are interested in prov-
ing the equivalence by regarding them as just
given to us without reference to their origins. It
can be done by utilizing appropriate two- and
three-term 3 F, relations such as?

?k!l"(S—M+k—j + 1)I'(n —~

S—E+1T(2S+ % +2)

r

a,b,c; 1
3F2['eif’]

I'lf,s e—a,e—b,c1
=I‘|f—c,s+c|3F2[ e,s+c ’]’ (13)

where T'a,b,...]=T[a]'p]:-- ands=e +f—a
— b — c. In proving the equality of a pair of C's,
we may apply these relations in a variety of ways
to obtain many multistep routes that connect the
pair. In view of the fact that ;F,'s thus obtained
are all equivalent to each other, the procedurge



3F2

may lead to the possibility of finding an increas-
ingly large number of 3 F, forms for SPC, when

combined with the symmetry of C,(S, M, n) in M

as mentioned earlier.

Questions then arise as to whether one can make

any statement regarding the number of equivalent
3Fy forms that can represent C,(S, M, n) and also

as to a systematic method, if any, by wmch these

forms can be exhausted. A key to the solution of

this problem can be found in Whipple's theory for
3F5 that will be described next.

IOl WHIPPLE'S THEORY

In order to systematically study the numerous
two- and three-term 3 F, relations found by
Thomae, 10 such as those mentioned in Ref. 9,
Whipple mtroduced functions F, and F, as follows.

Let7,,7 =0,1,...,5, be numbers such that
287 =0, and o and B are associated with them

byozl,,m_2+rl +7r,+r,and g, =1+7,-—7,.
The functions are then defined by
1
F F avwxiav )avwz’
(45 0, ) = o xyz’Buusﬁ )3 2[ ’?wu ]
(14)
1 O yogy Aoz y Xy sl
E (2; = uysy Xuzxr Xyxys
n(u’ 2, w) (@03 Buv > Buw 3F2l: uvsPyuw ].
(15)
Here {u,v,w} and {x,y, 2} are cosets of each
other relative to the set {i | 0 =i =< 5}. The F,

function is derived from the corresponding E, by
changing the signs of all 's. Through permutatmn
of suffixes u, v, and w, we can find 60 F,'s and 60
E 's.

Ifwe set a 45 =a,0545 =0,0345 =C,849 =6,

Bso =f,and ay53 = s, 1tcanbe shownthat
?0 4,5) 3F2[aa b,c;e,f;1] and all of the F,'s

and F, 's are expresmble in appropriate , F,' s.

Whipple showed that ten of F,(x; v, w) with the
same « are all equal and hence may be denoted
F,(u), and similarly for F, (u).

When c, say, is a nonpositive integer — m, Whipple
showed that the following relations obtain:
T(oty23, @134, 2325)F,(0)

= Tlaggs; agaq) @o25)F,(1)

= Tagy3, Xp14s %915)F,(2)

=~ 1)"T(ay 53, @g23, ¥913)F, (3)

= (= 1)"Tay54, @g2q, @o14) F,(4)

= D7T(ayzs, ags5 ¥o15)Fy (5). (16)

This means that altogether 60 of 3 F,'s in the col-
lection of F,(0), F,(1), F,(2), F,(3), 1§ﬁ4), and E(5),
called Set I are mutualfy proportmnal By re-
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versing the signs of 's in Eq. (16), we obtain
similar relations in which F,(0), F, (1), F,(2), F,
F,(4), and F,(5), called Set II are involved.

Based on Whipple's theory, let us list 120 of the
3F,'s, starting with F,(0; 4, 5) « ,F,(a,b,c;e, f;1]
witha=1+S+M B=j+1, c=—-8S+M, ¢=
l,andf=n+ M+ 2. An mspectlon of the list
reveals that F(0 2,4) = F,(40,2) « C2, F,(0; 4, 5)

F,(4;0,5) «'CL, £, (4,0,9) = £,(0;3, 4) <C7,
F&01) = F,(5;1,4) « c8, E,0;1,4) = F,4:0,1)
« C3, F,(1;3, 5)0:05 andF(3 1, 2)occ4

For these representative C's, we observe that (i)
Cl = C2 =C7 = F,(0), (ii) C = C3 = C4 from
proportionality of members of Set I, and (iii) C3 =
C5 = C6 from the corresponding property for Set
O. The fact that C1, C2,and C7 appear concur-
rently in Sets I and II as F,(0) and F,(4), respec-
tively, for example, leads us to conclude that 120
3F5's that correspond to the totality of Sets 1 and
II are in fact all proportional to each other.

»(3),

This shows that one can generate a large number
of equivalent 5 F, forms for SPC by starting from
C1 that follows dxrectly from Eq. (1). These
forms include in particular C5 and C3 that cor-
respond to the Sasaki~Ohno and the Smith repre-~
sentations, respectively. In the light of Whipple's
theory, then, the equivalence of these representa-
tions is an immediate consequence of the theory.

Note that the present case of integer values for
parameters a, b, c, ¢,and f represents a deviation
from the general conditions assumed for the
Whipple's theory. A consequence of this is that
some of the 120 ,F,'s are degenerate [e.g.,
F,(0;2,4) = F,(4;0, 2)] or may not be defined,
resultmg in reductlon of the total number of dif-
ferent 5 F, forms for SPC.

Finally, we will make two remarks. The first is
that each C is valid under a certain condition,
suchasn—j + M + 1> 0 for C1. Equivalence of
a pair of C's implies, then, that it holds in the
overlapping portion of the validity region for the.
two. The second refers to the utility of selecting
the most convenient form for actual evaluation of
SPC. In particular, selecting one with the form
3F5l0,...5.. ;1) or 3Fya,...;a,...;1],if any,
will obviously be desirable. In the latter case, it
reduces to a , F, for which Gauss' or Vander-
monde's theorem may be available.

IV. CONCLUSION

It has been shown that numerous equivalent ,F,
forms for SPC can be generated by the use of
Whipple's theory. Included are those correspond-
ing to the Sasaki-Ohno and the Smith representa-
tions. It has been shown, therefore, that the equi-
valence of the two representations is an immediate
consequence of Whipple's theory, once they are
reexpressed in terms of 3 F,.
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The axioms of measurements introduced by Ludwig are formulated and studied in the framework of
operator algebras. It is shown that a concrete C*-algebra with identity satisfies the axiom of sensitivity
increase of effects if and only if it is a von Neumann algebra; although a von Neumann algebra satisfies
the axiom of decompossability of ensembles, however, the axiom of components of the mixtures of two
ensembles is true only if a von Neumann algebra is a factor of type [ (r» < + ®), It is also verified that
the set of decision effects, which is proved to be a subset of projectiong of a von Neumann algebra, has
similar lattice structure of quantum mechanics, and its connection with quantum logic in the sense of

Varadarjan 'is also figured out.

INTRODUCTION

The most remarkable structure of quantum mech-
anics is described by the Hilbert space, which has
been widely studied and developed by both mathe-
maticians and physicists to understand this funda-
mental structure of the whole theory. In a series
of papers, Ludwig~5 introduced, from the physical
point of view, an axiomatic system of measure-
ments to characterize the structure of Hilbert
space in quantum theory. Instead of observables
and sfates in quantum mechanics, effects and en-
sembles, which are more general and abstract but
still physically interpretable, have been assumed
as starting point of the whole theory. From some
physically heuristic aspects, a system of axioms of
measurements is established in terms of effects
and ensembles.1>2 Some consequences from this
axiomatic system have been investigated,in particu-
lar, a similar lattice structure of quantum system
has been figured out,4

In this paper we shall study and formulate Ludwig's
axioms in terms of operator algebras, especially,
C*-algebra and von Neumann algebra, which plays
an important role in the algebraic approach of
quantum field theory, quantum mechanics, and sta-
tistical physics.

Qur first task is to investigate the validity of these
axioms for operator algebras. We have shown that
a concrete C*-algebra with identity satisfies the
axiom of sensitivity increase of effects if and only
if it is a von Neumann algebra; the axiom of decom ~
possability and relationships of effects holds for

a von Neumann algebra; and the axiom of the com-
ponents of the mixture of two ensembles is true
only for a finite degree of freedom.

Like Ludwig,1,2 we have also shown the existence
of decision effects, whi¢h are now projections of a
von Neumann algebra. We have proved that the set
of decision effects is an orthocomplemented, com-
pleted lattice satisfying orthomodular condition.
Furthermore,we find that the set of decision effects
is a logic in the sense of Varadarajan, and it can
be a standard logic if a von Neumann algebra is
discrete and finite.

Indeed, Ludwig's axioms are only restricted in the
case of finite-dimensional Hilbert space. Hence,a
further development of this theory to the infinite-
dimensional case will be more interesting. This
work may be considered as a tentative approach in
this direction.

InSec. 1 the axioms of measurements will be given
only in mathematical forms, without any physical
interpretations, which can be found very detailed
in Refs.1 and 2. Following that, Axioms 2~4 will
be formulated in terms of operators and studied
separately in the subsequent sections. Section 2 is
the axiom of sensitivity increase of effects, and its
validity for a concrete C*-algebra (Theorem 2.1).
Section 3 deals with the decision effects, its lattice
structure is given (Theorem 3. 10), and its con-
nection with Varadarajan's approachis investigated
(Theorem 3.12). Axiom 3 is studied in Sec.4,a
modified form is proposed (Axiom 3'), which will be
more essential for a C*-algebra. Section 5 deals
with Axiom 4 and some properties of exiremal sets
(see definition in Sec. 1) are given. The main con-
sequence of this axiom is the modularity of the
standard logic (Theorem 5. 6), which implies that
this axiom is true only for the case of a finite de-
gree of freedom. InSec. 8, we give some examples
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has been figured out,4

In this paper we shall study and formulate Ludwig's
axioms in terms of operator algebras, especially,
C*-algebra and von Neumann algebra, which plays
an important role in the algebraic approach of
quantum field theory, quantum mechanics, and sta-
tistical physics.

Qur first task is to investigate the validity of these
axioms for operator algebras. We have shown that
a concrete C*-algebra with identity satisfies the
axiom of sensitivity increase of effects if and only
if it is a von Neumann algebra; the axiom of decom ~
possability and relationships of effects holds for

a von Neumann algebra; and the axiom of the com-
ponents of the mixture of two ensembles is true
only for a finite degree of freedom.

Like Ludwig,1,2 we have also shown the existence
of decision effects, whi¢h are now projections of a
von Neumann algebra. We have proved that the set
of decision effects is an orthocomplemented, com-
pleted lattice satisfying orthomodular condition.
Furthermore,we find that the set of decision effects
is a logic in the sense of Varadarajan, and it can
be a standard logic if a von Neumann algebra is
discrete and finite.

Indeed, Ludwig's axioms are only restricted in the
case of finite-dimensional Hilbert space. Hence,a
further development of this theory to the infinite-
dimensional case will be more interesting. This
work may be considered as a tentative approach in
this direction.

InSec. 1 the axioms of measurements will be given
only in mathematical forms, without any physical
interpretations, which can be found very detailed
in Refs.1 and 2. Following that, Axioms 2~4 will
be formulated in terms of operators and studied
separately in the subsequent sections. Section 2 is
the axiom of sensitivity increase of effects, and its
validity for a concrete C*-algebra (Theorem 2.1).
Section 3 deals with the decision effects, its lattice
structure is given (Theorem 3. 10), and its con-
nection with Varadarajan's approachis investigated
(Theorem 3.12). Axiom 3 is studied in Sec.4,a
modified form is proposed (Axiom 3'), which will be
more essential for a C*-algebra. Section 5 deals
with Axiom 4 and some properties of exiremal sets
(see definition in Sec. 1) are given. The main con-
sequence of this axiom is the modularity of the
standard logic (Theorem 5. 6), which implies that
this axiom is true only for the case of a finite de-
gree of freedom. InSec. 8, we give some examples
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of operator algebras in mathematical physics; some
of them satisfy Axiom 2, but some of them do not.
1. LUDWIG'S AXIOMS OF MEASUREMENT

We give a brief summary of Ludwig's axioms with-
out any specification about their physical back-
grounds to which we refer.1,2

Let K and L be the sets of ensembles and effects,
respectively. A map u of K X L into [0, 1] is de-
fined such that

Axiom 1:
u(Vy, F) = w(V,, F) for all F € L implies V;

(a)
(b)
(c)

(@)

= V,.
WV, Fy) = WV, F,) for all V € K implies Fy
There exists an element 0 € L such that
u(v,0) =0 for all V €K,

There exists an element F such that WV, F) =
lforallV ek,

Let n
X(F) = Zi a,’“’(Vi ;F)

1=

for V; € K, with a; e R,then X is a linear functional
of L. The real vector space generated by all X of
L is denoted by B. K is a subset of B by setting
X(F) = w(V, F). B is a normed vector space,with a
norm defined as

Xl = sup{|X(F)|;F €L} forall X eB.

Then p can be extended to B X L by setting X(F) =
WX, F). For a fixed F, u(X,F) = X(F) can be con-
sidered as a linear functional of B;hence L can be
identified as a subset of the dual space B’ of B,
The norm-closed convex hull of K in B is denoted
by X, and the norm-closed convex hull of L in B’
is denoted by £. B’ is a partially ordered vector
space with positive cone C = {Y e B/,u(V,Y) = 0
for all V € X}.

Furthermore, we denoteby Ly(A) and K,(4) the anni-
hilators of 4 & X and £ C &£, respectively, i.e.,

Lo(k) ={F € £; (V,F) = 0 for all V € A},
Ko@) ={VeX;uV,F)=0for all F € {}.

In particular, the annihilator of a singleton {V}
[resp.,{F}], is denoted by L, (V) [resp., K,(F)].

Then the first axiom of measurement can be formu-
lated.

Axiom 2 (the sensitivity increase of effects):
For any F,F, € £ there exists an effect F; € £
such that F3 = F,, F3 = F,,and K(F3) 2 K(F,)
NKy(F,).

In Ref. 4 this axiom has been developed, for tech-
nical reasons, to an additional part. However, the
above portion of this axiom is more interesting for
our present study.

Given a nonempty convex subset M of B’, a non-
empty convex subset S of M is called an extremal
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set if for Y,,Y,,Y;€ M,Y; =mY, +(1 —m)Y,,
with m € (0,1);then Y, € S implies Y,, Y, € S.
For each V € X the norm closure of the extremal
set generated by V is denoted by C(V). Indeed,C(V)
is the smallest norm-closed extremal set contain-
ing V. C(V) has its very interesting physical back-
grounds.Z The next axiom of measurements con-
cerns C(V).

Axiom 3 (decompossability and relationship of
effects): Lg(V,) = Ly(V,) implies C(Vy) = C(V,)
forall vy, V,e X

The last axiom of measurements is formulated
about the mixture of two ensembles.

Axiom 4 (the components of the mixture of two
ensembles): Forall Vy,V, Vie X, C(V4) N
C(Vy)=@,C(zV, +3V,)2C(Vy) = P,and
d(V,,V,) =1impliesC(z V, +z V3)NC(V,) = &
where d(V,, V,) = sup{|(V3, F) — u(V,, F);

Fe &},

One of the most important consequences from these
axioms is that each annihilator L,(&) has a unique
maximal element E, called the dectsion effect! The
set of all decision effects forms a completed lattice
with an orthocomplementation, whichis the charac-
teristic structure in quantum mechanics. Moreover,
each C(V) is lattice-theoretically isomorphic to a
decision effect E.3 Therefore, Axiom 4 can be for-
mulated in a lattice-theoretical version. (In this
paper the lattice-theoretical intersection and union
will be denoted by A, Vv; and N, U denote the set-
theoretical intersection and union.)

Axiom 4': aNb=0,c=<aV b, alc, and
(@aV c¢) A b =0 implies ¢ = 0, where C(V,) = q,
C(Vy) =b, C(V3) =¢, and d(V,,V,) = 1is equiva-
lenttoa L c,i.e.,aandcareorthogonal. A detailed
discussion of this axiom in lattice form is referred
to in Ref, 4.

We shall use this lattice form to study its validity
for operator algebras in Sec. 5.

It is easy to verify that Axiom 1 is true for C*-
algebras and von Neumann algebras whenever £
and X are properly chosen, Hence, we start to study
Axiom 2 in Sec.2 and other axioms in the subse-
quent sections.

2. AXIOM OF SENSITIVITY INCREASE OF
EFFECTS

Given a C*-algebra % with identity on a Hilbert
space . Let %A+ and %, be the positive cone and
unit sphere of ¥, respectively. The von Neumann
algebra generated by % will be denoted by R.

In this section we assume the set of effects £ =
A+ N %, and the set of ensembles X is the set of
vector states of %. Hence, each ensemble V € X
will be denoted by w with ||l = 1,and w(F) =
(Fx,x) for F € £ and x € . Asin Sec.1, L,(w)
[resp., L, (4)] denotes the annihilator of w € X
[resp., k# € K] consisting of all those effects in £
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which vanish on w [resp., each w € &]. K, (F) and
K (1) denote the annihilators of F e £ andl C &£,
respectively.

Axiom 2: For any F,,F, € £, there exists
Fzed suchthat F;=F,, F3 = F,, and K(F4) 2
Ko(F,) N Ky(F,).

This axiom has exactly the same form as in Sec.1;
however, £ and X are now visualized as positive
operators of unit sphere and vector state of 9,
respectively.

We call that a C*-algebra with identity on a
Hilbert space 9, satisfies the axiom of sensitivity
increase of effects whenever Axiom 2 holds for
£.

The main result of this section is formulated as
the following theorem.

Theorem 2.1: A C*-algebra % with identity
on a Hilbert space $ satisfies the axiom of sen-
sitivity increase of effects if and only if % = @,
the von Neumann algebra generated by %.

We need some preliminary lemmas to show the
necessary condition of the theorem. The first
lemma is an equivalent form of Axiom 2.

Lemma 2.2 (Ludwig): £ satisfies Axiom
2 if and only if Ly(4) for 2 S X is a bounded,
monotone-increasing directed sequence of £.

Proof (See Ref. 4.).
We shall show that each bounded, monotone-in-
creasing directed sequence of £ appears in this
way, whenever Axiom 2 holds for £.

Lemma 2.3: For each F € £, K, (F) is non-
empty if £ satisfies Axiom 2.

Proof: Suppose that Ky(F,) = Oand Ky(F,) = ©
for some F,,F, € £, Then by the given assump-
tion, there exists F; € £ such that F; = F,,
F3=F,, and Ky(Fj3) 2 Ko(Fy) N Ky(F,) = Ky(F,),
which implies F3 =< F,.

Lemma 2.4: Let § be a bounded, monotone-
increasing sequence of £. If K,(F) = @ for each
F e £,then § C L (4) for some nonvoid subset &
of X.

Proof: Since ¥ is bounded, there is an effect
F, e £ such that F; = F for all F € ¥. Hence
Ko(Fo) S Ky(F) for all F € §. Let & = K (F),
which is nonempty by assumption. Then, to each
w € & we have w(F) = 0 for all F € §,because
w € Ky(F). Hence § C L (k) for some nonvoid
subset 4 of X.

Lemma 2. 5: Let §F be a bounded, monotone-
increasing directed sequence of £. If §F & LO(/\’)
for some nonvoid 4 C X, then the least upper bound
(l.u.b.) of F lies in .
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Proof: The existence of l.u.b. F, of § is well
known; indeed, F, belongs to the strong-closure of
¥ (Ref.7, p. 331). Since § C Ly(4), F is also in
the strong-closure (hence weak-closure) of LO(/e).
But, L (%) is weakly closed, wnerefore F is in
Ly(k), and hence in 9.

We are now able to prove Theorem 2.1.

Proof of Theorem 2.1: Let F be a bounded,
monotone-increasing directed sequence of self-
adjoint elements of 9. Without loss of generality,
we may assume F ¢ £;viz., 0 < F < [ for each
Febd,

If we consider ¥ is a subset of its double dual 9**,
which is a von Neumann algebra,8 then § con-
verges strongly to its L.u.b.F,. Since % satisfies
the axiom of sensitivity increase of effects, it
follows from Lemmas 2.3-2.5 that F, € %.
Therefore, the strong-limit of ¥ lies in 9, then

9 = R from Ref. 9.

Conversely, if = ®, let F,, F, € £, with corres-
ponding spectral projections P,,P,. If we assume
that w, (F;) = 0 [resp., wy(Fz) = 0] for each x € P9,
(resp.,y € P9). Let P§= P;H N Pyh,then P € 9,
infact P € £, since P;,P,e A and P, A P, € 9.
Therefore, there exists F; € £,e.g.,F; =1~ P,
such that F, = F,, F, = F, and w,(Fy) =

w (F,) = w,(F;) = 0 for each x € P$; and the proof
of theorem is complete,

3. THE LATTICE STRUCTURE OF DECISION
EFFECTS

In Sec.2 we have seen that the annihilator of p € X
(resp., k € X) Ly(¢) [resp., Ly(k)] is a directed
set whenever it satisfies the axiom of sensitivity
increase of effects. It has been shown that in each
directed set there exists a maximum element,
which is called the decision effect.l The set of de-
cision effect has very interesting lattice struc-
tures,4 which fulfill the basic structures of quan-
tum theory. This is the most attractive aspect in
the whole theory of Ludwig's axioms. In this sec-
tion we shall study decision effects in terms of
operator algebra. We shall show that the decision
effect is identified to the projection of a von Neu-
mann algebra, and the set of all decision effects
has also similar lattice structure which one can
expect for a quantum system. At the end of this
section we shall show some connection between
decision effects and Varadarajan's approach of
quantum logic.6

From Theorem 2.1, we may consider only the
case of von Neumann algebra ®. Hence, in this
section we assume that the set of effects £ is the
positive portion of unit sphere of ®,i.e.,£ =

®* N @&,, and the set of ensembles X is the set of
all positive normal states of ®,i.e., X = ®f n ,
where ®, is the predual of ®, and Q the set of all
normalized positive linear functional of ®, for
which ll¢ll = 1 if ¢ € Q. We shall use hereafter
[FIM] to denote the closure of the set of vectors
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{Tx;T € F,x € M}, where § is a family of opera-
tors of @ and 9N a set of vectors in H. We denote
by this same notation the orthogonal projection on
that subspace. As usual way, ®(9) denotes the set
of all bounded operators on 9

As in Sec. 1, let Ly(4) be the annihilator of a sub-
set % of X,i.e., Lo(R) ={T € £;¢(T) = 0 for all
¢ €k };and for a singleton A = {4}, we denote by
L(¢) the annihilator of {¢}.

For each ¢ € X, there is a least projection Ey € £,
called the support of ¢, such that L(¢) = R — E )
and ¢(E,) = ¢(I) =1 (Ref.7,p.61). Let E=1— E,,
then E is a projection of ®, with R E = Ly(¢). For
any T € Ly(¢),one has T = TE, hence T*= (TE)*=
ET,thus T = TE = ET, which implies E = T for all
T € Ly(¢).10 It is easy to see that E € Ly(¢).
Hence, we have verified that there is a maximum
element in L(¢).

Lemma 3.1: For any ¢ € K,if E, is the
support of ¢, then E =1 — E, is the maximum ele-
ment of Ly(¢).

To any arbitrary subset 4 of &, one also can show
the existence of a maximum element in L ().

Lemma 3.2: For any subset 4 of X, there
exists a maximum projection E in L(A).

Proof: We follow a similar proof given in Ref,
7,p.61. First, we note that L (&) is ultraweakly
closed, since it is weakly clgsed in ®,. To each
¢ € k, there is 4 € , with 2, lxll2 < + o, such

that ¢ = 2, w,,. Hence, foreach T e Ly(k), we have
i1
5(T2) = il w, (T2) = i°z°; ITx )2 < 5 IT2/2e )2
i= =1 i1
=£=Zi (Tx;, %) = ¢(T) = G5

And, by the Cauchy-Schwartz inequality,
[pA*T) 2 < [p(A*A)| |p(T2)| =0

for each A € ®], T € Ly(A),and ¢ € A. Therefore,
L(4) is an ultraweakly closed left ideal of Q.
Moreover, since L (k) is self-adjoint L,(4) is also
a two-side ideal of ®. From Ref. 7, p. 45, there
exists a projection E € ® such that L(k) = RE
and T = TE = ET for T € Ly(k). Hence, E = T for
all T € Ly(k).10

On the other hand,
LA}=n L
0() ‘1’,-5/* O(¢i)’

and from Lemma 3.1, L,(¢;) = QE,, with the
maximum element E € L(¢,). Hence we have

E = A E, where each E is corresponding to L (¢,
for ¢, k. Therefore, E < E, and ¢,(E) < ¢,(E) = 0
for all ¢; € &, which implies that E € L(k),and the
proof of lemma is complete.
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The maximum element in L (&) is therefore a
projection E in ®, hence in £. We call E the
decision effect,and denote by G the set of all
decision effects. In the rest of this section we
shall study some lattice structures of G which are
similar to Ludwig's results.4

We note that Lemmas 3.1 and 3.2 are different
from Ludwig's results,4 because there is no
assumption about the axiom of sensitivity increase
of effects, which is the main hypothesis for the
existence of decision effects in Ludwig's work.
Hence for a von Neumann algebra, the annihilators
of % or {¢} always have decision effects, even when
they are not directed sets.

The next lemma is a characterization of L(k) for
a von Neumann algebra, which is possible only for
operator algebras.

Lemma 3. 3: Let Lg(&) be the annihilator of &,
with decision effect E for any subset 4 of X. Then

Ly(k) = BRE.

Proof: For each T € £ and each ¢ € 4, by
Cauchy~Schwartz inequality, we have

|$(ETE) 2 = | ¢((TE)*E) |2
< |¢((TEXTEN | ¢p(E2)] = 0.

Then, ¢(ETE) = 0 for each ¢ € k;hence ETE ¢
Ly(k). Conversely,let T € Ly(#), then T < E, hence
T=TE=ET = ETE,sothat T € ELE.

Another version of this lemma was given in Ref.
10. However, our proof is different, and we restrict
only on £ instead of on the whole positive cone of
®.

We are now able to investigate the lattice struc-
tures of §. Firstly, we shall show the existence of
the least upper bound of any two decision effects,
and the orthocomplementation on §.

Lemma 3.4: If E, and E, are two decision
effects in G, then B, A E, € G,

Proof: Let L(k,) (resp., Ly(4,)] be the corres-
ponding annihilators of E, (resp.,E,). Then E\E,
E, € Lg(k,) from Lemma 3. 3, and the sequence
(E iE 2E 1)*converges strongly to E, A E, as n —
»,11 Since L(&,) is weakly closed, hence strongly
closed, then £, A E, € Ly(k,). Similarly, (E,E,
Ey) converges strongly to E, AE, and E, AE, €
Ly(ky). Therefore,

E,NE, € Lo(kl) n Lo(/tz) = Lo(/ﬁ U /(2) = Lo(/i)v

where & = &, U k,. Finally, since E, = T for all
T € Lo(ky) N Ly(R,) and E, = T for all T € Lo(&4)
N Lo(ky), then E} A Ey = 1?for all T € Ly(k,)

N Ly(ky) from Ref. 8, p.164. Therefore E, A E, is
the decision effect of Ly(k) = Ly(k,) N Lol(/zz) and
E,NEz€ §.
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A slight extension of this lemma will be given
later to show the completeness of lattice G. In the
next lemmas we shall show the orthocomplementa-
tion of G. It is well known that the orthocomple-
ment of projection E is I — E, hence our next task
is to show the following:

Lemma 3.5: I E is a decision effect in g,
thenI - E € G,

Proof: Since E is a decision effect, without
restriction of generality, we may assume
I — E = E4, the suppoor.:t of some ¢ € X. Then
00

Ey = [®%] with ¢ =D w, and 75 lxl12 =1 for
i=1 i=1 0
% €9. Fory, € (I - E,) 9, we define ¢ = Wy,
=1

with f, 9,12 = 1; then Y (E) = 3_‘3 (By,y)=1.In

=1 =1
fact,lE = [®'y;], i.e., E is the sﬁpport of . Hence,
I — E is the maximum element of L (¥) (Lemma
3.1),and I — E € §.

From Lemmas 3.4 and 3. 5 we obtain the following
result:

Lemma 3. 6: G is a orthocomplemented
lattice.

If E and F are two decision effects of G, and
E<F,then FI—E)=(I—EFFand FA(I - E}) =
F — E. Furthermore, E(F — E) = (F — E)E.
Hence, EV(FA(I —E))=EV(F—E)=

E + (F — E) — E(F — E) = F. Therefore, we have
verified the following.

Lemma 3.7: § satisfies the orthomodular

identity; for E,F € §
E=<F implies F =E(F A (I~ E)).

The other equivalent forms of orthomodularity
will be given in Sec. 5, where the axiom of the
components of two ensembles will be given so that
G can be modular, which is true only in the case of
finite-dimensional Hilbert space.

In the arguments of Lemma 3. 2, we have seen
that Ly(k) = & E, Ly(¢;) = ® E; for all ¢; € 4; hence
RE=Q (M E;) and E=A E; € Ly(R) for all ¢, € A.
Thus,A E; € G. A slight generalization of this
statement enables us to prove the next result.

Lemma 3.8: Let E; be the decision effect
corresponding to Ly(%;) for any i € I, then A E; is
the decision effect of N;; Lg(k;).

Proof: We note that N;c;Ly(R;) = Lo(U;rk;).
Moreover, L(4;) and Ly(U; ;) are ultraweakly
closed two-side ideals of & (Lemma 3. 2, then
there exists maximum projections E; and E, res-
pectively, such that Ly(4;) = ® E; and Ly(U;4;)
= RE. Hence, B(A; ;) = RE,and A, B, = E
Indeed, L(U;4;) is a subset of £ containing those
operators T with £, = E, where E is the support
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of 7.12 Thus T = E; =< E for all T € LU, %;),
and E = Ay E; is the decision effect of N;,Ly(%;).

The proof of the above lemma is different from
Lemma 3. 4, where we applied Varadarajan's
lemma.® In fact one can easily extend Varadara-
jan's lemma to our form, which we give as follows.

Lemma 3.9 (Varadarjan); Let S e £,and
{E;};cr a set of projections on ®. If S = E; for all
i€ I, then S = A E;.

Proof: SinceS<E;forallic Jand0 =S =],
then S = SE; = E;S for all i € 1,10 which implies
that S leaves E; § invariant for all i € I. Hence S
leaves N;;E; ¥ invariant, i.e., Sx = S\ E;)x =
(ANE;)Sx for all x € N E;  and all i € I. Therefore,
S = S(AE;) = (A E;)S, which implies that S < E, for
alli e I.

We now summarize our results in the following
theorem.

Theorem 3.10: G is a complete orthocomple-
mented lattice satisfying the orthomodular identity:
F<F

implies F=E(F A{I—E))

for E,Fe G.

A final remark about the lattice structure of ¢ will
be given here to compare with Varadarajan's
approach.® Given a lattice § with zero element 0
and unit element ¢, $ equipped with an orthocom-
plementation ¥ - x* is said to be a logic, if (i) for
any countably infinite sequence x,x,, -+ of ele-
ments of §,V,x, and A x, exists in §, (ii) if ¥,
x5 € S and x; <x,,there exists an elementx; € §
such that x; < x{ and x3 V x, = x,. Indeed, the
existence of x 5 in (ii) is unique, one cun show that
x3 =x% Ax,.0 1t is easy to verify that the set of
all projections ¢ in a Hilbert space ™~ is a logic.
We call ¢ the standavd logic. A subset § of ¢ is a
sublogic of the standard logic if § itself is a logic.

We now return to the set of decision effects G.
From Theorem 3. 10, § is a complete ortho-
complemented lattice with zero element 0 and unit
element 7. Obviously, § satisfies (i). If E;,E, € §
and E; < E,,let E; = (I — E) A E,, which is an
element of G, hence (ii) also holds for G. There-
fore, we have the following consequence from the
previous theorem.

Corollary 3.11: G is a logic, or more pre-
cisely, a sublogic of the standard logic.

We note that each £ € G can be identified as the
support of some ¢ € X,i.e., E = [®'x;], with
0 0

¢ =25 @, and 2 llx(2 < + . On the other hand,
i=1 i=1

let $ ={F € & F = [®"N] for M 9}, then $ is
also a sublogic of ¢ . We have the relation; § T §
C ¢. However, if ¢ = 8§ = ¢, then ® = B(9), hence
® is a factor of type I. Conversely, if ® is a factor
of type I, (n < + «) on Hilbert space 9, then the
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dimension of  is n < + ®©, And,to any F € 8,
F = [®'IM] for M C $. Since M is finite-dimen-
sional, we can define a positive normal state ¢

such that ¢ = Z} w,, Withx; € O, m =n,then F is

i=1
the support of . Therefore we have proved the
following theorem.

Theorem 3. 12: K § is a standard logic, then
®-is a factor of type I. Conversely,if @} is a fac-
tor- of type I, (n < + ) then § is a standard logic.

4, AXIOM OF DECOMPOSSABILITY AND
RELATIONSHIP OF EFFECTS

We defined extremal sets of X in Sec.1, and for-
mulated the axiom of decompossability of ensem-
bles and relationship of effects. In this section we
will formulate this axiom in terms of operator
algebras and show that this axiom is always true
for a von Neumann algebra.

First, we give a preliminary remark about the
extremal set on a partially ordered vector space.
Let X be a partially ordered Banach space and P
the positive cone. Then a convex subset S of P is
an extremal set of P if and only if S is a subcone
of P such that for allx, y e P, x € S, andy <x
impliesy € S. An order ideal of X is a subspace
J such that x,y € J implies z € J whenever

x =z=<9y, 2 €X. Asubspace J is an order ideal
if and only if J N P is an extremal set of P.10

In the first part of this section we assume that

X = ®f, the positive portion of predual % ,, and £
is the same as in Sec. 3, although the set of effects
will not be used explicitely in the subsequent dis-
cussion. The smallest norm-closed extremal set
containing p € X is denoted by C(p), as in Sec.1,
then the axiom of decompossability of ensembles
can be formulated as follows:

Axiom 3: For anyp, 7€ X,

Lolp) = Ly(r) implies C(p) = C(7).
If Be®and ¢ €% ,,we define B¢ and ¢B by
(Bo)T) = ¢(BT) and (¢pB)(T) = ¢(TB)

for T € ®. In particular, B¥*¢B is denoted by ¢g.
With this notation, E,4, the support of ¢, is the
smallest projection in ® such that ¢ = ¢Ey = Ey¢p
= ¢y . Then the smallest norm-closed extremal
set c%ntammg p € X can be characterized as

Clp) = {¢E ; @ € X}, where E, is the support of
p. 10

Let p be the smallest norm~-closed order ideal in
(R* containing p,then p ={¢p € K;E, < E,} =

Ly(Ky(p)), where E (resp., Ey) is the support of p
(resp ¢).12 From *the prehmmary remark, it is
easy to verify that C(p) is also an order 1dea1 con-
taining p,hencep C C(p). If qup € C(p) and the support
of ¢ is F,then E, = [®'x]withp = Jw,, x€ 9, and
F =[®y],withy e E,$.
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Therefore, E,F = E, [R'y] = [®'y] = F. Similarly,
FE, =F, Hence E, > F which implies ¢E €p,
and C(p) Ccp. We have therefore, the followmg
lemma from Ref, 12,

Lemma 4. 1: Forp e X,
C(p) = Lo(K(p))
={¢pc X;E, < E,}
=1¢s,:¢ € X}
=p.

Some further properties about norm-closed
extremal sets will be given in Sec. 5. Axiom 3 is
now trivial for a von Neumann algebra.

Corollary 4.2: Axiom 3 is true for a von
Neumann algebra Q®.

If we consider a C*-algebra % as a subalgebra of
A** the double dual of %A, which is again a von
Neumann algebra, then % *, the dual of %, coincide
with the predual of % **.8 Hence, we may take X as
A% the positive part of A*, and Lemma 4.1 still
holds. However, we shall modify Axiom 3 so that
it will be more essential for a C*-algebra.

A subset S of the dual ¥ * of a C* algebra %Ais
invariant if for allp e Sand T €%, p,isin §,
where p(A) = p(T*AT) for any A € % . We denote
by p the smallest norm-closed invariant extremal
set of X containing p, where X =% % and £ =

A+ N%A,. Then we may enlarge. C(p) to p, and
modify Axmm 3 to the following form.

Axiom 3': For any p,7 € X

= Lo(¢)

Letn 0 and 7 _ denote representations of % defined
by p_and 7 on &3 and 9, respectively. Then

p =7 implies er and 7, "are quasi-equivalent,12
since p and T are also ‘norm- -closed invariant-
order ideals in A*. L,(p) = L,(r) implies T, and
7, are weak-equivalent3 (or physically equiva-
lent.14 Therefore Axiom 3’ claims that if 7, and
7, are weak-equivalent thenthey are quasi-equiva-
lent This is not true in the case of C*-algebras,
but it holds for von Neumann algebras.8

Lqp) implies p=7.

5. AXIOM OF THE COMPONENTS OF THE
MIXTURE OF TWO ENSEMBLES

As in Sec. 4, we assume X = ®] and note that C(p),
the smallest norm-closed extremal set of X con-
tammg p, can be characterized by the support of
p, E,, viz. C(p) = {p e X E, Ep} Hence, we
can study some properties of norm-closed extre~
mal sets from their corresponding supports.

Lemma 5.1: C(p) € C(r) if and only if
E, = E,
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Proof: A straightforward verification.

Lemma 5.2: C(p) NC(7) ={¢ € X;
Ey = E’J NE,

Proof: LetN={¢ € X;E, = E, NE,}. For
each ¢ € C(p) NC(r),E, < E, and E, < E_; thus
Ey=E,NE _and ¢ € N, Conversely,let ¢ € N,
Ey=<E, N E,then E, < E, and E;, < E_, so that
¢ € C(p) NC(1).

A trivial corollary of this lemma: C(p) NC(r) = ¢
implies E, A E_ = 0.

For a subset 4 of X, let C(k) be the least norm-
closed extremal set containing k. Then we can
also characterize C(k) in the following way.

Lemma 5. 3:
C(k) ={¢ € X;E, = Es}
= {¢E/e;¢ S JC},

where

E, =VE, forallpe k.

Proof: Since C(k) is a norm-closed extremal
set in X, then L(C(4)) is an ultraweakly closed
extremal set in ®. Hence there exists a unique
projection E; in ® such that L(C(k)) = R(I — E,).
E is the least projection in ® such that ¢ = E ;¢
= ¢ E, for each ¢ € C(k). From a similar argu-
ment in Ref. 12, p. 405, ¢ € X lies in C(k) if and
only if E, < E,. The second part of the lemma
follows directly from Lemma 3.9 of Ref. 10,

Furthermore, for any p € &,p € C(k), then E < E,,
therefore v E, < E; for allp € k. On the other
hand, since ¢ = ¢(V E,) = (V E,)¢ for each

¢ € C(k) and p € A, but E is the smallest projec-
tion with the same property, indeed E, is the
support of C(k) (Ref. 10, p.14), hence V E, = E, for
all p € k. Therefore

E,=V E, forallpc A.

Corollary 5.4: I {E,} for all p € & are pair-
wire orthogonal, then

C(h)={p € X;E, = 25, E, b

For the axiom of the components of the mixture of
two ensembles, we are more interested in the case
of £ ={p,7}. If we denote C({p,7}) by C(p,), then
from the above lemma we have the following.

Corollary 5. 5:

Clp,7) =C[mp + (1 —m)r],
where
me (0,1).

ETANG CHEN

Proof: We note that
Clmp + (1 —m)yr] ={p € X;E, <E,},

where w =mp + (1 —m)r. Since p,7 € C(p,7),
hence w € C(p,7) and E_ < E, V E, from the above
lemma. Therefore C[mp + (1 — mST] < C{p,T1).
Conversely, w € C[mp + (1 — m)r] implies that
p,7 € C[mp + (1 —m)7]; hence E,<E, E =E,
Therefore, E, V E, < E_,and C(p,7) C

Clmp + (1 —m)r].

From the above results, each C(p) and C(&) are
characterized by projections E, and E, of ®,
respectively; consequently, we can formulate this
axiom- in terms of decision effects defined in Sec.
3. As in Axiom 4’ in Sec.1 we adopt the following
lattice version,

Axiom 4; For each E,,E,,Ez€ G,if E; A E,

As we have shown in Sec. 3, § satisfies the ortho-
modular condition. For E,,E; € §

if E; = Eg, then E; = E, V(E; A (I— E,)). (1)

It is easy to show that this condition is equivalent
to the following version of orthomodularity: For
E\,E,,E;€ g

if E, < Ey, E; L E,, then E3 A (E, V E,)

=E, V(E5 A E,). (2)
In fact, if we let £, = I — E,, then (1) follows
immediately from (2). Conversely,if E, < E; and
E; =E;V(E; A (I — Ey)), then E; A (E, V (I — E,))
=E,V %E:, A (I — E,)), which implies (2) by setting
Ey=1—E,.

Let E; V E, = E3 in (2), then E; = E, and E3 A E,
= E,; (2) implies E; = E, V E,. Hence we have
another form of orthomodularity: For E,, E; € §G,

if E, = E,, then there exists E, € § such that

Ey L Eyand E; = E, V E,, (3)

Obviously, (3) implies (2).

If we omit the orthogonal condition in (2), then we
have the modularity; i.e., E; = Eg,then E5 A
(EyV Ey) = Ey V (E5 A E,). In general, § is not
modular, unless § satisfies Axiom 4, which is the
main purpose of axiom 4 in Ref, 4, We verify this
result in the next theorem.

Theorem 5.6: The set of decision effects G is
modular if and only if it satisfies Axiom 4.

Proof: Let E,,E,,E;€ G,and E; A E, = 0,
E; < E, V E,, with £, L'E; and (E, V E;) A E,
=(E, + E3) A E, = 0. Since § is modular, for
E, < E, + E;, we have E, V (E; A (E; + Ej))
=(E, + E3) A (E, V E,). Hence



OPERATOR

E, =(E; + E3) A (Ey V Ey)
= E, V(E3A (EyV Ey))
=E,V E;=E, +Ej,

which implies E; = 0.

Conversely, if § satisfies Axiom 4, since § is
orthomodular, we can use (3). The modularity of Y
follows from a similar argument given in Ref. 4.

It is well known that if the dimension of  is infi-
nite, then the standard logic (see Sec.3) ¢ is not
necessary modular. Therefore, from Theorem
3.12 we have a direct consequence of the above
theorem.

Corollary 5. 7: ¢ is modular only if ® is a
factor of type I, (n < + o).

6. DISCUSSION

In the whole theory of Ludwig's formulation about
axioms of measurements, the axiom of sensitivity
increase of effects plays an important role, From
the proof of Theorem 2.1 we note that this axiom
holds for an operator algebra % whenever P, A P,
lies in % for any two projections P, and P, of %.
Therefore, the projections of ¥ must be a fattice.
The projections of a von Neumann algebra form a
complete lattice. The other examples belonging to
this category are AW*-algebral5 and JW-alge-
bra.16 An AW*-algebra is a C*-algebra such that
(i) any set of orthogonal projections has a least
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upper bound, (ii) any maximal commutative self-
adjoint subalgebra is generated by its projections.
The set of all projections of an AW*-algebra is
also a complete lattice.15 A JW-algebra is a
weakly closed Jordan algebra of bounded self-
adjoint operators. Its projections form a com~
plete lattice with orthocomplementation and ortho-
modularity. Hence,a JW-algebra may be the most
appropriate algebra for Ludwig's approach.

Another example satisfying this axiom is Z*-sub-
algebras of ® (9).17 A T*-subalgebra of B(9) is a
o~-closed C*-subalgebra of ®(9), which is also a
von Neumann algebra as pointed out by Kadison in
the Appendix of Ref,17.

However, the quasilocal algebra of local observ-
ables in quantum field theory14 can not satisfy the
axiom of sensitivity increase of effects. Since its
automorphisms will be inner, if it is a von Neu-
mann algebra.18 It is impossible for a quasilocal
algebra, e.g., the automorphism induced by in-
homogeneous Lorentz group is not inner.t4 An-
other example belonging to this category is the C*-
algebra of compact operators on separable Hil-
bert space.18
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Starting with a vacuum space-time (R, = 0) which admits a Killing vector field K, a study is made of the
subclass where the Killing bivector (KBV) K, , is null. Reference is made to an earlier paper [J, Math.
Phys. 12, 1088 (1971)] by the author which-established some of the general approach and formalism used
here. All space~times with the property above turn out fo be in the class of expansion-free radiation
fields, which are necessarily algebraically special. Of these only Petrov types I, D, and N are allowed;
furthermore, those of type N are the pp waves. A result obtained from applying this approach is that
expansion-free radiation fields are the only vacuum space-times which admit a geodesic Killing vector
field; that field is necessarily lightlike. Finally, since the spaces with symmetry studied by R, P. Kerr
and the author [J. Math Phys. 11, 2807 (1970)] had nonzero expansion, the associated bivector to each of
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those symmetries must necessarily be nonnull,
1. INTRODUCTION

In a previous paper! a problem was formulated
which was designed to classify certain vacuum
space~times which admit a Killing vector field.
The basic approach was to divide the problem into
two basic parts: (1) those vacuum spaces which

admit a nonnull Killing bivector and (2) those which

admit a null Killing bivector.

After the formalism and the basic approach were
developed,! the nonnull case was studied. Some
general conclusions involving, first, geodesic
Killing vectors and, second, hypersurface ortho-
gonal Killing vectors were given through a study
of the invariants made from the Riemann tensor
and the nonnull Killing bivector,

This paper deals with the null Killing bivector
cases which, by a theorem proved in Ref. 1, must
necessarily concern only algebraically special
spaces.

2. PRELIMINARIES AND FORMALISM

In Ref. 1 the formalism for a complex null tetrad
{e, la=1,2,38,4} with its dual {e*| a = 1,2,3,4}
was developed. [e; and e, are complex conjugates;
e, and e, are real;c“(e,) = 6¢.] Assuming that
the metric tensor field g = g, dx# ®dx” has sig-
nature (+ + + —), the components g,, = g(e,, ;)
can be put into the form

0 1 0 0
1 0 0
0 0 1 O

locally over the C* Lorentz 4-manifold. The dual
relationship between basis vectors {ey 9, } and {eg¢
dxk} is also expressed by ef e} = 0¢ and ehed =

8¢ (Greek indices p, v,... on a kernel letter
represent components of a tensor with respect to
some local coordinate system {x#}; latin indices
a,b, ... represent tensor components with respect
to a complex null tetrad.)lf T=T} ! éx#®0,® - -

is a tensor field, then it is also true that T = T5::.

€ﬁ ® e b® L

The set of transformations e, — e,, preserving the
form (2.1) of {(g,,) is the set of Lorentz transfor-
mations. The proper orthochronous subgroup of
these is given by

exp(z’B)el,
exp(— iBe,,
exp(A)e;,
exp(— Aley,
1 @ —@ B8 e,
0B 1 —a B e,
= [1~ af |1 —B -8 1 —p8 es |’
a o —aa 1 e,
(2.2)

where A, B, @, and B are~parameters; o and 3 are
complex; A and B are real; ¢ # 1. (A bar dbove a
symbol denotes the complex conjugate.)

The Lie bracket between any two contravariant
vector fields is a vector field, [X, Y] = XY — YX,
Between vectors of the basis {e,} the relationship
fe €] =(Tm,,—TIm )e, (2.3)
holds, where the I'? . are coefficients of the con-~

nection (see A2), If f is a scalar function, the
commutation relations

all =1 ap— azf,m(rma . a)
[er.€.)f =Fas—F s & ) (2.4)

must then hold as integrability conditions on f,

In the exterior algebra a bivector is any 2-form.
A well-known invariant classification scheme for
any bivector B, dx¥Adx? is given through the defi-
nition: B is null (or “singular”) if and only if

B, ,Buv = 0 = B} Biv;otherwise B is nonnull. In
terms of the six basis bivectors eI, ell ..., eV
introduced in Ref. 1,one sees that B = B, eA(A =1,
I,...,VI) is null if and only if B,BA = 0 = B}BA.

It was seen in Ref. 1 that a given null bivector
could be transformed by (2, 2) into the canonical
form

- 3Ae2
B = Byl + By eVl = 2 By e3ne + 2By € Ne€
=2 Bg,e37el + 2B,, €32, (2.5)
The transformation freedom left preserving (2. 5)

is the subgroup of (2.2) with a = 0, the so-called
null votations about ey,.
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3. THE NULL KILLING BIVECTOR IN A
VACUUM SPACE~-TIME

Let & be a vacuum space-time (R,, = 0) and K =
Kvee,, a Killing vector field. Then (see Eisenhart2)

3.1)

are Killing's equations and are satisfied locally
over 8. Suppose also that the Killing bivector
{KBV) B = K, ,€°A\€® is null, Then from (2. 5)

(3.2)

i.e., K=K, ; and Ky; = K3, are the only non-
zero covariant derivatives of K. Hence we keep
the KBV (and consequently Killing's equations) in
the canonical form (3. 2) by any null rotation about
ey.

Ka:b + Kb;a =0 (<=> Ka;‘b = K[a;b])

B =2K;;€3N€el +2K€3Ne2;

If R, ; are the components of the Riemannian cur-

vature tensor, then the first set of integrability

conditions for (3.1) is given by (see Eisenhart?),
Ky bc = Rapon K™

a 3.3)

Theorem 2 in Ref.1 [using (3.3),(3.2),and the Gold-
berg—Sachs Theorem3] gives us that & must
necessarily be algebraically special and that e, is
geodesic and shear-free.

[It can be mentioned at this point that invariants
built up from K., and R, could be examined as
was done in Ref.'l. However, C® = C4 =0 and B
null are enough to make all invariants studied
there equal to zero except J and ., and the latter
are zero if CB) = 0. (The C®%) are the conformal
scalars. See Appendix A or Ref.1). Hence, to use
the invariant approach would only be redundant
here to the Petrov classification itself.]

4. KILLING'S EQUATIONS AND INTEGRABILITY
CONDITIONS IN CANONICAL FORM

Using the relations K, =g, K® and T, ; = T y,, =
414 = Ty34 =0 (e, is geodesic and shear-free),
one can write (3. 1) as follows:

Ky =—KT +0+ 0 +KTy,,
1,9 =— K Tygp 0+ K3Tyqp + K4T349,
Kipn =— K Typ3 0+ K;Tyy5 + K Tyys~Ky 3,
K 4, =—KTios+0+ 0 +K,Taiy:
1,4 1T124 14
, oy
KZ,Z =0 +K2r122 + 0 + K4F322,

Ky 1 =0+ KTy + K349y + KyT35,,

Ky =0+ KTy53 ¥ K3lyp3 + Kylgp3 — Ky 3,

Kz,a =0+ KTipq + 0 + K Tgn45 (4 9y
Iil_n =HEalgp1 + KpTgpy + Kylgyy + 0+ Ky,
Ky =K Tgpp + K5y, T K35, +0+ K3, 2,
K3, 3 = K T3p3 + KyT315 + K333 +0,
Kz 4 =K\ Tgpy + Klg04 + K3Tg, +0;

(4.3)
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—Ky,1 =K Typy + KpTyyy +0—K, Ty,
“'K4, g =K Lypp + KpTyyy +0— K4T342)
—Kq,3 =K Typ3 + KTyy3 +0 — K Ty,
Ky, g =K Typy +KTyyy +0—K,Tyy,. (4.4)
Equations (3. 3) take the form
Ry, K™ =0, (4.5)
Ry B™ = KyyTyg, (4.6)
RipyomE™ = Ky o + 2K T pgce 4.7)

Since C® = CW = 0, Egs. (4. 5) are identically
satisfied. The fact that I'j,, = I';5, = 0 (the geo-
desic and shear-free conditions on e,) implies that
Egs. (4. 6) become

COK, = COK, =0, (4.6'a)

C®OK, + 0 + 0 —C@K,=2K;T,,,
(4.6'b)

0+ C®K, +COK, + 0 =2K;T,,,
(4.6'c)

Recall that T',, is the complex expansion andT,, ,
is the rotation of the lightlike geodesic congruence
e, (see, for example, the optical scalars defined by
Sachs4 or Newman and Penrose®). Two cases can
now be considered: (A)C® = 0 and (B)C® = 0.
This means that study of A is concerned only with
Petrov type-1I and type-~D spaces, whereas B is
concerned only with Petrov types Il and N, We ex-
clude flat space (CU) = 0) for the rest of this
discussion.

5. CASE A: TYPE II AND D SPACES ADMITTING
A NULL KBV

Let C® = 0, Then (4.6’a) implies that K,(= K3)
=0 and K; = K, = 0. In this case we are also
assuming Ky;; #0. If K;;; = 0,then C(3 # 0 = K,
=0 =K = 0. Hence

K =Kiey; (5.1)

it is evidently lightlike. Equation (4. 6’b) now must
have

Typ:1 =0 (5.2)
so that case A is in the class of spaces studied by
Kundt.6

Using a null rotation about e,, one can transform
K;; into a real function,a. Furthermore K, (= K*)
may be transformed to 1 so that K = e,. The sub-
group of (2. 2) left after this transformation is now
that for which A = B = 0, Killing's equations
become

a=Tyy3=T433

0= r6343 =T'344,
a =T34y =T34.
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Hence (4. 6'c) gives

C® =222 = C®, (5.3)
Equations (4. 7) now take the form

a, +a2 +al;,, =0, (5.4a)

@y +a2+aly,=—3C9, (5. 4b)

a3 +al 5 =3C9, (5. 4c)

@ ,tal;y, = o, (5.4d)

plus their complex conjugates. It is a simple
matter to show that these together give

3 1
a,=a,=—3%a? a,=0, a’3=5Re(C‘2)),
— _ 1 -
121 =T312=26, T134=0,

T323 = (20)72 Im(C). (5.5)

Through the relationship —T'),. =€, . e} g% it can
be shown that a Lorentz transformaﬁon (2. 2) with
A = B = 0 and parameter 3 has the effect

P1’2’3’ = r123 + % a(f— F).

Since I'y 54 =Ipy3 =— T ,, it follows that Ty 54
is pure imaginary. Setting 8 — B8 = — (2/3a) Ty 55
transforms I'y 55 to zero. Hence

@ =CDand a 5 =} CP

modifies the relationships in (5. 5).

The first of the structure equations, (A3a), takes
the form

(5. 8)

dT,, + TyoN(Ty, + T5,) = 3 (D e3¢l
and is satisfied identically., We note here that

dTy, =— 1 a2(e3Nel + e3n€2), 5.7

The second of the set, (A3b), is

d(T15 + Tg,) + 2T 4pAT 34

= (elne? + BAed) + C@e3ne)  (5.8)

and yields the following results on the connection

coefficients:
r =T r =T r =T .
312 322 311 321 314 2
%)

The third structure equation (A3c) is

dTl3; + 2(Typ + T34)ATyy
= 3[CPeine? + C@)(elne? + €3n€d)
+ C(Me3nel], (5.10)
which is not computed in detail at this point.

Consider the Bianchi identities (A4a)-(A4c). Equa-
tion (A4a) is identically satisfied and (A4b) gives
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CP+%aC® _da2r,,, =0,

5.11
C§§)+Za3—202I‘314=0. ( )

The commutation relations (2. 4) together with
(5. 11) result in

T313 =T33 =T337 =T333, @=T3;4=Tjy,

C =4aly,,, CB=—14aT,,,

C’(ﬁ) =0=T35 4 (5.12)
The identity (A4c) then gives

CD=0=T,,,

Cfg) =0=T33 4 (5.13)

CY + 2aCD) = 6a2Ty, 5.

Since the group (2. 2) still can be used to trans-
form I'y,, to a pure imaginary function, consider
(5.10) with I';, , pure imaginary. Together with
the results from the Bianchi identities above, this
yields

€W =—6al'yy,,

__3 _
T313,1 =—z0al313 =T33 3.

Notice that T';, ; = 0 implies that the space is Pet-
rov type D, This is no surprise since I'y,3 =0=
I';,5 18 equivalent to stating that the congruence
e, is also geodesic and shear-free. All conditions
and equations would then be satisfied.

Assuming that I';, ; # 0 (and hence Petrov type II),
one finds the general solution to (5. 14) to be

1“313 =0a, 6:—-0, (5. 15)
witho , =0 , =0, =0. Therefore
C() = _goa2, (5.16)

and all equations are satisfied.
The Lie brackets for the basis tetrad are given by

fe, €] = —(2/2) (e; —e,),
[e,,e3] = — a(2e; + oe,),
[es, €3] = — a(2e; — oe,),
[e,e,] =0 fori=1,2,3.

6. CASE B: TYPE IIl AND N SPACES ADMITTING
A NULL KBYV.

Let C(3 = 0 and suppose K;;; # 0. (K;;;=0is app
wave and is discussed briefly in Appendix B.) If
K3 # 0, then both K! and K2 may be transformed
to zero by letting 8 = — (K2/K3) in (2. 2). Then
Eq. (4.6'c) gives T'y,5 = 0. Using A and B of (2.2)
to transform K, to real function and X3 = 1 sim-
plifies Killing's equations. From (4. 4) one finds
T4, = T34 = 0. But then (4.3) implies Ky =
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K4T;4, = 0. Hence, there is a contradiction, which
shows that K3 must be zero.

Suppose next that K3 = 0 and K;; # 0. Then

K = Kle, + K%, + K%e,. (6.1)
Equation (4. 6'b) gives I'y,, = 0, so that each of the
spaces under consideration again fall into the class
studied by Kundt.® A transformation (2.2) can
make K;; a real function a.

First assume K! = 0 (= K2 = 0). ThenK = Kde,
can be transformed to K = e,. Hence K4 (= Kj)

= 1. Equation (4. 6c) then necessitates al'y55 = 0.
Killing's equations (4. 2) also give a = I'y,5.
Therefore, we obtain a = 0 = K;;;, a contradiction.
In summary, there is no way for K;;; # 0 to be com-
patible with K = Kle, + Ke, + K'e, + Kle,
whenever K3 # 0 or whenever K1 = k2 = k3'= 0.
Hence, the only case left to explore (for Kj;; # 0)

is K3 = 0 with K1 = 0,

Next consider (6.1) and assume K1 # 0, A trans-
formation (2. 2) can now take K4 to zero in addi-
tion to taking Kj;; to 1. The Killing vector then
has the form

K= Kle; + K2e,, 6.2)

and is spacelike. The Bianchi identities (A4b) be-
come

~T45,C 23Nl N2
= (C(® - 20T, ,)e3net ne? +2C(2

4 A 2 3
xl“423€ Ae“he

— C(2 (2) 3AedAel
+ ( C’i +2C¢2r, ., )e3netnel. (6.3)
In particular it is seen that (6. 3) implies

car,,. =0. 6.4)
Equation (4. 6'c) gives

Hence T,,, = 0 if and only if C(® = 0 and Eq. (6.4)
gives

C(Z) = 0 = 1"423. (6. 6)
Consequently the space is Petrov type N. Since
I,405 (the “rotation” of e,) is zero, this space is
also a pp wave by Kundt's characterization (Ref.,
6,p.79). In this case e, is also a Killing vector
field, is a principal null vector for the KBV associ-~
ated with (6. 2), and is tangent to a ray conguence
which is parallel.

Case B is then a pp wave: the plane-fronted gravi-
tational wave solution which is Petrov type N and
has parallel rays. If one continues to examine the
subcase (6. 2), all equations can be satisfied so
that both K = Kle, + Kze2 and K = K%e, may
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coexist in the same type-N space, both having null
Killing bivectors.

7. APPLICATIONS TO THE STUDY OF GEODESIC
KILLING VECTORS

In this discussion, it is still assumed that § is a
vacuum space-time (R, = 0) and that flat space
is excluded,

Theorem 1: Let & be a vacuum space-—time and
let K = K¢e, be a geodesic Killing vector field.
Then (1) K is lightlike, (2) K is geodesic and shear-
free, (3) & is algebraically special.

Proof: ThatK is geodesic implies

K, Kb =fK, (7.1)
for some scalar f. If K, defines a null bivector
over &,then & must be algebraically special by.
Theorem 2 in Ref. 1. The eigenvalue problem for
a null bivector necessitates f = 0 above. In Sec.5
the Killing vector field K is necessarily lightlike,
geodesic, and shear-free with Kj;; # 0. In Sec.6,
one possibility for K is K = K4e,, which is light-
like,geodesic,shear-free,with Kjj; = 0 = K;,;. The
other possibility here is the spacelike K = klel +
K?e,, with (7. 1) implying

K...K, +

331K (7.2)

Ks; oK = 0.
Equation (7. 2) is to be preserved under the sub-
group of (2.2), with « = 8 = 0;i.e., A and B are
arbitrary real parameters, Since

K3,; i, =exp(—A4— iB)Ks; 1
and
K,, = exp(iB)K,,
then
eAKa;le +e AKs;zKl =0. (7.3)
Letting Kj., = ae’® and K, Ke?¢, (7.3) is
equivalent to

a=00or K=0or sin(d + ¢) =cos(0 + ¢)=0,
(7.4)

since A = 0 is impossible, Clearly, none of (7. 4)

is possible since Kj;; # 0 and K = 0 are assumed.
Consequently, the spacelike Killing vector field of
Sec. 6 is not geodesic. Hence all geodesic Killing

vector fields with a null KBV are lightlike,

K K., defines a nonnull bivector over &, then it
can be shown (see Ref. 1) that K being geodesic
allows only for K to be lightlike and tangent to one
of the principal null congruences of K ,,. Further-
more, K, ,, = 0 = K is shear-free. Hence § is
algebraically special by the Goldberg-Sachs
theorem; K must then be a multiple Debever vector
field. QED

Theorvem 2: Let & be a vacuum space~time and
let K = K<e , be a(lightlike)geodesic Killing vector
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field. Then the associated Killing bivector X, is
null and the space represents an expansion—jfree
vadiation field.® Furthermore, the only suchspaces
which are not pp waves are those encountered in
Sec, 5. (That is, there are no geodesic Killing
vectors in a space-time R ; = 0 which generate

a nonnull bivector.)

Proof: After the work of Theorem 1 it is
necessary only to show that the nonnull KBV stu-
died in Ref. 1 is incompatible with any geodesic
Killing vector. It was shown in Ref, 1 that if e,
and e, are tangent to principal null congruences
for the nonnull KBV, then K being geodesic implies
K = K3e, or K = K%e,. Take first K = K4e, and
say thate,, = K, so that K, 6 =e,,., (The argu-
ment for K'= K3e; is completely analogous.) Then

r4ab = anue‘éeg' (7. 5)

But K(,.,) = 0, so that T'y ;, = I'4() and, hence,

So I'y33 =T 499 = I'y35 = 0. Furthermore (7. 6)
implies 'y ,, = 0; therefore I'y; 4 = Ty94 = Ty34
=0, Since now C{3 = C(% = 0'is implied here,
the integrability conditions on Killing's equations
corresponding to (3. 3) necessitate I'y,3 = Tyyy =
415 =T4153 =0. Since K, , = K, ), these re-
lations all imply I'y ., = 0. Therefore, the inde-
pendence of {e,} gives Kf,,,; = 0 and so K,,, = 0,
contrary to K, ., being nonnull. Hence, a nonnull
KBYV (studied in Ref. 1) excludes completely any
geodesic Killing vector fields. Theorem 3 of Ref.
1 can then be stated more strongly: K is a Killing
vector and K, is a nonnull KBV = K is not
geodesic. QED

Covollary to Theorem 2: There are no Petrov
type-1II vacuum space-times admitting a geodesic
Killing vector field.

Proof: Sections 5 and 6 exhaust all possibili-
ties for geodesic Killing vectors,

If the geodesic Killing vector belongs to a space
more general than a pp wave (type N), then it must
belong to one of the spaces in Sec. 5. QED

The following global result can now be stated:

Theorem 3: Let & be a vacuum space~time and
let K be a (lightlike) geodesic Killing vector field.
Then (as a vector field over &) K is complete.

Proof: This follows from results of Boyer.?

8. CONCLUSIONS

From the present study, it can be seen that “most”
vacuum space~times witha symmetry (Killing vector
field) possess a Killing bivector which is nonnull.
Those space~times admitting a symmetry whose
associated bivector is null fall into a very narrow
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category, the algebraically special spaces whose
Debever vector field is also a Killing vector, and
consequently is expansion-free, These were called
the expansion-free radiation fields by Kundt,6

Further analysis of the null KBV yields the fact
that both Petrov type-1I and type-D spaces are
allowed, However, types more special than this all
turn out to be the plane-fronted gravitational waves
with parallel rays, the pp waves, and are all Petrov
type N. Hence, no type-III spaces contain a null
KBV,

The earlier work of the author! plus work in this
paper go to characterize the geodesic Killing
vector in a vacuum space-time. Such a Killing
vector can be found only in those (nonflat) spaces
which are expansion-free vadiation fields. The
associated Killing bivector for this case is neces-
sarily null.

Kerr and the author8 studied vacuum space-times
which (1) were algebraically special, (2) possessed
an expanding multiple Debever vector field, and

(3) admitted a Killing vector field. Since e, in
Secs. 5 and 6 of this work is expansion-free, the
bivector associated with each Killing vector field
in Ref. 8 must then be nonnull,

APPENDIX A: STRUCTURE EQUATIONS AND
BIANCHI IDENTITIES FOR A VACUUM
SPACE-TIME

In the complex null tetrad approach, the following
components of the Riemann tensor are the con-
formal scalars for R _, = 0:

CD =2Ryy4,
C@=Ryp15 + Byzag
C®) =3 (Rypyp + 2Ryp34 + Raygas) = 2Ry55,(A1)

c@= R3112 * B3134,

C(l) = 2R3131.

The space is algebraically special if and only if
there exists a tetrad for which C(9 = C(® =0 or
C = C(2) = 0, Related to this, the Goldberg-
Sachs theorem3 states that the space is algebraical-
ly special if and only if there exists a geodesic and
shear ~free lightlike vector field; such a field is

e, whenever C(8) = C(4 = 0 and e; whenever
CW=Cc@=9

In order to introduce the connection coefficients
for the space, the first structure equations are
given by

dea = T'o, €dhec = T'a, q€PNee, (A2)
where the I'¢, are the connection coefficients. They
have the properties T’ =—T where T’ =

abe bar? abe

£,mT ™5, and are not necessarily skew symmetric
in Tbc), This also defines the connection 1-form
rab = rabcev'
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The second structure equations are equations in-

volving 2-forms. These are
dar,, + T, ATp = %(Rab, (A3)

where & , = R, ,€¢Ae?, the curvature 2-forms.

In terms of the notation of basis bivectors (see
Sec. 2 and Ref. 1) these become

dTy + 2T AT = 3@®y, (A3'a)
dry + TA = 3 ®yg, (A3D)
dTyy; + 2T ATy = 3 Ry, (A3'c)

plus their complex conjugates.

The Bianchi identities are easily obtained by taking
the exterior derivatives of (A3) above. Hence we
have

AR, = 2R ATy — 2T, ARy, (Ada)
d®py = @y ATy — Iy AQyyy, (A4b)
d(RIII = 26211 APIII —_ ZFII /\(RIIIO (A4C)

In a vacuum space-time the curvature 2-forms
in Eq. (A3) become

1®; = 3[CDetne?

+ CW(elhe2 + €3ned) + C(3)€3/\€1], (A5a)
3R = 3[CPetne?

+ C3(elneZ + 3Ned) + CPe3A€l], (A5D)
R 2[CPedne?

+ C(2)(elne2 + e3Aed) + C(1)€3/\€1]- (A5c)
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It is this latter formulation that is most useful
for calculations.

APPENDIX B: THE PLANE-FRONTED WAVES

A trivial case of the Killing vector field K =
K#9, having a null KBV is where K ., = 0. This
means that K is a parallel vector field and, by an
argument of Ehlers and Kundt,® is necessarily
lightlike. (This case was also mentioned in pas-
sing while setting up the more general problem
in Ref, 1.)

Ehlers and Kundt? define the plane-fronted gravi-
tational waves as being those solutions to the
vacuum field equations which are of Petrov type
N and possess a hypersurface orthogonal, shear-
free, expansion-free (lightlike) ray congruence.
The plane-fronted waves with parallel vays, the
pp waves,have the additional property that the ray
congruence is recurrent, That is, if 2# is tangent
to the ray convergence, then & ., = yk k, ,where y
is a scalar.

Six characterizations for a pp wave are cited in
Ref. 8, with three actually proved. Furthermore,a
pp wave has the metric

ds2 = dx2 + dy2 + 2dudv + 2H(x, y, u)du?2,

where the four coordinates form a (real) harmonic
system and the scalar H satisfies H,, + Hyy =0,
The contravariant vector 9 is a covariant con-
stant Killing vector field.

A result useful for the work in the present paper
was mentioned by Kundté: The expansion-free
radiation fields with vanishing votation have par-
allel rays; if the space is also Petrov type N, it is
necessarily a pp wave.
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We construct lowering operators associated with the multiplicity pattern obtained in a previous paper
[7.Math. Phys. 11, 2803 (1970)] for the labeling of the basis vectors in the reduction of an irreducible
representation of U{n + m) with respect to U{n) X U(m). Every basis vector can be written as a product
of lowering operators acting on the highest-weight vector.

1, INTRODUCTION

Nagel and Moshinsky! have some years ago con-
structed a set of operators which can be used for
lowering the irreducible vector spaces of Uln — 1)
contained in an irreducible vector space of U (n).
With the help of these operators,one can write
every basis vector as a product of lowering oper-
tors acting on the state of highest weight.

Inthis paper we construct a set of operators which
can be used for lowering the irreducible vector
spaces of U(n) X U(m) inanirreducible representa-
tion of U(n + m). Here U(m) is the subgroup of

Uln + m) whichtransformsthe first m components
of a vector in the defining representation of U(n +
m) and correspondingly U(n) transforms the last
ncomponents. For the labeling of the various IR's
of U(r) X U(m) (which have generally a multiplicity
bigger than one) in an IR of U(n + m),we use a
patternwhich we derived ina previous paper. 2 Every
semimaximal state [= a basis vector of highest
weight with respect to U{r) X U(m) in an IR of U(r)
X U(m)] can be written as a product of lowering
operators acting on the highest-weight vector. An
arbitrary basis vector may then be obtained by
acting with the canonical lowering operators of U(n)
and U(m) on the semimaximal states.

Work on similar lines has previously been done by
Devi and Venkatarayudu in Ref.3,where they have
explicitly constructed the basis vectors using a
boson operator realization for the cases U(4) | U(2)
x U(2) and U(8) L U(3) x U(3).

The knowledge of the explicit form of the basis
vectors is important at least in

(i) the calculation of the matrix element of the
generators.

(ii) the calculation of the Wigner coefficients for
Un).

When reducing the direct product of two irreducible
representations of U(»)toirreducible constituents,
one is led to consider representations of U(2r) in
the chain U(2n) D Ur) X Uln).4

Finally let us mention that the knowledge of the
explicit form of the IR's of U(rz + m) in the chain
U(n + m) D U(n) x U(m) is useful when construct-
ing representations of the noncompact groups

U, m). If one has a UIR (unitary irreducible re-
presentation) of U{z + m) in this chain, then one
may find UIR's of the group U{z, m) in the chain
Ulr,m) 2 Uln) x U(m) [U) X U(m) is the maximal
compact subgroup] by letting some of the labels
take complex values.

2. DEFINITION OF THE LOWERINGOPERATORS

We consider an irreducible representation (IR) of
Uln + m) characterized by the highest weight (A4,
Agy...yA,, ). According to Ref. 2 the Gel'fand-
Zetlin (GZ) patterns of the subgroups U(z) and
U(m) together with the pattern given below can be
used for labeling of a complete set of basis vec-
tors in the representations space:

Xm Am‘«l )‘m*z et )‘m*n 7
b — krln—l k’g‘l k’,'n-l
Npog RP2 kp-2 ocv fm2
(2.1)
LU S ky
I Iy ==+ 1.
L —

There are two rules restricting the range of the
labels (which are all integers):

(i) Every number in the pattern is less than or
equal to the number above its left and greater than
or equal to the number above it;

(ii) S}'zsj*l,j =1,2...,nandi=1,2,...,m— L

Si is the sum of the j first numbers on the (i + 1)
tﬁ row from the bottom minus the sum of numbers
immediately below right. For example,S} =21, —
I;and S =2, + kF + k%—k}—k%—k%. When
reading the pattern (2.1) from left to right in an
arbitrary row, the numbers never increase, and
when reading from top to bottom in any column
the numbers never decrease. (I1,l5,...,1,)is2a
highest weight characterizing an IR of U(n) and
correspondingly (71,72, ..,j,) labels the IR's of
the U(m) subgroup,where

j"-_-S,'{+k,'{, k;’;nExn\rm? v=12,...,m. (2.2)
Because every basis vector can be obtained by
acting with the known lowering operators ! of the
subgroups U(z) and U(m) on a semimaximal basis
vector,we can restrict our attention from now on
to these vectors. For the semimaximal states we
can drop the GZ patterns associated with U(z) and

U(m) and we can denote them solely by (2.1)

We denote the generators of Un + m) by E},i,j =
1,2,3,--+,m + m, Et = H,. They fulfill the com-
mutation relations

(2.3)

(Ej, EF] = 8,4 Ef — 6,E}
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The H,'s span the Cartan subalgebra. In unitary
representation the hermiticity condition
(E;')'r = Ej; (2.37)

is satisfied. Generators E} with 7 < j are raising
generators for the weights and the Ej with i > j are
lowering generators. The generators with the in-
dices less than or equal to m span the algebra of
the subgroup U(m) and the ones with indices

greater than m,the algebra of U(z). For any semi-
maximal state |s.m.> one has

Ei ls.m>=0, ifi<j
andi,j=1,2,...,m (2.4)

or i,j=m+1m+2,...,m+n,

Hils.m.>=j;ls.m>,
Hls.m.>=1__
fi=m+1lm+2,..

iti=1,2,...,m,
| s.m.>,

LamEn., (2.4")

For the highest-weight vector |M> one has

EHM> =0, ifi<j,ij=1,2,...,m+n,

(2.5)

HM>=xM> i=1,2,...,m+n.(2.5)

Comparing (2.1),(2.4’),and (2. 5’) one concludes

(2 A1 Apz oot Agen |

A1 Amel A mon 2.6)
M>= r : '

A Al Amez 0 Apane

i X, 01 X a0 Xon |

Let us now assume that we have found a set of
operators {Lj,j = 1,2,...,mandi=m+ 1,m + 2,

.,m+n}, which are polynomlals in the genera-
tors and which satisfy the following equations:

[Ef,Li)ls.m.>=0, k<l

and k,1=1,2,...,m (2.7)

or Rl=m+1m+2,..., m+tn,

k=1,2,...,m+n,
2.7

[Hk ’ L]‘] = (Gki - ij)Lj‘,

iy +ee

Lj‘ [Aj k{ . k%-m—l k%Lm
k%—m*'l . kj;l—

Aoy BT oeee REL G REL

. ~ XJ- .
1~ Xj—l kjl-l
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Equation (2.7) says that when acting with L' ona
semimaximal state the result contains only semi-~
maximal states. Because of Eq.(2.7’) we call the
L' the lowering operators. Using the lowering
operators one can give an operational definition
for the general semimaximal state by writing

-
r—Am hm+1 Xm4~2 )‘mﬂl
Npet kel kel -eo kmel
X2 k’;»z krzn'~2 e k:;-z
Al ki k% s k’}
] P P
m —W-
mﬂ(Lu) §)- m— "sl—m "i;nlu (Lz) ; m ~—¥i-m
-2 Y %oal B8
x...x m" (L i ,) L34 mo~ ™ fpa) m
‘m-! m+l
| 24—
m+n : i-m b
< L@ e T e, (2.8)

(However, this basis is in general nonorthogonal.)
In (2. 8) we can choose the following convention for
the order of the Li with different values of the
index 7 but with the same value of j: If one reads
the formula (2. 8) from the left to the right,the
index i decreases. From (2. 8) one can see that
the effect of a single operator L]." is the following:

L ["J’ K, Bt Wy By o k?.]

Ty B e BLg BEL Ky e K

_ [Rj kji te t'm'l kJ"- tw*l kfl
Ay BTN e REL G RILA LR e K
kY= (2.9)

The two-rowed pattern in Eq. (2. 9) means the
subpattern consisting of the rows beginning with
Y and A of the pattern (2.1) descmbmg a semi-
maximal state for which J, = k1l = k2=
ki-l,v=1,2, ,n. The operators L' given by the
formula (3 1) in Sec 3 satisfy

(L}, Lils.m.> =0,

i=12,... ,m+n.

(2. 10)

The proof of Eq. (2. 10) for the Li given by (3. 1)

is given in the Appendix. Using (2. 10), one sees
that these operators have a stronger property than
(2.9), namely

ymi,i'=m+1,m+2,...

et

k%—m—l k‘;— kji—m-*l tee
k'Ll-l kL1+ lk_g_m+1 ces
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3. CONSTRUCTION OF THE LOWERING OPERA-
TORS

In a similar way as it was done in Ref. 1 for the
canonical case U(n) D U(n — 1), we search for a
polynomial in the generators Ej which satisfies

i~m-1 i-1

JOUKO MICKELSSON

(2.7) and (2.7°). If we put L} equal to a sum of
terms of the type Ef Ei -..E{$'E!s with some
unknown c<r)(-‘3fflcle1r1i:s1 contammg elements from the
Cartan subalgebra, then (2, 7’) is automatically
satisfied. We have found that if we put

i-1 . m P 1 - m q
Li= 1.8, -1 1.8, % )2 i Z) ” n L
} =m+l v=j+1 7% p50 Bp>Hp-1>, . DppEmtl | ezl g —1 /40 9> 0401>, . >0 1:_5*1 I=1 gf”z
Hp By gt . . .
X E;PE“P ...Eprv;E;;gl...E:’;*E;’l, i=L2...m i=m+1,m+2,...m+n, (3.1

where §,, = H,— H, + | — &,

then also (2.7) is fulfilled. Note that (3.1) is not
the only solution of Egs.(2.7) and (2.7’) but it
seems to be the simplest solution. By comparing
(3.1) with (2. 27b*) and (2. 272 ") in Ref.1, one notices
the following:

(1) The Lm*1's,j=1,2,.,.m,are the lowering
operators t'or 1rreduc1b1e vector spaces of U(m) in
an UIR of U(m + 1).

(2) Xtheindexshifts m+k—>kandm—>n+1,
k=1,2,...,nare made in the operator Li ,the
result is a raising operator for the subgroup Un)
of the group Ufn + 1).

We now prove that (3.1) indeed satisfies (2. 7).
Consider first the commutators [E ’f,L*] for k1 =1,
2,...,mand k< I, We take an arbltrary term in
the sums over p and the p, in (3. 1). Because

E} commutes with the algebra of U(n), we conclude
that (B}, Ljlls.m> =01f

[EI;L (pl):“sm > = 0,

where m
L,(Pq) j+1 ‘qu‘ >ug1>io>oy=il
x( ——-—)E‘u‘ Eg -+ E2E} pp2m+ 1,
=1 8ij Ye Y 1 (3.2)

We have dropped the elements from the algebra of Un.
By |s.m.> we again denote an arbitrary semimaxi-
mal state. But L;(4,) is the lowering operator for
the jth weight of a UIR of U(m) in a UIR of

U(m + 1) [see Eq.(2.27b’) in Ref. 1]. Here the

{(m + 1)th component of a basis vector in the de-
fining representation is denoted by the symbol 4
instead of the number. m + 1, It then follows from
Ref. 1 [see Eq.(2.13")] that (3. 2) is valid.

The proof of (2. for k,l=m+ 1, m+ 2,...,
m + n, k< [,goes on similar lines. We take an
arbitrary term in the sums over ¢ and the v, in

NN, NN,
2 £y “ 3 2 C) 5

4 3 2

b NN ay N
5 4 3 b s 4 3 2

FIG 1. The operator L3 when m = 3.

r

(3.1). After dropping factors from the algebra of
U(m) (which commutes with E}), we see that
[BELi) lsom.> =0 if

[EZ,L (w)]ls.m.>=0, (3.3)
where
L¥v,)
i1 t-m-1 LI
=1L 6, -1 % Z
7 <0 “,’k‘p_1>'" >uemel
»
(H 1 )E Ef» ... EY?EN p < m,
=18, —1 Epoy K1 et

Using the commutation relations one can write

Y ! i1 Py
Li v :( ; E'P
( q) P Hp’ﬂp-l’z;’ﬂfm‘l Hp " Hp-1
, -
X...X Ep2 EY) U L +18 v, .
1 = =m
e 8il¢h g (3 4)

One can associate with the generators E B,A B =
m+lm+2,....m+n-—-1,m+n, » Vg, @ GToup
Uln + 1) The group U(n) associated with the EA P
with A and B different from v, is the canonical
subgroup U{n). Comparing (3.4) with (2.27a") in
Ref. 1,one sees that Li(v,) is a raising operator
for thls U{n) subgroup. I i then follows that (3.3) is
fulfilled [see Eq.(2.13") in Ref. 1]. We have now
fully proven (2.7).

There exists a nice illustration for L; by means

of simple diagrams. First draw a straight line
with ¢ —j + 1 dots labeled by numbers from j to

i, decreasing from left to right. Choose then % dots
(0 < 2=<i — j— 1) between the dots i and j in every
possible way and connect them to each other and to
the dots 7 and j by curves. Associate then with
every diagram a term in the operator L{ as fol~
lows: With each free dot v associate a factor &,

1if v 2 m + 1 and a factor §;, if v < m. For each
curve connecting two dots, say kand I,k > I, write
a factor E} in the same order from the left to the
right as in the diagram. As an example, let us find
L3 when m = 3.

The diagram (a) in Fig. 1 does not contain any
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free dots and the contribution from the curves is
equal to E3E$E3. Dot 4 in diagram (b) is free
and it gives a factor H — H4 — 2. The total con-
tnbutlon to L3 from (b % is then (Hy — H, — 2)
E§E3. After calculating in a similar way (c) and
(d) one gets

Ly =ESE3E3 + (H,— H, — 2)E3E3
+ (B, — Hy + DEJE;

+ (Hy— Hy — 2)(H, — Hy + 1)E3.

We finally list all the lowering operators needed
in the reduction U(4) { U(2) x U(2) (the simplest
case possessing nontrivial multiplicity).

L} =E3},

L3 = E3E% + (H, — H, + 1)E},

Ly=E4E3 + (H — Hy — 2)E4,

LY{=E4E3E} + (H, — Hy + 1)E4E}
+(Hy,—Hy~2) E§E2

+ (Hy — Hy — 2)(H, — H, + )E{.

The general semimaximalbasis vector for U(4)can
be written as

g Az
Xy kYR = (LY=Lt -4
11, x(L§)% ML) B >
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APPENDIX: THE COMMUTATOR [L},b} ]
We will prove here that

(Li,L¥]lsm.>=0, j=1,2,...m
iit=mt+lL,m+2,...

,m+n, (A1)
where |s.m.> isany semimaximal state. Because
of Egs.(2.7) and (2.7’) the only matrix elements
which could be different from zero are of the type

<s.m.|[L} L}]ls.m.>", (A2)
where
Hyls.m.>=h,ls.m.>, (A3)
Hls.m.> = (h, + 28,;~8,;— 8,;) ls.m.>".

We can assume that i’ < i. Let us first calculate

<s.m.|L{L¥|s.m.>". Using the explicit formula
(3.1) and the fact that the lowering generators of

U(n) X U(m) give zero when acting to the left, we

get
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<s.m.|L;-'L}’|s.m.>’
i1

=u Ly =y p=i =)
M(h hy+v—j+1)

x<s.m.|EIL}")s.m.>". (A4)
Using (3.1) once more and the fact that EJ com-
mutes with the generators contained in L}, except
with the elements from the Cartan subalgebra we
arrive at

i-1
<s.m.|LjLls.m.>= T (h—h, +p—i=1)

=m+l
m
X (h ~h,tv—j+1)
']"’1
ir-1i
x ugnq (hyy — b, + p—i"—1)
m -

X ”:I‘;[#1 (hj“h,,+v—]+ 2)

X <s.m.|E;’E;l'ls.m.>'. (A4")
For the term <s.m. |L}'Lils.m.>' we get
<s.m.|L¥ Lils.m.>’

i:-
Tus m+1 By =k, +p—i’— 1),
><v=1;[‘1 (hy—h,+v—j+ 1)
(A5)

x <s.m[Ei'Lilsm.>".

After replacing the H,in L;‘ by the correspond-
ing eigenvalues according to (A3),the lowering
generators of U{r) X U(m) can be commuted to the
left giving zero in the matrix element

<s.m.] E;'L; |s.m.>' and we eventually get

<s.m.lEj"L}ls.m.>’
i-1

p=m+l

h“+u—i—1+6”,,)
m
x II (h ~h,+v—j+2)
v=j+1

x<s,m. IEJ‘I’E}IS.m.>'

-1
—P m;q;uzu (hi—h“+u_l—l+6“i’)
m
x I (h;—=h,+v—j+2)
v=j+l J
X<s.m.lE}’EJi |s.m. >’
o + 1
= “1;;‘*1 (h h p.—l‘— )
X 1‘I (hj—h,+v—j+2)
v=j+l

x <s.m.|E}'Eils.m.>". (A8)

The matrix element of [Ei,E} Ei’] between the
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states |s.m.> and |s.m.>’ is nonzero, therefore
the second term in (A6). Comparing now (A4’) with
(A5) and (A6) one notices that

JOUKO MICKELSSON

<s.m.| LiLy ls.m.>" = <s.m. lL}"L}"ls.m}’,

and so (A1) is fulfilled,
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It is shown that the construction of “democratic” subgroups of Oyy. ; in the N-body problem is greatly
facilitated by the “proper” choice of relative vectors in the center of mass frame. The word “proper”
is taken to mean that the set of (N — 1) relative vectors forms a basis for reduced representations of
the corresponding democracy subgroup of Sy. The imposition of this requirement easily leads us to
the reduction chaing Og O SU; D SOP"and Og D SO} x SO X S03 O SO in the three- and four-body

problems, respectively, and to O4y 5 2 SOy, X SOP!in the N> 4 case.

1. INTRODUCTION

The democracy concept was first introduced by
Dragt! in his work on the three-body problem so
that in solving the problem, he would obtain a set
of basis states which treats all of the particles

on an equal footing. Mathematically, the idea takes
the form of a condition to be satisfied by certain
so-called “democratic” subalgebras of the SO,
Lie algebra, In this way,Dragt obtained the chain
of subgroups? O, O SU, D SOf°t, (We use the
superscript notation “rot” to distinguish the phys-
ical rotation group from other S0,’s.) The idea
was later extended by Lévy-Leblond3 who has
shown that in the four-body problem, the chain
giving the most highly symmetric basis functions
is 04 D S0 x S0% X SO3 D SOz°t, while for N> 4,
one has the O,y _, O SOy, X SOZot D SO1°t struc-
ture. In both of these works, primary emphasis is
given to the structure of the democratic Lie alge-
bras involved, while the role of the particular
realization of the generators of these algebras in
terms of the laboratory position vectors remains
unclear.

The purpose of this paper is to show that the ex-
plicit choice of relative vectors should be dictated
by the specific kind of “democracy” which is be-
ing considered, and is not a question to be answer-
ed by ansatz. Indeed, we show that reltative vec-
tors carrying reduced representations of an in-
variant subgroup G, C Sy (i.e., Gy is the democ-
racy subgroup of the permutation group S,) are
the “natural” variables for G, democracy.

2. RELATIVE COORDINATES AND DEMOCRACY

Let the vectors {r:a =1, 2,..., N} designate the
laboratory position vectors of a system of N identi-
cal particles. Taken together, the vectors consti-

tute a basis for a real representation of the per-
mutation group of particle indices, Sy. This repre-
sentation is known3 to be reducible into the irre-
ducible components {N} ® {N-1, 1} by an orthogonal
transformation to the center-of-mass frame

N
qQ*= Bz-%_aaﬁrﬂ’ a=12,...,N, 1)

where the {a aB} are elements of an orthogonal
matrix A, with

ay,=NV2 B=12,...,N, (2)
Equation (2) guarantees that the center-of-mass
position vector is properly decoupled. The re-
maining (N-1) independent relative vectors {q*:
a=1,2,...,N-1} are a basis for the {N-1,1
representation of S;. The skew symmetric Hermi-
tian operators

8 3
=7 — g8 ——
Agp = ’(q]""a?; % aq“j) s

@, =1,2,...,N—1, j k=123 (3)
form a realization of the SO,y generator algebra.
(Latin indices denote the usual 3-space compo-
nents of the relative vectors.)

The problem of constructing a complete set of
commuting observables for the free N-body prob-
lem is equivalent to that of the construction of an
appropriate chain of nested democratic subgroups
of 04y, With corresponding Casimir-operators.
Let Gy ={g,:7=1,2,...,1} be an invariant
subgroup of Sy = {s,:p=1,2,....N!}. Then the
set of infinitesimal operators {€ ()} are genera-
tors of a “Gy-democratic” subgroup of O,y s,
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ture. In both of these works, primary emphasis is
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unclear.

The purpose of this paper is to show that the ex-
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ed by ansatz. Indeed, we show that reltative vec-
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tute a basis for a real representation of the per-
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sentation is known3 to be reducible into the irre-
ducible components {N} ® {N-1, 1} by an orthogonal
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where the {a aB} are elements of an orthogonal
matrix A, with

ay,=NV2 B=12,...,N, (2)
Equation (2) guarantees that the center-of-mass
position vector is properly decoupled. The re-
maining (N-1) independent relative vectors {q*:
a=1,2,...,N-1} are a basis for the {N-1,1
representation of S;. The skew symmetric Hermi-
tian operators
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form a realization of the SO,y generator algebra.
(Latin indices denote the usual 3-space compo-
nents of the relative vectors.)

The problem of constructing a complete set of
commuting observables for the free N-body prob-
lem is equivalent to that of the construction of an
appropriate chain of nested democratic subgroups
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Let Gy ={g,:7=1,2,...,1} be an invariant
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tors of a “Gy-democratic” subgroup of O,y s,
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denoted 75 , provided that the following four
equations hold:

spegj)s;l € {e(f})}, p= 1’ 2, v 9N!, (4)

£,CW gt = €@  r=12,...,k, (5)

©F =2 @A, ®)
«, 8

CY, el = T g, €5, o

oninjn

Equation (4) states that the new generator algebra
must be an invariant subspace with respect to
Sy; Eq. (5) requires that each element of the G-
democratic algebra must itself be a basis for the
identity representation of Gy; Eq. (6) is the sub-
group condition specifying the imbedding of the
new algebra in the parent SO,y _, Lie algebra.
The coefficients 7’ are the structure constants
of the subgroup 25, - The utility of democracy
stems from Eq. (5)." The observables of the N-
particle kinematic states will be Casimir opera-
tors formed from the €{. Obviously then, Eq. (5)
guarantees that each such Casimir operator will
commute with the entire group Gy, implying that
basis functions diagonalizing such observables
will be highly symmetric.

We must now consider a fixed Gy C S and deter-
mine: the appropriate c.m, transformation matrix
A(Gy), the matrix X(Gy) giving the embedding in
SO3y.3,and the structure constants 7. of the
ZG group, Clearly the best choice of relative
vectors {q*} will render the matrix A simplest,

Let I'{#1.1) pe the (N-1) X (N-1) orthogonal matrix
representative of operator g, € G, in the {N-1,1}
IR of S, carried by a set of relative vectors {q*:
@=1,2...,N-1}. Then Egs. (5) and (6) and defi-
nition (3) give the matrix relation
rv-1uy =™ p oy 9k, (8)
as a necessary condition for G, democracy. It
now follows directly from Schur's Lemma that
whenever the representation (g, ~ I‘T(N‘l- 1}) of
Gy is in reduced form, the matrix A will be diag-
onal. Hence we arrive at the definition: “Proper”
N-body relative coordinates for Gy democracy are
those carrying reduced representations of G.

It is now obvious that for S, which is irreducible

onthe {q: o =1,2,... ,N-l}, one has
N-1

@,= 2 Aw,i<j=1,23, 9

a=1

which are the generators of SOT", For N > 3 it

is also the case that A, the alternating group, is

irreducible4 and therefore

Z;SN = EAN = S07*, (10)

Hence Sy democracy ingeneral, and A, democracy
Jor N> 3, supply no conditions restricting the
matrix A and give only J, = SO?;’*.

The representation (g, T, (¥-1. 1)) of G, may be
reducible (and reduced) in the {g®} basis. In this
case, X will have the form

)&')11 0
A= ’ 1)

.
0 ADr f

where the matrices 7, are unit matrices of dimen-
sion equal to the dimension of the corresponding
Gy IR, and the X are numbers determined by the
remaining democracy conditions (4) and (7). We
now see that the sum on a and B of Eq. (6) is to be
taken only over the indices appearing in the oth
submatrix of Eq. (11). The number of irreducible
components of G, carried by the relative vectors
is just the number of independent operators
{e,:0 =1,2,...,j} of like lower indices 7" and j".
Hence we have the result that if j is the number of
IRs of G, in the representation(g,~ I'{¥~1.1})
then 9j is the maximum number of operators form-
ing the 2, ¢, generator algebra.

It can happen that the orthogonal transformation
A cannot reduce both Sy and G,. This is the case
when an IR of G, contained in the representation
(g,—~ T}¥~1.1}) consists of complex representa-
tion matrices. The representation may however
always be reduced in terms of a basis of complex
vectors {z*: @ = 1,2, ...,N-1},defined by the
matrix equation

22 a2
=U} | s (12)
.zN"l w-1)x1 "IN_I -1)x1

where U is the (N-1) X (N-1) unitary matrix re-
ducing the matrices I{¥N-1.1}

re 0
UI"#N‘I,].} Ul = *. ’
0 1"1(_;?)
r=1,2,...,h (13)
It now follows that in the {z*} system
by (1)’]1 0
A= UAUY = ‘. .
* 25
0 AL (14)

Hence, it is always possible to introduce coordin-
ates (real or complex) appropriate for Gy democ-
racy.

3. THE CASES OF 3,4 AND N > 4 PARTICLES
A. Three-Body Problem

S5 has the sequence of invariant subgroups Sy D Aq
O 1. Any of the six elements of S, may be written
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as products of the permutations

o=(12) o <32

The permutation (123) is even and generates the
cyclic group of order 3,4,:

= {(123), (123)2, (123)3 = 1},

It is one of our-results that E = SOr ot , S0 we
turn immediately to A;. The 1rreducib1e repre-
sentations of A3 are all one dimensional and are
realized as third roots of unity. The A;-demo-
cratic substructure of §; is therefore best re-
vealed in terms of a set of coordinates {g!, 2}
obeying

HAROLD W, GALBRAITH

(123)qe = e2mi/3 qo o =1, 2. (15)
It follows that n» = 0 gives q* o R, , implying that
the {q*} are necessarily complex. It is also not
hard to see that we must search for only one com-~
plex 3-vector z such that
(123)z = e2mi/3 4 (16)
then for the other independent vector we have z*,
satisfying
(123)2* = ¢ 27/3z% (17)

The set {z,z* R, } are related to the lab vectors
by

P T —

where we have made explicit use of the fact that
the last row of A determines two of the three
parameters of a 3 X 3 orthogonal matrix. The re-
maining degree of freedom is expressed as an
angle a. The unitary matrix of Eq. (18)

U= 1 |ie-i® —eg-i6
T /3 |—iei® —ei®

is the most general, such transformation giving z*
as the second independent complex vector.

(19)

Combining Eq. (18) with the condition of 4; irre-
ducibility, we have from Eq.(16),

@ =3m 6 = arbitrary. (20)
This value for « is just the one required to make
A coincide with the transformation to the so-called
“Jacobi” coordinate system, The factor e-i9
appears as an over-all phase for z having no physi~
cal significance Jacobi coordinates are given by

1 p2 21
\/"(r r )7 ( )
q2 = () V2Tt + 312 —13], (22)
By setting 6 = 3 7, we get
1,
- + g2 23
z=—= +iq ) (23)
and
1 ,
z*=—(q! — iq2). 24
Jz“(q a?) (24)

r 7 . o | [cosa , sina cose — sina 2\V/2
2 jie"i® — g-i® — — (5 cosal|r’
% V2 V6 ®
* 1 . . 3 i
3 1 1 1
=R m 0 0 1 = = 3
B | 1l & 7 7o

I

The free three-particle Hamiltonian is proportion-
al to the 6-Laplacian

A=Y, * Yyu. (25)
Obv10usly the full symmetry group of this operator
is U;. The coordinates of Eqgs. (23) and (24) were

f1rst used by Simonov® and give SU, representa-

tions automatically,

We now demonstrate explicitly how the infinitesi-
mal generators of the Dragt-U; may be obtained.
Equation (6), which is the deﬁnmg relation of A, is,
in matrix form,

(0) = trace (A @- A, (26)

where Eq. (26) is expressed in the coordinate sys-
tem of the g However, the trace is invariant under
similarity transformations, and we have corres-
pondingly in the z* system

i)

eE = tr(x©- A,,), 27)

where in Eq. (27) 1’ is diagonal and [A}; ] satisfies
the relation

Al =UA; U, (28)

We first construct € in terms of the A% to re-
cover the Dragt-U, explicitly, and then use Eq.(27)
to express €{7 in terms of the z of Eq. (23).

Using Eq. (14) with the U of Eq. (19), we have

o (A1) + a(2))
TP = @)

(1) — A(2))
A 2@ (29)
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where we have set

A 0
A= 0 A2))°

(30)
Equation (26) then gives
@i, =3 [;\(1) + A2) (A11 + AZZ)
— (A1) — \(2) (A}j2 - A%})]. (31)
Defining the operators
£, = AL+ AZ2 i<j=1,2,3 (32)
Nij = Aliz A%}, ,j=1,2,3 (33)
we get
[J‘)'z]’ £zl]']
= il0;, L5, + 65, Ly — 9,8y, — 05, L), (34)
[»C”, z'}’]
1(6”; '7ir - Gjil Nijr J]rN”I i]l _“r)’ (35)
[Nz; ’ Nl’J’]
=i(5,;,L it 611"8”' + 5:;/‘311' ji'£ij,): (36)

for all indices ¢, j of Eqs.(32) and (33). Of course
the &£,; are the generators for the rotation group

S0t The algebraic requirement Eq. (7) gives
AV = A2 =, (37)
and .
e, =3[il; + N;jl, 47i=1,2,3, (38)

the Dragt result.
To obtain the generators in terms of z we use
Eqgs.(27),(30), and (19) along with the requirement
(28). One easily finds
9 x 0
C.= 2 — — ;" —
H az 4 3z}

as the Weyl generators of Uj.

(39

B. Four-Body Problem

Here we are dealing with the chain of invariant
subgroups S; D 4, D V,D 1. As previously noted,
D, =204 = SO:§”°t The first possibility in the
four-body éase is then V,. It is an Abelian sub-
group of A, generated by the operations

mon-(113)

an-(225)

We also have

[(12) (34)]2 = [(13) (24) = 1.

Therefore the representation of A, carried by the
{q', q2, q3} will be reduced provided that

(12) (34) q*=+ q~ (40)
and

(13) (24) qo =+ q©, a=1,2,3, (41)
are satisfied. It is easy to see that the two plus
signs for any single q*give just R . Hence, we
consider herethe 3IR'sof V' correspondmg to the
choices (%), (¥), (=) in Eqgs. %40) and (41). Further-
more any given choice fixes all but one element
in row a of the A matrix, the remaining element
being determined by the orthogonahty of that
matrix., Therefore independence of the {q} re-
quires that each vector transform according to a
different IR. We choose

ql- (2), (c1)

2~ (F), (c2)

@~ (=), (c3)
and easily get

ql =% 3[(r! +r2)—(r3 + r“)]y (42)

Q2 =+ [(r! +13) — (r2 + r4)), (43)

@3 =% 3[(r! +r%) — (r2 +r3)]. (44)

All other choices of (c1), (c2), and (c3) give per-
mutations among Egs, (42), (43), and (44). Now the
A-matrix of Eq. (11) has the form

A o 0

0 0 @ (45)

and from Egq. (26) we have
e(%) = alw A%tjg,

a=1,2,3, i<j=1,23, (46)

Equation (4) requires that

A = (2 = \(3 (47)
and that the ¥, -democratic algebra be the direct
sum {€}) e (‘3(%) ® @ ()}, These operators are the
generators of the SO} X SO% X SO% group of Lévy—
Leblond.

C. (N> 4)-Body Problem

In this case, where we have only Sy O Ay D I avail-
able, we must consider only democracy with re-
spect to the identity operator for the construction
of subgroups missing from O . D Soyt,
This is a serious failure for gN mocracy smce Eq.
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(5) becomes an empty statement. Combining condi-
tions (4), (6), and (7), we arrive at only the SO, 5
and SOt generator algebras, indicating that the
expansion of Eq. (6) should now also involve a
restriction on the component indices i and . We
then obtain the I-democratic algebra of generators

3
Lé= 3 AP a<p=1,2,...,N—1,

i=1 (48)
The set {L*8} generates a group SO,_,. The ele-
ments of this group are then proper? rotations in
a Cartesian space whose axes are labeled by the
indices {a} of the relative vectors {q*: @ = 1,2,
e, N—14

Since we have

[Le, £,]=0, (49)
where £, = Ef:i Agg are generators of SO,
it follows that the maximal I-democratic sub-
algebra of O,y ., is the direct sum {L*¢ o &, },
generating the direct product group SO, X'SOI°t,
Hence we have for N> 4 the chain 0, _, D SO, _,
X SOt O S0pt6

4, CONCLUSION

We have given a simple criterion for the construc-
tion of “natural” relative vectors for the N-body

HAROLD W. GALBRAITH

problem. In terms of such coordinates, the democ-
racy substructure of O,y_; is most clearly reveal-
ed.

We find that democracy with respect to the full
permutation group S, requires only thatone proper-
ly decouple the position vector of the center of
mass, and gives the familiar rotation group SOI°t.

In the three-body case, the alternating group 4,
leads us to complex coordinates and the Aj-demo-
cratic SU; of Dragt.

In the case of 4-particles, we are led to the so-
called “symmetric” coordinates by the democracy
group V,. The corresponding subgroup of Osn-3
being the familiar SO X S0% X SO3 of Lévy-
Leblond,

Unfortunately for N> 3, the alternating group A,
gives only SOZ°t and no new restrictions on the
relative vectors, This means an essential failure
for democracy in the N > 4 -body problem and we
obtain only the I-democratic group structure
Ozy 2 SOy, X SO,
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The existence of solutions for the Lippmann—Schwinger (LS) equation for the Coulomb problem is
studied by investigating whether its kernel belongs to the Hilbert-Schmidt (HS) class. The kernel for
each partial wave is shown to belong to the HS class for complex energies whereas for real energies it
becomes unbounded, Unlike the case of short range potentials, e.g., the Yukawa potential, even the suit-
ably symmetrized kernel does not belong to the HS class for real, positive energies. These formal pro-~
perties strongly indicate that a unique limit for the partial wave off-shell Coulomb T matrix as it appro-
aches the unitarity axis may not exist. It is found that exploiting the O(4) symmetry of the Coulomb
Hamiltonian (H) in the subspace of the negative spectrum of H and the O(3, 1) symmetry in the subspace
of the positive spectrum of H, one can construct the off-shell Coulomb T matrix in terms of the eigen-
solutions (Sturmians) of the kernel of the Lippmann-Schwinger equation. These follow from the work of
Perelemov and Popov, and Schwinger on the Coulomb Green's function. On the basis of the generating
functions for the Sturmians, various integral, contour integral, and discrete sum representations for the
complete off-shell Coulomb T matrix are derived. In this way, we explicitly demonstrate that indeed the
T matrix has a nonunique limit as one approaches the unitarity axis. It is also shown that when the
asymptotic Coulomb distortion is taken into account, the physical Coulomb amplitude can be deduced
from this Coulomb T matrix. Thése results incidentally rectify some errors in the earlier works. Since
for both negative and positive energies the Coulomb T matrix is obtained as the explicit solution of the
LS equation, the validity of the generalized unitarity—the Low equation—in a certain sense is guaranteed.
This is proved in a general way, by showing that a generalized Low equation follows when the energy is
complex only from the LS equations and some defining relations; in the Coulomb case, the generalized
unitarity relationship for real energies must be interpreted as the limit when the imaginary part be-

comes zero.

1. INTRODUCTION

A detailed knowledge of the complete off-shell
two-body T matrix for each pair of interacting
particles is of crucial importance in the Faddeev
formulation of the three-particle scattering.1,2
The two-body T operator obeys the well-known
Lippmann~Schwinger (LS) equation. If the kernel
K of the LS equation is compact, then the T matrix
exists and can be shown to be unique. A kernel is
compact if it belongs to the Hilbert—-Schmidt (12)
class (but a compact operator need not belong to
HS class). For complex energies it can be shown
that K belongs to L2 class if the interaction A’
does.3)4 Furthermore, an existence theorem
specifying the class of spherically symmetric
potentials for which the kernel (K), of the Ith par-
tial wave LS equation is compact when energy is
held complex is proved recently by the present
authors.4 It was shown that in the case of Coulomb
potential, (K), belongs to the L2 class if the
energy is held complex even though Tr(K1K) is
infinite. However, it was found that for each par-
tial wave, Tr(K'K), diverges when the energy was
made real and positive. This raises some ques-
tions about the validity of the full LS equation for
the two-particle Coulomb T matrix, and the exis-
tence of the off-shell partial wave Coulomb T
matrix for real positive energies. Such doubts
were expressed by West5 and Gerjuoy® based on
the familiar problems of asymptotic distortion of
the Coulomb solutions.

For negative energies, Schwinger? constructed the
complete Coulomb Green's function in the momen-
tum space by explicitly solving the LS equation
after expressing it in a suitable four-dimensional
space (to be explained later). Nutt® constructed
the corresponding two-particle off-shell Coulomb
T matrix and attempted to continue it analytically
to positive energies. He tried to verify the off-
shell unitarity relation for his 7 matrix and ob-

tained zero for the discontinuity across the unit-
arity cut along the positive real axis in the com-
plex energy plane. McDowell and Richards? and
Nuttal and Stagat10 have found errors in Nutt's
calculations. They found the physically anticipated
discontinuity, but with an energy dependent factor.
In this paper we will describe the correct analytic
continuation for the Coulomb T matrix for positive
energies and resolve all the troubles faced hither-
to concerning the Coulomb T matrix.

The special nature of the Coulomb problem has
two facets to it: the HS nature of the LS kernel

and its symmetrized form, on the one hand, and
the hidden symmetry of the Coulomb Hamilton,

on the other. These two apparently independent
features show that the Coulomb potential stands
as a unique case by itself.

The hidden symmetry of the Coulomb Hamiltonian
was first exemplified by Fock.11 The Coulomb
Hamiltonian, besides being invariant under the
three-dimensional spatial rotations, is also in-
variant under four-dimensional rotation in the
Euclidean space in the subspace of negative
energies and in the Minkowski space in the sub-
space of positive energies. Schwinger's? deriva-
tion uses the O(4) symmetry explicitly. Hostler's
work!2 on the Coulomb Green's function in the
configuration space also stresses the importance
of the hidden symmetry of the Coulomb Hamilton-
ian. The full dynamical symmetry group of the
Coulomb problem is the homogeneous Lorentz
group. An excellent exposition of the properties
of the representations of the Lorentz groups may
be found in a review article by Bander and
Itzyksonl3 (BI). These have been exploited by
Perelomov and Popovl4 (PP) who construct the
Green's function for the Coulomb problem, thus
extending the work of Schwinger. By combining
the works of BI and PP we have derived here the
corresponding 7 matrix. We express the T
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matrix in two more forms: one, in terms of the
continuous spectrum eigensolutions of the LS
kernel and, two, in terms of a one-parameter
definite integral in an infinite domain. The latter
follows directly from the work of PP. The last
mentioned integral can be further evaluated by
the method of contour integration and the results
of these correspond to the work of Norcliffe

et al.15,16 and Roberts, 17> 18 who arrived at.it
from an elegant analysis of the problem using
classical path integral technique. Finally, a con-
tour integral representation of the T matrix is
obtained by us and this succintly displays the
troubles with the analytic continuation procedure
of Nutt. From the infinite integral representa-
tion, we show that, on evaluating the T matrix on
the mass shell, the familiar Coulomb amplitude
can be deduced.

Another aspect is the unitarity of the Coulomb T
matrix. In two different ways, we demonstrate
that the generalized unitarity for complex
energies—the celebrated Low equation—is auto-
matically satisfied by any T operator obeying the
LS equation., However, in order to obtain the well-
known on-shell unitarity relation, a proof for the
existence of a unique on-shell limit of the ofi-
shell T matrix when energy is made real positive
is needed. 19 We discuss this question here with
special reference to the Coulomb problem.
Ford20 analyzed in detail the cutoff Coulomb
problem and found that the final result depended
critically on the way one considered the mathe-
matical limiting procedure. Faddeev2! considers
the Coulomb potential as a limit of the Yukawa
potential, but with a difference, that one should
renormalize the wavefunction associated with the
Yukawa potential before taking the appropriate
limit. It is known that a cutoff always destroys
the original analytic properties of the solutions3
and, for some recent remarks concerning such
effects, one may refer to the work of Nelson

et al.22 In view of our results in the present
paper, such an ambivalent approach to the Cou-
lomb problem is found unnecessary. The real
reason is, of course, the symmetry of the problem
which is altered when the Coulomb potential is
screened or cut off and the interesting aspects of
the problem are lost. Moreover, the LS kernel for
the cutoff or Yukawa potential belongs to the HS
class while in the limit of the Coulomb potential
it does not.

The plan of the paper is as follows. In Sec. 2 we
investigate if the kernel of the LS equation for the
Coulomb problem belongs to the HS class in order
to determine the existence and uniqueness of its
solutions. In Sec. 3, the symmetry of the Coulomb
Hamiltonian is first briefly reviewed, and various
expressions for the complete off-shell Coulomb

T matrix valid in different regions of the four-
dimensional hyperspace are obtained. Section 4
deals with the question of unitarity. The last
section summarizes the results. In a separate
paper, the implication of these results for the
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Faddeev approach to three-particle Coulomb pro-
blems will be discussed.

2. THE TWO PARTICLE T MATRIX—FORMAL
RESULTS

In the time-independent scattering theory, the
resolvent operator G* is given by

Gt =(E—Hzib)1 2.1
and satisfies the Lippmann—-Schwinger (LS)
equation

G* = G§ + GEH'G* = G§ + G3TG. 2.2)

Here H is the Hamiltonian operator given by the
sum of “kinetic energy” operator H, and the
potential energy operator H'; E is the center of
mass energy and

G¢ = (E— Hy +id)™1. (2.3)
The T operator defined by G§T = G*H’ obeys the
LS equation

T=H + HG}T=H + HG*H". 2.4)
For two-body scattering, the transition amplitude
is given by

Tgy = (‘I’o(E: Bl T"I’o(E: a), 2.5)
where ¥,(E, ) and ¥4 (E, ) are the eigenstates of

H, obeying the final and initial state scattering
boundary conditions.

Now we will briefly discuss the existence of solu-
tions for the LS equation (2. 4) by examining if the
kernel of the LS equation belongs to the HS class.
It should be stressed that this is only a necessary
condition for the existence of the solution. The
kernel K is given by
K=HG{§ 2. 6)
and it belongs to the HS class if the trace over
the operator product KK is convergent. For
spherically symmetric potentials, we may write

ol

Tr(K1K) = 2;(21 + Dir(K1K),.
=0

We have the result? for the Coulomb potential
212962 /7

2.7

4 2
tr(K1K), = rz—ji?-fy% [1 + ;tanﬂ(é-r)]. 2.8)

This evaluation shows that as long as § = 0, how-
ever small, Tr(K1K), exists even for £ > 0 but
the sum (2. 7) diverges. However, in order to
prove the uniqgueness and existence of the solu-
tion of the LS equation, it is sufficient if one
shows that some finite power of the kernel, say
K™ belongs to the HS class. This can be studied
in detail for Coulomb-like potentials V (7) = g/r¢
and one finds that the mth iterate of the kernel K
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belor;mgs toL2classifa > 1+ 1/(2m)and 1 <
a < 3.

In the analysis described above, we had restricted
to 5 > 0 whenever E was positive. However, this
does not shed light on the existence of solutions
for real positive energies with § = 0, which is the
case of physical interest. This point was investi-
gated in general elsewhere by us,19 and we sum-
marize the results.

Unique solutions exist for the following two
- integral equations:

T(E +i6) = H' + H'G{T(E + id) 2.9)
and
T(E +ib) = A1/2 + g12[g 212G 121 T(E + ib)
with . (2.10)
T(E + i8) = H'Y2T(E + i0), (2.11)

if the respective kernels of (2. 9), (2. 10) belong to
the HS class. Furthermore, T(E + ¢56) has a unique
limit as 6 = 0 and this provides the.analytic con-
tinuation for T(E + i6) on to the real line with
6 = 0. The kernel
K= H'1/263H’ 1/2 (2.12)
was studied in detail for spherically symmetric
potentials, and it is found that tr(X1K), is finite for
a certain class of spherically symmetric poten-
tials. It was found that K™ belongs to L2 for V,(»)
but with 1 < a <2, if
a>1+1/m. (2.13)
Thus the analyses of K and K show that for the
Coulomb potential, both K” and K™ belong to L2
class only if m — © implying infinite number of
iterations. In view of the presence of every power
of (2,2,€2) in the asymptotic Coulomb distorted
state, this result is not surprising. Therefore, the
on-shell limit of the Coulomb amplitude has to be
defined necessarily with respect to the Coulomb
distorted asymptotic states. Interestingly enough,
Green and Lanford23 have established the exis-
tence of Mgller operators and hence the S matrix
for the same class of potentials defined above,
showing that the time-independent and time~depen-
dent formations of scatteringtheory are equivalent
only for such a class of potentials.

3. SYMMETRY OF THE COULOMB PROBLEM
AND THE CONSTRUCTION OF THE T
MATRIX

Fock1! showed that the Hamiltonian of the hydro-
gen atom, besides being invariant under the three-
dimensional rotation group 0(3), also possesses a
hidden symmetry of a larger group. For the sub-
space where E < 0, this is the four-dimensional
rotation group O(4). For the subspace E > 0, it
has the symmetry of the homogeneous Lorentz
group O(1,3). The “complete” dynamical sym-
metry group of the hydrogen atom is the homo-
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geneous Lorentz group. The irreducible repre-
sentation of the symmetry groups of the hydrogen
atoms are obtained from the eigensolutions of the
corresponding LS kernel, the so-called Sturmian
solutions used in atomic physics.

These Sturmian solutions can be constructed by
solving the eigenvalue problem

1
lp—p'l2 E— E,, +i6

2 2402 ,
272 ¥p').

(3.1)
Following PP, we find that for E < 0, the three-
dimensional momentum space can be visualized
as the stereographic projection of the four-
dimensional hypersphere (E < 0) and hyperboloid
of two sheets (E > 0) defined by the coordinates

¥(p) = Ja3p’

gi = 21’019; /(P2 * Pg), i= 1’ 2, 3, (30 2)

&0 = (3 * p2) /(12  pE @3.3)
with

(3¢ 1812=1, p,=(m|E})N/2, (3. 4)

+ here corresponds to E 5 0, respectively.
In terms of the £ variables, Eq. (3. 1) becomes

d3¢ w(t)
v e [ L5 D8] @3.5)
with 212 fs, gy lE— g2
_|p2xpg |3 a3
d3p = ‘____Zpo | o (3. 6)
+ 4p2|p—p' |2

((-¢')2=2[1-(&")] =

(p2  pg)(p'2 + pg)’

3.7
¥(¢') = const (p2 + pg)¥(p). 3.8)
The Coulomb parameter is given by 7 = z,2,¢2m/
po- S, denotes the three-dimensional surface of
unit hypersphere for E < 0 and S_ denotes the two-
sheeted surface of the unit hyperboloid with upper
sheet given by 1 < £, < + © and the lower sheet
by—1 32§, >— o, for E > 0. The  signs corres-
pond to £ <0 and E > 0, respectively. The nega-
tive energy solutions are given by the four-
dimensional spherical harmonics Y,,, (¢£):

Ynlm(g) = ann(as 8, @) = nnz(a) Y, (9, 9),

I, (a)=[3Tn2(M2 — 1) -+ (2 — 2)]"1/2 3.9)

. d l
1%
x (sina) (dcosa) cosna,
with

£x = cosa, £, = sina sind cos¢,

£, = sina sind sing, §3 = sina cosé.
Y,.(9, @) is the spherical harmonic. The solutions
corresponding to E > 0 can be obtained by making
the replacement

a-ia, n->3ip, O0sp<w
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with cosa — + cosha, sina - sinha. The * sign
here refers, respectively, to the upper and lower
half of the hyperbola. The three-dimensional
spherical harmonics form a complete orthonormal
set:
d3t
f go m(g) rllm/(g) = 6 6”/6mml’

o 7l
2

n=11=0

i
4? Vim(€) G () = 68E —~ &),

The corresponding orthogonality conditions for the
continuum eigensolutions are obtained by replac-
ing S, by S_,n by p, and the Kronecker symbol is
changed by an appropriate delta function. The
completeness condition is now similarly changed.

The set of functions Y, (@, 8, @) with fixed p
forms a canonical ba51s for the infinite-dimen-~
sional unitary irreducible representation D(0, p)
of the homogeneous Lorentz group. Thus with a
given E, the Sturmian functions form a basis for
irreducible representations of the homogeneous
Lorentz group.

The case with E = 0 is discussed in detail in Refs.
13, 14, It suffices for our purposes to note that in
this case the hidden symmetry of the Hamiltonian
is the nonrelativistic Galilean group. For the
attractive case, one has square integrable solu-
tions while for the repulsive case, there are only
unbounded solutions.

The equation for the Green's function written in
momentum space is

2
( —22;”* * z&)G*(p, p’: E)
G*(p”,p’, E)
lp—p” |2

2
_ 212€

Py = 6@ (p— p).

(3.10)

* 6 here specifies the boundary condition in the
usual way. By using G+ = G§ + G§TG}, it is
found that the corresponding 7' matrix is
T(,p’, E) = [E + i5 — p2/(2m)][G*(p,p’, E)
- GE(P, p': E)][E +i6 — plz/(zm)}
The complete expression for G*(p, p’, E) has been
derived by PP14 as an explicit solution of (3. 10)
using the wavefunctions just summarized. From

this, the expressions for T can be derived using
(3.11). We thus obtain the following results.

(i) Eigenfunction expansion:
_ o0 1 41,3 1/2 Ynlm(E) }
T p, B) = n?f:ﬁ‘n +n{< ) (13 + 1?)
/: * (g0
x{(ﬁ)l 2 Yun (8) } (3.12)

m (pg +'2)

For the repulsive case,{Y,,(£)} are not solutions

d3pll

(3.11)

E<O0:
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of the corresponding eigenvalue problem and
hence an expansion of the form (3. 12) is not mean-
ingful in the same sense as in the attractive case
(See Note added in proof in Ref. 24).

E>O0:
T(@,p', E) = — 1 [.” dp[F*(p) + 2nF3(p)]

x gﬂ;{(&?ﬁ)l’z Y n£) } {(9_8)”2 pY@* (%)

i

m (p2 - p3) '2 — p7)
(3.13)
_ — npg w _
an2m( pg — p2)(p§ — p'2) sinhy _ f_oo dpp sinlpy/2)
X [Fit(p) + 2nFz(p)] (3.14)
with
— 2/p coth(mp/2)
Flo) —{ + 2/p[sinh(np,/2)]V (3. 15)
g p-1 [op/?. —7 coth(np/Z)]
2 — 72 y
F3(p) = p?/4 "1 * 10 , (3.16)
p sinh(mp/2)[p2/4 — n2 % i6]
and
o=+1 if £, >0,8,>0, 6.17)

if £ <0, <0.

=—1

From the definitions (3. 6)—(3. 9), the functions
specified in{--+} in the above are seen to be the
Sturmian functions.

(ii) Infinite integral representations:

E<O0:
/2
re,p'E) = —————
®,p’, E) Py E—D
N (1 4n2 oo Sinh[(r — x+)k]dk>
€.8iny, "0 sinhrk(k2 + 92)
with (3.18)

cosy , = (£¢),
= (p2 + p3)(p'2 + p3)/[ v Ip — 9’ [2].
E>O0:
1Py 1
2mu2 |p—p’|2
% (1 _ 4n « (ok — 1 cothnk) sinkx_)

T(p’ P’ E) =

€, sinhy_ 0 (p2 _ p2 1 4p)
with (3.19)
coshy_ = (§£7), £,64 >0,
(02— )2 —pB)
> pglp~plz
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MPo
T 'y E) = ————
®,p,E) =3 -
4n2 sinkx_
x (1 S AR gl X )
€, sinhy_ "0 sinhnk(k2 — 72 + i6)
(3. 20)
with coshy _ = — (£&"), £5¢f <O.

In all the above, (£¢') means the scalar product
defined in conformity with the metric stated
earlier for the cases E 2 0. Alternatively, for
later purposes, one could rewrite the integrals
here in more convenient forms:

w sinh(r — x )k dk

fo sinhnk k2 + 92
1 .o sinh(r—y,) dk
== g o —smmmE FFHe @20
F(k) sinkyx_ 1 e
f”__(_)_si._).(_dk=_‘f°° Flb) —————d
0 k2 — 72146 2 "~% k2 — n2 {6
(3.22)

where F(k) can be identified from comparison

with the integrals in (3. 19) and (3. 20) and is odd
in k. The signs are here chosen so that when these
integrals are evaluated by contour integration, the
closing of the countour is in the upper half % plane.
The above results follow directly from the work of
Pp.14

(iii) Contour integral representations: From the
generating functions given by BI,13 we can derive
new contour integral representations for the T
matrix. We will here give a derivation of the
generating functions for positive energy regions
given by BI from that valid for negative energies
given by Schwinger? and PP by a Watson-Sommer-
feld transformation. It may be shown (PP and
Schwinger) that

nl ! rn  sinny,
Y () =— —=. 3.
lz=t;) mgl (&) i (87) 272 giny, ©.23)

X+ 18 as defined in {3. 18). Similarly (see PP),

s (s _ P_5in(ox_/2)
2 V(8 B (£) = “oinhy (3.24)

872

xX- is as defined in (3. 19) and (3. 20). It was shown
by Schwinger? that

1 1 sinny,
=— in— , (3. 25)

1—2tcosy, +t2 ¢t n=0 siny,
[¢1<1, x4, real.

Let us now convert the sum on the right-hand side
into an integral by using the Watson-Sommerfeld
transformation. To do this, we first set yx, =

7 + x— and ¢ real and less than 1. Then the sum
on the right-hand side can be written asa Watson—-
Sommerfeld contour integral in the usual way:
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1 -1, sinlx2) dz
1 +2t cosy. +t2 26t °% siny. sinmz
(3. 26)

¢, here is a loop surrounding the positive and real
z axis. In order to open this contour and convert
it into a line integral along the imaginary z axis,
the contributions from the large quadrants of cir-
cles in the right half-plane must vanish. This hap-
pens if y_ is pure imaginary,ix_. Then we obtain

1
1+ 2t coshy_ +¢2

1
=7 €M

ut Sin()\x_) da
sinhy_ sinhm

Sin()\x_) dx

sinhy_ sinhmx’

1
=7 fom cos(Alnt) (3.27)
The ¢ here is chosen so that one now has a cut
from 0 to — ® in the complex ¢ plane. These
definitions of x_ then correspond to (3.20). We
must point out that BI have a slight difference in
their definition of the angle ., and with that this
coincides with the result derived by them. We
may also note that one may set £ =1 in this
formula in which case, we arrive at an expression
for 1/(¢ — ¢’)2 derived by PP corresponding to
the case {4ty < 0. This serves as a check on this
formula. ((i?P do not derive the generating func-
tions in the positive energy cases).

There is another choice of x, and ¢ which gives a
formula of the above structure and this corres-
ponds to the case when £,£; > 0 and (3. 19). Here
we set x, =ix-and £ >— £. Then

1 —1
1 + 2t coshy. + ¢2

and the above procedure leads to the form

1
1 + 2¢ coshy_ + £2
1 .o cos(Alnf) sin(ry.)

=— dx
t 0 sinhmx  sinhy_

(3.29)

with coshy. defined as in (3. 19) and the ¢ plane
now has a cut from 0 to + », If we set { = e#, we
arrive at an expression for 1/(¢ — £¢’)2 derived by
PP for £,£4 > 0,again serving as a check on our
result. If we want the ¢ plane to have the cut from
0 to — « as in the first case even for the second
situation, then one may proceed with cotzr in-
stead of 1/sinzn. With the angle x, now defined as
ix-, then we obtain the result

1
1 — 2t coshy_ + t2

=:_1f°° girlnt in(Ax-)
2t "o ]

S
——=— coth(za)dxr
inhy_
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sin(x X—)

- coth(mr)dx.
sinhy_

(3. 30)

The ¢ plane here has a cut from 0 to — «; we can
thus evaluate this for ¢ = 1 and verify that the
same answer as obtained from the last expression
is obtained for 1/(£ — £)2 when £,£) > 0.

With this alternative derivation of the generating
function, the close connection between the regiong
in £ space and the ¢ plane becomes evident. This
same fact is reflected in the formulas derived
below. We may also state that for obtaining

£okp > 0 from the result of £,£7 < 0, one merely
rotates the complex ¢ plane through an angle 7 in
the formula for £,£; <O0.

The result for the positive energies generalizes
that given by Nutt8,25;

-1 0
=— [7 cos(alnt)
¢ o

E<0:

np 1
T(p,p’, E) 2

~ 2mn? lp—p’l2

tndt
x (1—4nf — %\ @3
( 1. e d—12+ 4t) 8.31)

R, is a line integral going from 0 to 1(= ¢%¢) as
shown in Fig. 1. This is for the repulsive case

(n > 0). For the attractive case, this integral re~
presentation holds with 7 replaced by — 7, but it
should not be used to generate the “eigenfunction”
expansion of the form (3. 12) for the repulsive
case for the reason given earlier. For E > 0, the
situation is somewhat more complex as is already
evident. We will give only the results for the

(E + i6) case and those for (E — i5) can be obtain-
ed by a similar procedure. In this case, we have
to discuss the attractive and repulsive cases
separately. We give below the results for the re-
pulsive case and those for the attractive case are
obtained by a formal complex conjugation of the
corresponding results (notice these are all valid
for E + 6 only). In doing this, the contours
change correspondingly; for instance, L, becomes
L. on complex conjugation,

E > 0 (repulsive case with E + i5):

T(p,p’, E)
tingd,
=___7f‘19_____ (1._ dine ™ | .____t.__._.._),
2m2mip—p’(2 Le,1+¢t)2+ 4
o> 0,8, >0, (3. 32)
°rl L, R‘ P
a 0 +i
P L R .h'i

(FIG. 1. Contours used in the expressions (3. 36), (3. 37), and
3. 38).
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tindt
=_____77£0___ (1 — dine™ | _______),
2n2m|p—p’|2 Loe,(1+¢t)2+4
£, <0,£, <0, (3.33)
tindt
=-—-——-—————-np0 (1+4l17f —————'——>,
272mlp— p’|2 Ree (1 —t)2— 4
£086 <0. (3.39)
These follow if we note that
f dttin1 cos(kInt)
Li
=g (k sinhwk + 5 coshnk)
(n% — k2)i " ’
dtin1 cos(klnf) = ——1——, 3.35
I, (lnt) = s 3.39)

The In¢ is here defined on a cut plane from 0 to
— o along the Ref axis. p§ = p3 + i6 in all the
above. The contours L, R, are shown in Fig. 1.
If one formally expresses the contour integrals in
(3.32)—(3. 34) as real integrals ranging from 0 to
1, they reduce to the form (3. 31).

All these representalions are mutually equivalent.
Several remarks can now be made. Nutt8 tried to
analytically continue (3.31) for E > 0, and essen-
tially he ended up examining only (3. 34) and
missed (3,32) and (3. 33) entirely. This is the
case for all the subsequent troubles he faced. It
is clear that analytic continuation with vespect to
E does not bring the expression (3. 12) to (3. 13).
It becomes quite clear if we note that the co-
efficient of expansion of T for negative E are the
representations D(j,j) with j = (n — 1)/2, and
those for positive E are the representation D(0, p)
of the Lorentz group and these are not analytic
continuations of one another. This is after all the
manifestation of the different topology for E 2 0
associated with the surface 4t =1 (Ref. 14).
For €, = ¢, = 0 with no imaginary parts in them,
the T matrix vanishes identically; for € = 0 how-
ever small, as will be seen from (3. 36),a Taylor
expansion in € does not exist. This was Nutt's
mistake. We must stress that these expressions
were obtained by explicit solution of the LS equa-
tion following PP who explicitly obtained the
Green's functions for E > 0 by solving Eq. (3. 10).
In our discussion in Sec. 4, we show that these T
matrices then automatically obey the generalized
unitarity. It should be mentioned that an analytic
continuation in E which takes cognizance of the
?bove properties also gives (3. 32)-(3. 34) from
3.31).

We will now demonstrate that the correct Coulomb
amplitude is obtained from an evaluation of the T
matrix for positive energies near pg = p2 = p2.
Using (3. 14), the actual evaluation of T near the
mass shell can be carried out and this displays
the on-shell behavior of T quite transparently.
Notice that (3. 14) has explicitly subsumed in it the
Born term in either set of expressions (3. 18)-
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(3. 20) or (3. 32)-(3. 34). Without making any
approximations, the integrals (3. 14) can be evalu-
ated and the result is

T(,p,E) =% i
TN 2mmlp? — pg)(p'2 — p3)
( ne'iﬂx-e(n) 1 & e‘ﬂx_sn n2 )
sinhy_(1 — e"2m) 7 n=18inhy_ n2 + 52 ’

E>0, (3. 36)
with
9(7]) = 6_27"', S, = 1, for go > 0, §6 > 0,
o) =1, s, =1, fort,<0, £,<0,
o) =e ™, s, = (1), for £,£’<0, (3.37)
pgn
T "E) =
®0 ) = 57 + 535 + 5D)
- sin(7 — x,Jn
X ((1 — cosy,)"1— 7 e,
272 sin{n — y,)m
LB ety
sy, m=1 n (3. 38)

+ gigns go with £,£; 2 0. This expression was
recently derived by Roberts using the classical
path integral techniques. Very near the points

p2 = p% and/or p’2 = p§ (and vice versa), (p2 — pg)
(p’2 — pg) sinhx. remains finite and e"x- becomes
very small as can be seen from expression (3. 17)
and the definition x _, and so the terms in the
series can all be ignored compared to the first
term in (3. 36):

T(p,p', E)
2n2pg6(n)e=inx- 1

am|(p2 — p§Np'2 — p3)| (1 ~ e"2m) sinhy_
(3.39)

It can be noted that in the case of the off-shell
Coulomb T matrix, the limit as energy becomes
real exists but at the on-shell point pg = p2 = p’2,
e~ix- for real 7 oscillates rapidly and does not
tend to any unique limit. However, these oscillat-
ing terms can be isolated in terms of momentum
space wavefunctions for asymptotic Coulomb dis-
torted states, and the definition of the physical
Coulomb amplitude is with respect to the Coulomb
distorted waves. Using the explicit expression
for x. and the Mullin-Guth wavefunctions® in the
Sturmian form (this is equivalent to using a dis-
torted G§ as was done by Schwinger?)

@’ |2¢, E) i .
=— 0@~ pe™2|T( ~ in) )(p 13 p8> ;

(3. 40)
we obtain the usual Coulomb scattering amplitude.

In summary, we may state that the nature of the
Coulomb T matrix near the mass-shell depends on
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the approach to the mass shell; this appears in

(3. 39) as the multiplicative factor 9(5). This is
missing in the analysis of Nutt in Ref. 8. The
second important point is that the Born term

gets cancelled by a portion of the term VGV on
the mass~shell, an observation made earlier by
us22 elsewhere only for ghort range potentials
obeying the constraint f: 7| V(r)|dr < ©. The
off-shell unitarity relationships are obeyed by
these T matrices by virtue of our general demon-
stration given in the next section. An easy direct
verification of these can be accomplished by using
(3.13) and a transformation to the four-dimen-
sional space.

In the next section, we will discuss the generalized
unitarity and its implications to the Coulomb T
matrix.

4. OFF-SHELL UNITARITY

The erroneous calculation of the discontinuity of
the Coulomb 7 matrix8 across the unitarity cut has
led some authors to investigate validity of on the
energy shell Low equationfor this 7" matrix.9,10 We
now show that for complex energies, if a unique
solution of the LS equation for T is obtained, the
generalized Low equation is guaranteed for com~
plex energies and further study of the unitarity for
real energies reduces to one of careful limiting
process.

We have from the LS equation for complex
energies, Eq. (2. 4), the corresponding one for T,
Then

T—Tt=H[Gt— G| 4.1)
= TG}[(G")™1 — (GH)"1]G5T? (4.2)
=— 2i6TG}GT" (4.3)

Equation (4. 3) is the Low equation for complex
energies depicting the generalized unitarity
relation.

Somewhat more subtle manipulations are needed
to obtain (4. 3) from the LS equation for G*. We
write from the second expression in Eq. (2. 2)

T = (E— Hy +i0)[G* — GH(E— Hy +i0).  (4.4)
L 2i6 ((E v Ht)z - Ho))
+ 28 ((E— B s (B — By
+(B- H")(T—T:)-ﬂ—ﬁ &~ H))
El%%fﬁ —~ 2i (4.5)
= 21’6(— H'mw ~ H,)
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P HN— 1
(£ = Ho) (E— H)2 + 52
— 1 ——
HE—H) et Ho))
2005 _ 95 (4. 6)

(E— B2 + 62
=— 2io<2TG;,ngTT + TG{G~(E — H)

_ 52
+{(E~HG*'G Tt +1 — ——~
16*63 (E—H)2+52>

+{2i6(E — H,)G*G~(E — H,)}. (4.7

The last line in {--+} can be further simplified to
give

52

———— e +
(E — H)2 + 52 *+ TGs

{---} =2is (1 + TGG, Tt

+ GTt + i6(H'GYG~ — G*G™H' )). (4.8)

Substitutions of this expression in (4.7) immedi-
ately leads to the generalized unitarity relation
for complex energies. In the above manipulations,
only the LS equation and the definitions of G+, G4,
H,and T are used. It is important to stress that 6
was not set equal to zero anywhere in the deriva-
tion. Roberts!8 writes the equation

T— Tt =— 2in(E — H,)5(E — H(E — H,) (4.9)
to express unitarity. Our above analysis shows
that this cannot be correct for the usual T oper-
ator. To obtain from (4. 3) the on-shell unitarity
valid for physical energies, it is important to
prove the existence of the limit § — 0 for

T(E + 6). The analysis described in Sec. 2 and
the explicit expression for the Coulomb T matrix
obtained in the last section show the on-shell
limit is not unique for the Coulomb 7T matrix. One
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thus substitutes the Coulomb T in (4. 3) and com-
putes the limit 6 - 0 with care. When the limit
exists for T, however, then the usual form of the
Low equation is obtained by setting 6 = 0 in (4. 3).

5. SUMMARY

In this paper, we have shown that the partial wave
off-shell two particle Coulomb T matrix obeys the
usual Lippmann-Schwinger equation for complex
energies. The proof was accomplished by explic-
itly showing that the corresponding kernel is L2,
But this is not the case for the full LS equation.
However, via the Sturmian eigenfunctions and fol-
lowing the procedure of Schwinger and PP, the full
LSequation was solved for T and various general ex-
pressions for the off-shell T matrix were obtained.
The Hilbert-Schmidt analysis of the kernel of the
symmetrized form of LS equation indicated that
the limit 6§ = 0 of T(E + i6) may not be well de-
fined, and this is found to be true by studying the
on-shell behavior of the Coulomb T matrix for
real positive energies. I proper overlap between
the Coulomb distorted asymptotic states of the
plane wave representation of the Coulomb 7 matrix
is taken, then the physical Coulomb amplitude is
obtained, Moreover, the generalized (off-shell)
unitarity—the Low equation—was shown to be valid
if T is the solution of the LS equation.

In a separate communication, the implications of
some of the above remarks as well as the use of
the various representations of the off-shell Cou-
lomb T matrix in the Faddeev theory of the three-
particle Coulomb systems, will be presented.
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A tetrad vector formulation of Einstein's field equations is developed in which the orthogonality pro-
perties of the tetrad are permitted to vary in any prescribed smooth way from one space~time point to
another. The components of the Riemann tensor with respect to such a basis are derived by means of
exterior calculus. The approach facilitates a simple direct derivation of the Harrison-Ernst equations.

1. INTRODUCTION

Recently, the author developed a formulation of the
stationary axially symmetric gravitational field
problem in which a key role was played by a com-
plex potential € related to the metric tensor by
means of certain integrability conditions.! In
terms of this complex potential even the Kerr
metric? could be simply described, and a whole set
of perturbation theory solutions generalizing the
Kerr metric was found. Subsequently, Harrison
suggested an extension of the € formulation to the
case of stationary nonaxially symmetric fields.3 It
is the author's desire to find a further generaliza-
tion of the formalism in which even time depend-
ence is taken into account, and in which interior as
well as vacuum fields may be considered.

If these desires are to be realized,it willbe neces-
sary first to comprehend thoroughly the Harrison-
Ernst field equations. As a step in this direction
we shall give a simple direct derivation of these
equations utilizing the methods of exterior calculus.
Our approach will differ from that commonly em-
ployed? in that we shall permit the orthogonality
properties of the tetrad system to vary from one
space~time point to another. However, we shall
assume that the reader is familiar with the general
properties of p-vectors and p-forms.

II. THE USE OF A NONORTHONORMAL BASIS

Let us denote the nafural basis for 1-forms by dx«
and the natural basis for 1-vectors by a,,a =0,1,
2,3. It is convenient to regard dx as a row matrix
and a as a column matrix, If b is an arbitrary
basis for the 1-vectors, then o is the correspond-
ing basis induced for the 1-forms by requiring that

)

For a space with a2 symmetric connection we then
immediately have the important formula

ob = dxa.

d(ob) = 0. (2)

We shall also introduce a metric matrix

G=b, @)
which reduces to the metric tensor if the natural
basis is employed. If an orthonormal or quasi-
orthonormal tetrad system is employed, the G
matrix is a constant matrix. It does not seem to be
widely realized that there is no need to consider
just these extreme points of view. We shall pro-
ceed under the assumption that G may depend upon

position without necessarily coinciding with the
metric tensor,

A Christoffel matrix

K = (db)*b” (4)

and & Riemann matrix

© = (d2b)+b~ (5)
are now defined, the former consisting of 1-forms
and the latter of 2-forms. Under a change of basis
© undergoes a linear homogeneous transformation,
although this is not true for K, We define an object
with the symmetries of the Riemann tensor as
follows:

©up = %Rasyéqué. (6)
In fact, when the natural basis is employed Raﬂy s
is precisely the Riemann tensor. In other cases
R, s 18 related to the Riemann tensor by a linear
homogeneous relationship, which may be obtained
easily from the definition of ©. The symmetric
matrix

Rm7 = GBSR (N
is equal to the Ricci tensor in the case of a natur-
al basis, and it is related to the Ricci tensor by a
linear homogeneous relationship otherwise. No
matter what basis is employed, Einstein's vacuum
field equations may be written

aByd

R, =0. (8)
From Egs. (2), (3), and (4) it follows directly that

{do)G = oK (9)
and that

dG =K+ K", (10)

In practice these two equations are easily solved

for K.5 Once K is determined, © may be evaluated,

for from Egs. (3)—-(5), and (10) it follows that
© =dK + KG1K~, (11)

For certain problems it is convenient to write
this equation in the form
©G!l =4I —I'T, (12)

where I' = KG™1,
We are at liberty to choose the symmetric matrix
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G in any convenient way. If G were chosen to be
the ordinary metric tensor, we would simply have
an exterior algebraic version of the traditional
method of calculation involving Christoffel sym-
bols. On the other hand, if G were chosen to be the
Minkowski metric, we would then have the forma-
lism described in detail in Ref. 4. Rather than
adopt either one of these extremes, we shall in
this paper suppose that

-10
G = ,
0 v
where the three-dimensional symmetric matrix
v may vary from one point of space-time to

another. In this case it is fruitful to introduce
complex three-dimensional matrices

(13)

K g = Koo + i€y, y"(det y)'/2K,,, (14)

0,5 = 6, +ic, yi¥(det y)1/20,,, (15)

where €,,, is the Levi—Civita symbol, for one may
show that

© = dK + Ky "1K". (16)

IOI. DERIVATION OF THE HARRISON-ERNST
EQUATIONS

We shall suppose that the coordinate system has

been chosen so that

00 = f1/2 (dx0 — w dx ), (17

oo =f"124xa,  a=1,2,3, (18)

where the ten functions y 4, w,, and f are inde-
pendent of x0. A stra1ghtforwa.rd calculation yields

KaB = [Ga’ B] dx® + Eaﬂ“y‘“"(det -),)1/25(3”’ (19)

where [0a, 8] is a Christoffel symbol of the first
kind for the three-dimensional space with metric
tensor vy g, and where

X, =4if —1/2{€a6u7"”(det W/2M 08 —iM o0} (20)
M, =f  +i(f2Z,). @1

The axial vector Z, may be obtained from the skew
symmetric tensor
hyp = — 2W[,, g] = €qq,v*(det Y)1/2Z,.  (22)

On the other hand, substitution of Eq. (19) into Eq.

(16) yields

©,,=1% dxVdx® + € g, y4¥(det ¥)1/2D3C,
+ JCO;‘CB’

where the new differential operator D is defined
so that

a Byd

(23)
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DI, =d¥k, —dcx 30 %, (24)
Here Z and P, ;. are,respectively,the Christof-
fel symbol and R1ema.nn tensor associated with the
three-dimensional metric tensor y ae

For any stationary gravitational field such that
the Ricci tensor component R , vanishes, M  can
be shown to be a gradient.

Ma =€ ,a? (25)
where € = f + i¢. This is demonstrated by looking
at the terms proportional to ¢90% in Re®_,. The
remaining components of the vacuum field equa-
tions are then found to be given by

Re[(Ree}y*Be, , —yaBe € 4] =0 (26)
[(Re€?2P, ; + 5(€ €% + €*€ )] =0 (27)
On the other hand, the integrability condition

haﬂ,y + hB'y.a-"- hyczB =0,
implies that

yeB(f 729 ,).; =0
or

Im {(Ree)-y“ﬂe.as—7“B€,a€,5}=0- (28)

In ¢onclusion, the field equations for a stationary
vacuum metric can be written in the simple form

(Ree)yBe,, 5 = yoBe € (29)

.8

(Re€)?P, , + %(e'ae”‘; +e'e 4)=0, (30)
Alternatively, these equations may be obtained

from the variational principle

6f{P+§7

Although Harrison and Ernst have developed ana-
logous equations valid in the presence of electro-
static and magnetostatic fields, it is not known at
present whether or not any fruitful extension ex-
ists for fields inside of matter, or whether one
can treat time-dependent fields in the same spirit.6
It is not likely to be easy to find the desired gen-
eralization, but, if it can be found, the formalism is
liable to be very useful with regard to astrophysi-
cal applications, because the stationary axially
symmetric problem has already been made quite
manageable in terms of this formalism.

e*
- oc2 B }(det Y)I/Zd 3x =0, (31)
€
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We describe here how one can obtain upper and lower bounds of the average value of a function f{E) in

terms of the bounds of the variable E and E, E2,

In physics as well as other sciences, sometimes
we may like to estimate the average value of a
quantity, even though we have only limited infor-
mations about this quantity; e.g., we may like to
estimate the higher-order moments of a certain
(charge, mass, etc.) distribution in terms of some
known lowest order moments. In theories of poly-
mer solutions,! the average of the inverse dis-
tance between monomers §17r§ is usually difficult
to compute directly, and most theories make
approximate estimation of this number in terms
of ¥ or rZ, In a previous article,2 by using the
concave upward property of exponential function,
we obtain fairly simple bounds for its average
value. The same reasoning should lead us to
similar bounds for other concave upward func-
tions. We now would like to investigate what are
the simplest possible bounds that one can con-
struct for the average value of an arbitrary func-
tion.

Consider first a real value concave upward func-
tion f(E), i.e.,f"(E) = 0, or f'(E) is a nondecreasing
function as we increase E. From Taylor's
theorem, we have

AEY= @+ (E—afle) + (E—e? [ (1—1
x f'let+ HE — €)ldt. (1)

We note that the remainder term is nonnegative
for concave upward function; hence

AE) = fle) + (E — &f'(e), @)

for arbitrary F and €. For concave downward
function (f” =< 0), we have instead

fle) + (E — o () = f(E), 3

for arbitrary E and €.

The average value of a function f{E) is given by

AE) =250, A(E,), (4)

where p, = 0 and 2,9, = 1. We also denote the
maximum value of the set {E;} by E, ,and the
minimum value by E,.

From Egs. (2) and (3), using the same arguments
as in Ref. 2, we easily find that for concave upward
function

/) = fE). (5a)
and for concave downward function
AE) = f(E). (5b)

Eq. (5) can easily be generalized to functions of
several variables, Taylor's theorem for functions
of N variables gives

fxh = f({xio}) + I, — x0)(3f/0x)o + Ry,  (6)

where Ry = 3d%flx,0 + g(x, — «,

), with0 < g < 1.
It is easy to see that if we have®

2 . 2
(D o
an
Zx-z—; =0, (7b)

for all values of all variables, then R, = 0. Hence,
if Eq. (7) holds, we would have

f({xg}) Zf({&-;}) (8)
If the inequality sign is reversed in Eq. (7b), then
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We describe here how one can obtain upper and lower bounds of the average value of a function f{E) in

terms of the bounds of the variable E and E, E2,

In physics as well as other sciences, sometimes
we may like to estimate the average value of a
quantity, even though we have only limited infor-
mations about this quantity; e.g., we may like to
estimate the higher-order moments of a certain
(charge, mass, etc.) distribution in terms of some
known lowest order moments. In theories of poly-
mer solutions,! the average of the inverse dis-
tance between monomers §17r§ is usually difficult
to compute directly, and most theories make
approximate estimation of this number in terms
of ¥ or rZ, In a previous article,2 by using the
concave upward property of exponential function,
we obtain fairly simple bounds for its average
value. The same reasoning should lead us to
similar bounds for other concave upward func-
tions. We now would like to investigate what are
the simplest possible bounds that one can con-
struct for the average value of an arbitrary func-
tion.

Consider first a real value concave upward func-
tion f(E), i.e.,f"(E) = 0, or f'(E) is a nondecreasing
function as we increase E. From Taylor's
theorem, we have

AEY= @+ (E—afle) + (E—e? [ (1—1
x f'let+ HE — €)ldt. (1)

We note that the remainder term is nonnegative
for concave upward function; hence

AE) = fle) + (E — &f'(e), @)

for arbitrary F and €. For concave downward
function (f” =< 0), we have instead

fle) + (E — o () = f(E), 3

for arbitrary E and €.

The average value of a function f{E) is given by

AE) =250, A(E,), (4)

where p, = 0 and 2,9, = 1. We also denote the
maximum value of the set {E;} by E, ,and the
minimum value by E,.

From Egs. (2) and (3), using the same arguments
as in Ref. 2, we easily find that for concave upward
function

/) = fE). (5a)
and for concave downward function
AE) = f(E). (5b)

Eq. (5) can easily be generalized to functions of
several variables, Taylor's theorem for functions
of N variables gives

fxh = f({xio}) + I, — x0)(3f/0x)o + Ry,  (6)

where Ry = 3d%flx,0 + g(x, — «,

), with0 < g < 1.
It is easy to see that if we have®

2 . 2
(D o
an
Zx-z—; =0, (7b)

for all values of all variables, then R, = 0. Hence,
if Eq. (7) holds, we would have

f({xg}) Zf({&-;}) (8)
If the inequality sign is reversed in Eq. (7b), then
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R, = 0; hence the inequality sign in Eq. (8) must
also be reversed.

Let us now consider f,(E) = (E — Ey)*, where n is
an integer and n = 3. "Since f, (E) is concave up-
ward (for E = E;), from Eq. &), we have

(E—Egn = (e —Eg) + (E— €)f, ()
and

(E —Eg)n-1=(e; —Eg)-1+ (E — ¢)f " _1(€1). (9b)

(92)

From Eq. (9a), with ¢ = E, we get
E=Ey" = (E — Ey)n.

Multiplying Eq. (9b) by (£, — E) and setting
¢ = E,— (E,—BV/(E, — ),

we get the following recursive upper bound for f,:

(E,—E)E —Eort —(E_—E)e, —Ep)-1
= (E=Egr. (10b)

Hence for any function f(E) which has a Taylor ex-
pansion about E,, or

AE) = fEQ) + 35 1) HE — Egf@(ED),

(10a)

we can in principle find bounds of f{E) in terms of

ROBERT H.T. YEH

Ey,E,,E and EZ. Or

> (1)1 f)f(E,)

n=3

< f(E) — fEy) — (E — E,)f (Eo)%f{Z)(Eo)(E — Ey)2

<3 ()18, /o), (11)

where if f ®)(E ) > 0, then B, (n) is the upper bound
of (E — E,)» (Eq 10b) and B, ,(n) is the lower
bound ofﬁ E,)" (Eq.10a). ‘And, if @) E,) <0,
then B () is the lower bound of (E — E)*, whlle
B,(n) is the upper bound.

If we have more input information about the func-

tion or about the distribution (e.g., E; = 0), then we
can improve our bounds; e.g., the average value of
an even function [f(E) A— E)] can be bounded in

terms of E2,E_ and E%, via

EZF n-. __..(Ez —_ _-2-)€2n—'2 > E n > (E-Z)n,

where e§ = E2 — (EZ — E?)2/(E2 — E?). Con-
sider the case of Ey=0,E =1 and plE) =

(s + 1)Es with integer s; ‘then we find that EZ

(s+ 1)/(Zn+ s+ 1)and (E2)» = [(s + 1)/(s + 3)] .
These bounds are poor for large n {(n > s),but im-
prove with increasing s (s > n).

* This work was supported by a Faculty Research Fellowship
froni the Research Foundation of State University of New
York.
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